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Latent Variable Modeling in Mplus:
Integration of a Multitude of Analyses
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Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 2/ 206



Latent Variable Modeling in Mplus:
Integration of a Multitude of Analyses

Exploratory factor analysis

Structural equation modeling

Item response theory analysis

Growth modeling

Latent class analysis

Latent transition analysis
(Hidden Markov modeling)

Growth mixture modeling

Survival analysis

Missing data modeling

Multilevel analysis

Complex survey data analysis

Bayesian analysis

Causal inference

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 2/ 206



Latent Variable Modeling in Mplus:
Integration of a Multitude of Analyses

Exploratory factor analysis

Structural equation modeling

Item response theory analysis

Growth modeling

Latent class analysis

Latent transition analysis
(Hidden Markov modeling)

Growth mixture modeling

Survival analysis

Missing data modeling

Multilevel analysis

Complex survey data analysis

Bayesian analysis

Causal inference

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 2/ 206



Latent Variable Modeling in Mplus:
Integration of a Multitude of Analyses

Exploratory factor analysis

Structural equation modeling

Item response theory analysis

Growth modeling

Latent class analysis

Latent transition analysis
(Hidden Markov modeling)

Growth mixture modeling

Survival analysis

Missing data modeling

Multilevel analysis

Complex survey data analysis

Bayesian analysis

Causal inference

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 2/ 206



Latent Variable Modeling in Mplus:
Integration of a Multitude of Analyses

Exploratory factor analysis

Structural equation modeling

Item response theory analysis

Growth modeling

Latent class analysis

Latent transition analysis
(Hidden Markov modeling)

Growth mixture modeling

Survival analysis

Missing data modeling

Multilevel analysis

Complex survey data analysis

Bayesian analysis

Causal inference

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 2/ 206



Latent Variable Modeling in Mplus:
Integration of a Multitude of Analyses

Exploratory factor analysis

Structural equation modeling

Item response theory analysis

Growth modeling

Latent class analysis

Latent transition analysis
(Hidden Markov modeling)

Growth mixture modeling

Survival analysis

Missing data modeling

Multilevel analysis

Complex survey data analysis

Bayesian analysis

Causal inference

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 2/ 206



Latent Variable Modeling in Mplus:
Integration of a Multitude of Analyses

Exploratory factor analysis

Structural equation modeling

Item response theory analysis

Growth modeling

Latent class analysis

Latent transition analysis
(Hidden Markov modeling)

Growth mixture modeling

Survival analysis

Missing data modeling

Multilevel analysis

Complex survey data analysis

Bayesian analysis

Causal inference

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 2/ 206



1. Overview of New Features in Mplus Version 7.2

New analysis features:
1 Mixture modeling with non-normal distributions: t, skew-normal,

skew-t
2 Structural equation modeling (SEM) with non-normal

distributions: t, skew-normal, skew-t
3 Mediation analysis with direct and indirect effects based on

counterfactuals (causal inference)
4 Latent class and latent transition analysis with residual

covariances for categorical indicators
5 Restructured routines for continuous-time survival analysis with

latent variables
6 ALIGNMENT option for binary outcomes using

maximum-likelihood, including TYPE=COMPLEX using MLR
7 Bootstrap standard errors and confidence intervals for maximum

likelihood estimation with ALGORITHM=INTEGRATION
8 Standard errors for TECH4 for the Delta parameterization of

weighted least squares and z-tests and p-values for TECH4
9 Standardized coefficients with standard errors for models with

covariates using weighted least squares estimation
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Overview of New Mplus Version 7.2 Features Cont’d

Convenience features:
1 New order of operations for the DEFINE command
2 Double do loops for the DEFINE, MODEL CONSTRAINT,

MODEL TEST, and MODEL PRIORS commands
3 New plots: Estimated distributions; Estimated medians, modes,

and percentiles; and Scatterplots of individual residuals
4 For Monte Carlo studies, TYPE=TWOLEVEL, and

ESTIMATOR=BAYES, the output contains a table showing the
correlation and mean square error comparing true and estimated
factor scores

5 For the ALIGNMENT option and real data,
RANKING=filename.csv; in the SAVEDATA command produces
a comma-delimited file that shows the rankings of groups based
on the group factor means and also shows the significance of the
factor mean differences

6 For Monte Carlo studies using the ALIGNMENT option, the
output contains a table showing the correlation and mean square
error comparing true and estimated factor means
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Overview of New Mplus Version 7.2 Features Cont’d

Convenience features, continued:
1 Parameter names given for parameter numbers listed as

non-identified
2 Several lines can be commented out by starting the first line with

!* and ending the last line with *!
3 New features for the Mac Editor: Correction to undo function and

addition of All file types

Version 7.2 Mplus Language Addendum on the Mplus website

Plots can now be created in R using information from most of
the Mplus PLOT command options. Mplus R functions read the
Mplus GH5 file using the rhdf5 package from Bioconductor,
thereby providing R with the necessary input data. See
http://www.statmodel.com/mplus-R/
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2. Mediation Analysis with Effects Based on
Counterfactuals/Potential Outcomes

(Causal Inference; Causally-Defined Effects)

Overview:

Software
The issues, intuitively

Continuous Y, continuous M with ”exposure-mediator
interaction” influencing Y
Binary Y, Continuous M

The causal effect definitions using the mediation formula
Specific case: Binary Y, continuous M

Applications
Hopkins GBG randomized preventive intervention data
MacKinnon smoking data

Sensitivity analysis (M-Y confounding)
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2.1 Causal Effects in Software

Focus on:
Binary and count Y and M
Single Y, single M
Binary (treatment/control) X or continuous (exposure) X
Covariates

Valeri-VanderWeele SAS/SPSS macros (Psych Methods, 2013)

Tingley et al. R package mediation (forthcoming in JSS)
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Causal Effects in Software, Continued

Mplus

Muthén (2011). Applications of Causally Defined Direct and
Indirect Effects in Mediation Analysis using SEM in Mplus (the
paper, an appendix with formulas, and Mplus scripts are
available at www.statmodel.com under Papers, Mediational
Modeling.)

Muthén & Asparouhov (2014). Causal effects in mediation
modeling: An introduction with applications to latent variables.
Forthcoming in Structural Equation Modeling

Mplus Version 7.2 simplifies the input for the single M, single Y
case

Mplus is unique in allowing latent Y, M, and X (latent exposure),
logit link without rare Y assumption, and nominal M or Y
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Mplus Implementation of Causally-Defined Effects

The effects can be estimated in Mplus using
maximum-likelihood or Bayes
ML:

Standard errors of the direct and indirect causal effects are
obtained by the delta method using the Mplus MODEL
CONSTRAINT command
Bootstrapped standard errors and confidence intervals are also
available, taking into account possible non-normality of the effect
distributions

Bayes
Bayesian analysis is available in order to describe the possible
non-normal posterior distributions

Mplus Version 7.2 greatly simplifies how to get the
causally-defined effects using MODEL INDIRECT (available
for ML, including bootstrapping) instead of user-specified
MODEL CONSTRAINT formulas
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Mplus Version 7.2 MODEL INDIRECT Commands
for Causal Effects

1 No moderation:
Y IND M X;
- all 3 can be latent

2 Moderation with X*M:
y MOD M XM X;
Y can be latent

3 Moderation with Z involving X and M:
Y MOD M Z(low, high, increment) MZ XZ X;
- only Y can be latent

4 Moderation with Z involving M and not X:
Y MOD M Z(low, high, increment) MZ X;
- X and Y can be latent

5 Moderation with Z involving X and not M:
Y MOD M Z(low, high, increment) XZ X;
- M and Y can be latent

For controlled direct effects an M value is placed in parenthesis:
M(m).
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2.2 The Issues, Intuitively

Causally-defined effects based on counterfactuals and potential
outcomes using expectations have been developed by Robins,
Greenland, Pearl, VanderWeele, Vansteelandt, Imai etc

Total, direct, and indirect causal effects

Different results than SEM with for instance ”exposure-treatment
interaction” (Y=X*M), categorical DV, or count DV

The effects are causal only under strong assumptions (if
assumptions don’t hold, are the causal methods better/useful
anyway?)
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Continuous Y and M with Exposure-Mediator Interaction
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Total indirect effect : TIE = β1 γ1 +β3 γ1. (1)

Pure indirect effect : PIE = β1 γ1. (2)

Direct effect : DE = β2 +β3 γ0. (3)

Total direct effect : TDE = β2 +β3 γ0 +β3 γ1. (4)

Total effect = (1)+(3) = (2)+(4)
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Continuous versus Binary Distal Outcome
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Conventional versus Causal Mediation Effects with a
Categorical Distal Outcome

With a categorical distal outcome, the conventional product formula
for an indirect effect is only valid for an underlying continuous latent
response variable behind the categorical observed outcome (2 linear
regressions), not for the observed categorical outcome itself (linear
plus non-linear regression).

Similarly, with a categorical mediator, conventional product formulas
for indirect effects are only relevant/valid for a continuous latent
response variable behind the mediator.
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Comparing Causal and Naive Effects

The difference between the causal effects and the effects obtained by
what is called the naive approach has been studied in Imai et al.
(2010a) and Pearl (2011c). Imai et al. (2010a, Appendix E, p. 23)
conducted a Monte Carlo simulation study to show the biases, while
Pearl (2011c) presented graphs showing the differences.

We will look at the differences in some examples.
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Previous use of the Product Approach
with Binary Distal Outcome

MacKinnon & Dwyer (1993). Estimating mediated effects in
prevention studies. Evaluation Review, 17, 144-158

MacKinnon, D.P., Lockwood, C.M., Brown, C.H., Wang, W., &
Hoffman, J.M. (2007). The intermediate endpoint effect in
logistic and probit regression. Clinical Trials, 4, 499-513

Mplus MODEL INDIRECT
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The Problem with a×b for a Binary Outcome:
2 Parameters when 5 are Needed
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The a×b indirect effect faces the problem of non-constant effect
due to ignoring the level parameters (the intercept for the
mediator and threshold for the distal outcome)
The causally-defined indirect effect uses these level parameters,
focusing on the expected values of the observed binary outcome
- the probabilities
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The Probability of u = 1|x

Conditional on x, P(u = 1|x) is obtained by integrating over the
residual of the mediator and apart from the regression
coefficients the probability involves the residual variance, the
mediator intercept, and the distal outcome threshold: 5
parameters

One can compute P(u = 1|x = 1) - P(u = 1|x = 0) to compare
treatment and control

This is TE (Total Effect)

But what are the indirect and direct effects?

This is where the counterfactual definitions of causal effects
come in
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2.3 Causal Effect Definitions

Yi(x): Potential outcome that would have been observed for that
subject had the treatment variable X been set at the value x,
where x is 0 or 1 in the example considered here

The Yi(x) outcome may not be the outcome that is observed for
the subject and is therefore possibly counterfactual

The causal effect of treatment for a subject can be seen as
Yi(1)−Yi(0), but is clearly not identified given that a subject
only experiences one of the two treatments

The average effect E[Y(1)−Y(0)] is, however, identifiable

Similarly, let Y(x, m) denote the potential outcome that would
have been observed if the treatment for the subject was x and the
value of the mediator M was m
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The Controlled Direct Effect (CDE)

The controlled direct effect is defined as

CDE(m) = E[Y(1,m)−Y(0,m) | C = c]. (5)

where M = m for a fixed value m. The first index of the first term is 1
corresponding to the treatment group and the first index of the second
term is 0 corresponding to the control group.
VanderWeele-Vansteelandt (2009):

While controlled direct effects are often of greater interest
in policy evaluation (Pearl, 2001; Robins, 2003), natural
direct and indirect effects may be of greater interest in
evaluating the action of various mechanisms (Robins, 2003;
Joffe et al., 2007).
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The Direct Causal Effect (DE)

The direct effect (often called the pure or natural direct effect) does
not hold the mediator constant, but instead allows the mediator to vary
over subjects in the way it would vary if the subjects were given the
control condition. The direct effect is expressed as

DE = E[Y(1,M(0))−Y(0,M(0)) | C = c] = (6)

=
∫

∞

−∞

{E[Y | C = c,X = 1,M = m]−E[Y | C = c,X = 0,M = m]}

× f (M | C = c,X = 0) ∂M, (7)

where f is the density of M. A simple way to view this is to note that
in Y’s first argument, that is x, changes values, but the second does
not, implying that Y is influenced by X only directly. The right-hand
side of (7) is part of what is referred to as the Mediation Formula in
Pearl (2009, 2011c).
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The Total Indirect Effect (TIE)

The total indirect effect is defined as (Robins, 2003)

TIE = E[Y(1,M(1))−Y(1,M(0)) | C = c] = (8)

=
∫

∞

−∞

E[Y | C = c,X = 1,M = m]× f (M | C = c,X = 1) ∂M

−
∫

∞

−∞

E[Y | C = c,X = 1,M = m]× f (M | C = c,X = 0) ∂M. (9)

A simple way to view this is to note that the first argument of Y does
not change, but the second does, implying that Y is influenced by X
due to its influence on M.
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The Total Effect (TE)

The total effect is (Robins, 2003)

TE = E[Y(1)−Y(0) | C = c] (10)

= E[Y(1,M(1))−Y(0,M(0)) | C = c]. (11)

A simple way to view this is to note that both indices are 1 in the first
term and 0 in the second term. In other words, the treatment effect on
Y comes both directly and indirectly due to M. The total effect is the
sum of the direct effect and the total indirect effect (Robins, 2003),

TE = DE+TIE. (12)
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The Pure Indirect Effect (PIE)

The pure indirect effect (Robins, 2003) is defined as

PIE = E[Y(0,M(1))−Y(0,M(0)) | C = c] (13)

Here, the effect of X on Y is only indirect via M. This is called the
natural indirect effect in Pearl (2001) and VanderWeele and
Vansteelandt (2009).
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Translation of Different Terms by Different Authors

Names of Effects

Expectation
Setting Imai Pearl/VanderWeele Robins

1,1 - 1,0 ACME(treated) TNIE TIE
0,1 - 0,0 ACME(control) PNIE PIE
1,0 - 0,0 ADE(control) PNDE DE
1,1 - 0,1 ADE(treated) TNDE -
1,1 - 0,0 Total Total Total

ACME - Average causal mediated effect
ADE - Average direct effect
TNIE - Total natural indirect effect
PNIE - Pure natural indirect effect
PNDE - Pure natural direct effect
TNDE - Total natural direct effect

TIE - Total indirect effect
PIE - Pure indirect effect
DE - direct effect
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Causal Effect Decomposition using VanderWeele Terms

Natural (N) direct (D) and indirect (I) effect decompositions of the
total effect (TE) can be expressed in two ways:

1 TE=Pure NDE +Total NIE = PNDE+TNIE (= DE + TIE)
E[Y(1,M(1))-Y(0,M(0))] =
E[Y(1,M(0))-Y(0,M(0))]+E[Y(1,M(1))-Y(1,M(0))]

2 TE= Total NDE + Pure NIE = TNDE+PNIE
E[Y(1,M(1))-Y(0,M(0))] =
E[Y(1,M(1))-Y(0,M(1))]+E[Y(0,M(1))-Y(0,M(0))]

1 is the focus of Valeri-VanderWeele (2013).
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The Causal Effect Approach is General

The causal effects are expressed in a general way using expectations
and can be applied to many different settings:

Continuous mediator, continuous distal outcome (gives the usual
SEM formulas)

Categorical mediator, continuous distal outcome

Continuous mediator, categorical distal outcome

Categorical mediator, categorical distal outcome

Count distal outcome

Nominal mediator, nominal outcome

Survival distal outcome
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Binary Y, Continuous M

Using the general definition, the causal natural indirect effect (total
indirect effect) is expressed as the probability difference

Total NIE = TIE = Φ[probit(1,1)]−Φ[probit(1,0)], (14)

where Φ is the standard normal distribution function, the argument
(a, b) = (x, M(x)), and probit is defined on the next slide.
The pure natural indirect effect is expressed as the probability
difference

Pure NIE = PIE = Φ[probit(0,1)]−Φ[probit(0,0)]. (15)

and the pure natural direct effect expressed as the probability
difference

Pure NDE = DE = Φ[probit(1,0)]−Φ[probit(0,0)], (16)

TE =Pure NDE+Total NIE =DE+TIE =Φ[probit(1,1)]−Φ[probit(0,0)].
(17)
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Binary Distal Outcome Continued

Consider a mediation model for a binary outcome u and a continuous
mediator m. Assume a probit link for the binary outcome u,

probit(ui) = β0 +β1 mi +β2 xi +β3 xi mi +β4 ci, (18)

mi = γ0 + γ1 xi + γ2 ci + ε2i, (19)

where the residual ε2 is assumed normally distributed. For x, x’ = 0, 1
corresponding to the control and treatment group,

probit(x,x′) = [β0+β2 x+β4 c+(β1+β3 x)(γ0+γ1 x′+γ2 c)]/
√

v(x),
(20)

where the variance v(x) for x = 0, 1 is

v(x) = (β1 +β3 x)2
σ

2
2 +1. (21)

where σ2
2 is the residual variance for the continuous mediator m.

Although not expressed in simple functions of model parameters, the
quantity of (14) can be computed and corresponds to the change in the
y=1 probability due to the indirect effect of the treatment
(conditionally on c when that covariate is present).
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2.4 Example: Aggressive Behavior and Juvenile Court
Record

Randomized field experiment in Baltimore public schools

Classroom-based intervention aimed at reducing
aggressive-disruptive behavior among elementary school
students

Covariate is the Grade 1 aggression score before the intervention
started

Mediator is the aggression score in Grade 5 after the intervention
ended

Distal outcome is a binary variable indicating whether or not the
student obtained a juvenile court record by age 18 or an adult
criminal record

n = 250 boys in treatment and control classrooms
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A Mediation Model for Aggressive Behavior
and a Binary Juvenile Court Outcome

Two reasons for causal effects:

”Exposure-mediator interaction” (tx*agg5)

Binary outcome (juvcrt)
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A Mediation Model for Aggressive Behavior and a Binary
Juvenile Court Outcome

juvcrt∗i = β0 +β1 agg5i +β2 txi +β3 txi agg5i +β4 agg1i + ε1i, (22)

agg5i = γ0 + γ1 txi + γ2 agg1i + ε2i. (23)

The juvcrt outcome is not rare, but is observed for 50% of the sample.
The mediator agg5 is not normally distributed, but is quite skewed
with a heavy concentration at low values. The normality assumption,
however, pertains to the mediator residual ε2. Because the covariate
agg1 has a distribution similar to the mediator agg5, the agg5
distribution is to some extent produced by the agg1 distribution so
that the normality assumption for the residual may be a reasonable
approximation.
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Aggressive Behavior and Juvenile Court Record:
Mplus Input for Causal Effects

  Analysis:
          estimator = mlr;
          link = probit;
          integration = montecarlo;

  model:
          [juvcrt$1] (mbeta0);
          juvcrt on tx (beta2)
          agg5 (beta1)
          xm (beta3)
          agg1 (beta4);
          [agg5] (gamma0);
          agg5 on tx (gamma1)
          agg1 (gamma2);
          agg5 (sig2);
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Aggressive Behavior and Juvenile Court Record:
Mplus Input for Causal Effects, Continued
- Done Automatically in Mplus Version 7.2

juvcrtinpb.txt
model constraint:

new(ind dir arg11 arg10 arg00 v1 v0
probit11 probit10 probit00 indirect direct
total iete dete compdete orind ordir);
dir=beta3*gamma0+beta2;
ind=beta1*gamma1+beta3*gamma1;
arg11=-mbeta0+beta2+beta4*0+(beta1+beta3)*(gamma0+gamma1+gamma2*0);
arg10=-mbeta0+beta2+(beta1+beta3)*gamma0;
arg00=-mbeta0+beta1*gamma0;
v1=(beta1+beta3)^2*sig2+1;
v0=beta1^2*sig2+1;
probit11=arg11/sqrt(v1);
probit10=arg10/sqrt(v1);
probit00=arg00/sqrt(v0);
! Version 6.12 Phi function needed below:
indirect=phi(probit11)-phi(probit10);
direct=phi(probit10)-phi(probit00);
total=phi(probit11)-phi(probit00);
orind=(phi(probit11)/(1-phi(probit11)))/(phi(probit10)/(1-phi(probit10)));
ordir=(phi(probit10)/(1-phi(probit10)))/(phi(probit00)/(1-phi(probit00)));

Page 1
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Mplus Version 7.2 MODEL INDIRECT Input and Output

Instead of MODEL CONSTRAINT, use slide 10 language, case 2:
MODEL INDIRECT:

juvcrt MOD agg5 xm tx;
TOTAL, INDIRECT, AND DIRECT EFFECTS BASED ON
COUNTERFACTUALS (CAUSALLY-DEFINED EFFECTS)

Two-Tailed
Estimate S.E. Est./S.E. P-Value

Effects from TX to JUVCRT
Pure natural DE 0.005 0.067 0.076 0.940
Tot natural IE -0.064 0.030 -2.158 0.031
Total effect -0.059 0.070 -0.848 0.397

Odds ratios for binary Y
Pure natural DE 1.021 0.275 3.714 0.000
Tot natural IE 0.773 0.092 8.371 0.000
Total effect 0.789 0.221 3.571 0.000

Other effects
Tot natural DE -0.015 0.066 -0.219 0.826
Pure natural IE -0.045 0.022 -2.056 0.040
Total effect -0.059 0.070 -0.848 0.397

Odds ratios for other effects for binary Y
Tot natural DE 0.943 0.251 3.760 0.000
Pure natural IE 0.837 0.073 11.507 0.000
Total effect 0.789 0.221 3.571 0.000
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Aggressive Behavior and Juvenile Court Record: Estimates

The causal direct effect is not significant. The causal indirect effect is
estimated as −0.064 and is significant (z =−2.120). This is the drop
in the probability of a juvenile court record due to the indirect effect
of treatment.

The odds ratio for the indirect effect is estimated as 0.773 which is
significantly different from one (z = (0.773−1)/0.092 =−2.467).

The conventional direct effect is not significant and the conventional
product indirect effect is −0.191 (z=−1.98).
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Mediated Moderation Using Mplus Version 7.2
MODEL INDIRECT and LOOP Plot for Moderator Z

Excerpts from the Version 7.2 Mplus Language Addendum, pp. 3-8. 
 
The following input shows how the new MODEL INDIRECT language 
can be used as an alternative to the use of the PLOT and LOOP options of 
the MODEL CONSTRAINT command to get estimates and plots of the 
moderated indirect effect as shown in Example 3.18.  Instead of the 
Bayesian analysis of Example 3.18, maximum-likelihood estimation is 
used with standard errors and confidence intervals obtained by 
bootstrapping. 
 
TITLE: this is an example of moderated mediation with a 

plot of the indirect effect as in Example 3.18 
but using bootstrap and maximum likelihood 
estimation 

DATA: FILE = ex3.18.dat; 
VARIABLE: NAMES = y m x z; 
 USEVARIABLES = y m x z xz; 
DEFINE: xz = x*z; 
ANALYSIS: BOOTSTRAP = 500; 
MODEL: y ON m xz z; 
 m ON z xz x; 
MODEL INDIRECT: 
 y MOD m z (-2 2 0.1) xz x;  
PLOT: TYPE = PLOT2; 
OUTPUT: CINTERVAL (BCBOOTSTRAP);      
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LOOP Plot for Moderated Mediation: Indirect Effect as a
Function of the Moderator Z
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3.5 Categorical Mediator: Smoking Data Example

Muthén (2011): MacKinnon et al (2007) smoking data (binary Y)

 

Cigarette use
Intention No Use Use Total

Ctrl

4 (Yes) 9 20 29
3 (Probably) 14 20 34
2 (Don’t think so) 36 13 49
1 (No) 229 30 259

Tx

4 (Yes) 9 19 28
3 (Probably) 15 11 26
2 (Don’t think so) 43 11 54
1 (No) 353 32 385
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Smoking Data Continued

Different approaches with an ordinal mediator:

Ordered polytomous variable treated as continuous (non-normal
residual issue)

Latent response variable behind ordered polytomous variable

Dichotomized variable

Latent response variable behind dichotomized variable

See Muthén (2011)
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3.6 Binary Mediator and Binary Distal Outcome

Recalling that the general formulas for the direct, total indirect, and
pure indirect effects are defined as

DE = E[Y(1,M(0))−Y(0,M(0)) | C], (24)

TIE = E[Y(1,M(1))−Y(1,M(0)) | C], (25)

PIE = E[Y(0,M(1))−Y(0,M(0)) | C], (26)

it can be shown that with a binary mediator and a binary outcome
these formulas lead to the expressions

DE = [FY(1,0)−FY(0,0)] [1−FM(0)]+ [FY(1,1)−FY(0,1)] FM(0),
(27)

TIE = [FY(1,1)−Fy(1,0)] [FM(1)−Fm(0)], (28)

PIE = [FY(0,1)−Fy(0,0)] [FM(1)−Fm(0)]. (29)

where FY(x,m) denotes P(Y = 1 | X = x,M = m) and FM(x) denotes
P(M = 1 | X = x), where F denotes either the standard normal or the
logistic distribution function corresponding to using probit or logistic
regression. These formulas agree with those of Pearl (2010, 2011a).
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Pearl’s Hypothetical Binary-Binary Case

Pearl (2010, 2011a) provided a hypothetical example with a binary
treatment X, a binary mediator M corresponding to the enzyme level
in the subject’s blood stream, and a binary outcome Y corresponding
to being cured or not. This example was also hotly debated on
SEMNET in September 2011.
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Pearl’s Hypothetical Binary-Binary Case, Continued

Treatment Enzyme Percentage Cured
X M Y = 1

1 1 FY(1,1) = 80%
1 0 FY(1,0) = 40%
0 1 FY(0,1) = 30%
0 0 FY(0,0) = 20%

Treatment Percentage M=1

0 FM(0) = 40%
1 FM(1) = 75%

The top part of the table suggests that the percentage cured is higher
in the treatment group for both enzyme levels and that the effect of
treatment is higher at enzyme level 1 than enzyme level 0:
Treatment-mediator interaction.

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 43/ 206



2.7 Sensitivity Analysis of Mediator-Outcome Confounding

To claim that effects are causal, it is not sufficient to simply use the
causally-derived effects

The underlying assumptions need to be fulfilled, such as no
mediator-outcome confounding

Violation of the no mediator-outcome confounding can be seen as an
unmeasured (latent) variable Z influencing both the mediator M and
the outcome Y. When Z is not included in the model, a covariance is
created between the residuals in the two equations of the regular
mediation model. Including the residual covariance, however, makes
the model not identified.
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Mediator-Outcome Confounding (Residual Correlation ρ 6= 0)
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Imai Sensitivity Analysis

Imai et al. (2010a, b) proposed a sensitivity analysis where causal
effects are computed given different fixed values of the residual
covariance. This is useful both in real-data analyses as well as in
planning studies. As for the latter, the approach can answer questions
such as how large does your sample and effects have to be for the
lower confidence band on the indirect effect to not include zero when
allowing for a certain degree of mediator-outcome confounding?

Sensitivity plots can be made in Mplus using LOOP in the PLOT
command.
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Indirect Effect Based on Imai Sensitivity Analysis with ρ

Varying from -0.9 to +0.9 and True Residual Correlation 0.25
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Explaining the Sensitivity Figure

The correct value for the indirect effect is 0.25 (marked with a
horizontal broken line)
The biased estimate assuming ρ = 0 is 0.3287, an overestimation
due to ignoring the positive residual correlation
The sensitivity analysis varies the ρ values from −0.9 to +0.9:

Using ρ = 0, the biased estimate of 0.3287 is obtained
Using the correct value of ρ = 0.25, the correct indirect effect
value of 0.25 is obtained
For lower ρ values the effect is overestimated and for larger ρ

values the effect is underestimated

The graph provides useful information for planning new studies:
At this sample size (n = 400) and effect size, the lower
confidence limit does not include zero until about ρ = 0.6
This means that a rather high degree of confounding is needed for
the effect to not be detected
In the range of ρ from about -0.1 to +0.4 the confidence interval
covers the correct value of 0.25 for the indirect effect
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3. Bayesian Analysis

Bayesian analysis firmly established and its use is growing in
mainstream statistics

Much less use of Bayes outside statistics

Bayesian analysis not sufficiently accessible in other programs

Bayesian analysis was introduced in Mplus Version 6 and greatly
expanded in Version 7: Easy to use

Bayes provides a broad platform for further Mplus development
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Why Bayes?

Why do we have to learn about Bayes?

More can be learned about parameter estimates and model fit

Better small-sample performance, large-sample theory not
needed

Non-informative versus informative priors

Frequentists can see Bayes with non-informative priors as a
computing algorithm to get answers that would be the same as
ML if ML could have been done

Informative priors can better reflect substantive hypotheses

Analyses can be made less computationally demanding

New types of models can be analyzed

For a Bayes introduction with further references, see, e.g.,
Muthén (2010). Bayesian analysis in Mplus: A brief introduction.
Technical Report. Version 3.
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Writings On The Bayes Implementation In Mplus

Muthén (2010). Bayesian analysis in Mplus: A brief introduction. Technical
Report. Version 3.
Asparouhov & Muthén (2010). Bayesian analysis using Mplus: Technical
implementation. Technical Report. Version 3.
Asparouhov & Muthén (2010). Bayesian analysis of latent variable models
using Mplus. Technical Report. Version 4.
Asparouhov & Muthén (2010). Multiple imputation with Mplus. Technical
Report. Version 2.
Asparouhov & Muthén (2010). Plausible values for latent variable using
Mplus. Technical Report.
Muthén & Asparouhov (2012). Bayesian SEM: A more flexible representation
of substantive theory. Psychological Methods
Asparouhov & Muthén (2011). Using Bayesian priors for more flexible latent
class analysis.
Asparouhov & Muthén (2012). General random effect latent variable
modeling: Random subjects, items, contexts, and parameters.
Asparouhov & Muthén (2012). Comparison of computational methods for high
dimensional item factor analysis.

Posted under Papers, Bayesian Analysis and Latent Class Analysis
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Prior, Likelihood, And Posterior

Frequentist view: Parameters are fixed. ML estimates have an
asymptotically-normal distribution
Bayesian view: Parameters are variables that have a prior
distribution. Estimates have a possibly non-normal posterior
distribution. Does not depend on large-sample theory

Non-informative (diffuse) priors vs informative priors
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Bayesian Estimation Obtained Iteratively
Using Markov Chain Monte Carlo (MCMC) Algorithms

θi: vector of parameters, latent variables, and missing
observations at iteration i

θi is divided into S sets:
θi = (θ1i, ...,θSi)

Updated θ using Gibbs sampling over i = 1, 2, ..., n iterations:
θ1i|θ2i−1, ...,θSi−1, data, priors
θ2i|θ3i−1, ...,θSi−1, data, priors
...
θSi|θ1i, ...,θS−1i−1, data, priors

Asparouhov & Muthén (2010). Bayesian analysis using Mplus.
Technical implementation.Technical Report.
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MCMC Iteration Issues

Trace plot: Graph of the value of a parameter at different
iterations

Burnin phase: Discarding early iterations. Mplus discards first
half

Posterior distribution: Mplus uses the last half as a sample
representing the posterior distribution

Autocorrelation plot: Correlation between consecutive iterations
for a parameter. Low correlation desired

Mixing: The MCMC chain should visit the full range of
parameter values, i.e. sample from all areas of the posterior
density

Convergence: Stationary process

Potential Scale Reduction (PSR): Between-chain variation small
relative to total variation. Convergence when PSR ≈ 1
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PSR Convergence Issues: Premature Stoppage
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PSR Convergence Issues: Premature Stoppages
Due to Non-Identification
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Learning More About Bayes in Mplus

Topic 9 handout and video from the Johns Hopkins teaching,
June 2011

Part 1 - 3 handouts and videos from the Utrecht University
teaching, August 2012

Papers on our website, such as Muthén (2010). Bayesian
analysis in Mplus: A brief introduction. Technical Report.
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4. Factor Analysis (IRT) and SEM

Types of factor analyses in Mplus:

EFA: Exploratory Factor Analysis - Regular and bi-factor
rotations

CFA: Confirmatory Factor Analysis

ESEM: Exploratory Structural Equation Modeling (Asparouhov
& Muthén, 2009 in Structural Equation Modeling)

BSEM: Bayesian Structural Equation Modeling (Muthén &
Asparouhov, 2012 in Psychological Methods)

SSEM: Structural equation modeling with continuous
non-normal skewed distributions
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Individual Residual Plots in Mplus Version 7.2

Consider the MIMIC model

Y = ν +λη +βX+ ε

η = α + γX+ζ

Mplus can be used to compute the factor scores η̂ = E(η |Y,X) and
the model estimated/predicted values for Y, which we denote by Ŷ .
Two versions of Ŷ ,

Ŷa = α̂ + λ̂ η̂ + β̂X,

Ŷb = ˆE(Y|X).
Individual level residuals can then be formed as

Yres,a = Y− Ŷa

Yres,b = Y− Ŷb.

Source: Asparouhov & Muthén (2013). Using Mplus plots for
diagnosis and model evaluation in SEM.
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Simulated Data for a MIMIC Model with a Direct Effect

When inadvertently left out, can the need for a direct effect be seen in
the individual-specific residuals?
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Figure : Ŷ1,res,b v.s. X1

Figure : Ŷ2,res,b v.s. X1
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IRT Features in Mplus

2-parameter logit and probit

Weighted least-squares, maximum-likelihood, and Bayes
estimators for multidimensional analysis (Asparouhov &
Muthén, 2012a)

Two-level, three-level, and cross-classified analysis (Asparouhov
& Muthén, 2012b)

Mixture modeling (Muthén, 2008; Muthén & Asparouhov, 2009)

Multilevel mixture modeling (Asparouhov & Muthén, 2008;
Henry & Muthén, 2010)

Alignment approach to the study of measurement invariance
with many groups (Asparouhov & Muthén, 2013; Muthén &
Asparouhov, 2013)
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IRT Estimators in Mplus

Table : Comparisons of estimators for categorical factor analysis (+ implies
an advantage and - implies a disadvantage)

Criteria Weighted least Maximum Bayes
squares likelihood

Large number of factors + – +
Large number of variables – + +
Large number of subjects + – –
Small number of subjects – + +
Statistical efficiency – + +
Missing data handling – + +
Test of LRV structure + – +
Ordered polytomous variables + – –
Heywood cases – – +
Zero cells – + +
Residual correlations + – ±
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5. Analysis Choices for Multiple Groups/Clusters:
Fixed vs Random Effect Factor Analysis (IRT)

Fixed mode: Multiple-group factor analysis
Inference to the groups in the sample
Usually a relatively small number of groups

Random mode: Two-level factor analysis
Inference to a population from which the groups/clusters have
been sampled
Usually a relatively large number of groups/clusters
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5.1 Papers on New Techniques

Fixed mode:
ESEM: Asparouhov & Muthén (2009). Exploratory structural
equation modeling. Structural Equation Modeling, 16, 397-438
Alignment:

Asparouhov & Muthén (2013). Multiple group factor analysis
alignment. Web note 18
Muthén & Asparouhov (2013). New methods for the study of
measurement invariance with many groups
Muthén & Asparouhov (2014). IRT studies of many groups: The
alignment method

BSEM:
Muthén & Asparouhov (2012). Bayesian SEM: A more flexible
representation of substantive theory. Psychological Methods, 17,
313-335.
Muthén & Asparouhov (2013). BSEM measurement invariance
analysis. Web note 17.

Random mode:
Two-level (random intercepts and loadings):

Fox (2010). Bayesian IRT.
Asparouhov & Muthén (2012). General random effect latent
variable modeling: Random subjects, items, contexts, parameters.
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5.2 Fixed Mode, Traditional, Exact Invariance Modeling:
Refresher on Multiple-Group Factor Analysis:

3 Different Degrees of Measurement Invariance

1 CONFIGURAL (invariant factor loading pattern)
2 METRIC (invariant factor loadings; ”weak factorial invariance”)

Needed in order to compare factor variances across groups
3 SCALAR (invariant factor loadings and intercepts/thresholds;

”strong factorial invariance”)
Needed in order to compare factor means across groups
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Refresher on Multiple-Group Factor Analysis:
Formulas for Individual i and Group j

Configural:

yij = νj +λj fij + εij,

E(fj) = αj = 0,V(fj) = ψj = 1.

Metric:

yij = νj +λ fij + εij,

E(fj) = αj = 0,V(fj) = ψj.

Scalar:

yij = ν +λ fij + εij,

E(fj) = αj,V(fj) = ψj.
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Specification Searches for Measurement Invariance

Measurement invariance (”item bias”, ”DIF”) has traditionally been
concerned with comparing a small number of groups such as with
gender or ethnicity.

Likelihood-ratio chi-square testing of one item at a time:

Bottom-up: Start with no invariance (configural case), imposing
invariance one item at a time

Top-down: Start with full invariance (scalar case), freeing
invariance one item at a time, e.g. using modification indices

Neither approach is scalable - both are very cumbersome when there
are many groups, such as 50 countries (50×49/2 = 1225 pairwise
comparisons for each item). The correct model may well be far from
either of the two starting points, which may lead to the wrong model.
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5.3 Multiple-Group Factor Analysis: A New Method
- Alignment Optimization

There is a need for a new approach to multiple-group factor analysis
for many groups such as with country comparisons of achievement
(PISA, TIMSS, PIRL) or cross-cultural studies (ISSP, ESS etc):

Goal is to study measurement invariance and also group
differences in factor means and variances

Standard approach is confirmatory factor analysis with equality
constraints, followed by model modifications

The standard approach is too cumbersome to be practical for
analysis of many groups where there can be a large number of
non-invariant measurement parameters

A radically different method was introduced in Mplus Version
7.1: Alignment optimization

Alignment was expanded in Mplus Version 7.2 to ML estimation
with binary items and complex survey data
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Multiple-Group CFA Alignment Optimization

1 Estimate the configural model (loadings and intercepts free
across groups, factor means fixed @0, factor variances fixed @1)

2 Alignment optimization:
Free the factor means and variances and choose their values to
minimize the total amount of non-invariance using a simplicity
function

F = ∑
p

∑
j1<j2

wj1,j2 f (λpj1 −λpj2)+∑
p

∑
j1<j2

wj1,j2 f (νpj1 −νpj2),

for every pair of groups and every intercept and loading using a
component loss function (CLF) f from EFA rotations (Jennrich,
2006)
The simplicity function F is optimized at a few large
non-invariant parameters and many approximately invariant
parameters rather than many medium-sized non-invariant
parameters (compare with EFA rotations using functions that aim
for either large or small loadings, not mid-sized loadings)
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Alignment Optimization, Continued

In this way, a non-identified model where factor means and
factor variances are added to the configural model is made
identified by adding a simplicity requirement
This model has the same fit as the configural model:

Free the factor means αj and variances ψj, noting that for every
set of factor means and variances the same fit as the configural
model is obtained with loadings λj and intercepts νj changed as:

λj = λj,configural/
√

ψj,

νj = νj,configural−αj λj,configural/
√

ψj.

Simulation studies show that the alignment method works very
well unless there is a majority of significant non-invariant
parameters or small group sizes

For well-known examples with few groups and few
non-invariances, the results agree with the alignment method
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A Visual Answer to Why it is Called Alignment

Consider group-invariant intercepts for 10 items and 2 groups with
factor means = 0, -1 and factor variances = 1, 2

Unaligned: Configural model
(mean=0, variance=1 in both
groups)
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How Do We use the Alignment Results?

In addition to the estimated aligned model, the alignment procedure
gives

Measurement invariance test results produced by an algorithm
that determines the largest set of parameters that has no
significant difference between the parameters

Factor mean ordering among groups and significant differences
produced by z-tests
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5.4 Alignment Example: Cross-Cultural Data
on Nationalism and Patriotism

Davidov (2009). Measurement equivalence of nationalism and
constructive patriotism in the ISSP: 34 countries in a comparative
perspective. Political Analysis,17, 64-82.

Data from the International Social Survey Program (ISSP) 2003
National Identity Module

34 countries, n=45,546

5 measurements of nationalism and patriotism

Expected 2-factor structure
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Nationalism and Patriotism Data:
Item Wording

Nationalism factor:
V21: The world would be a better place if people from other
countries were more like in [own country]
V22: Generally speaking, [own country] is better than most other
countries

Constructive Patriotism factor:
V26: How proud are you of [respondent’s country] in the way
democracy works?
V29: How proud are you of [respondent’s country] in its social
security system?
V35: How proud are you of [respondent’s country] in its fair and
equal treatment of all groups in society?
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Nationalism and Patriotism Data:
Confirmatory Factor Analysis (CFA) Model
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v21 x 0
v22 x 0
v26 0 x
v27 0 x
v35 0 x
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Nationalism and Patriotism Data:
Multiple-Group CFA with ML (n = 45,546)

Two-factor CFA with scalar measurement invariance across all 34
countries: χ2 (334) = 9669, p = 0, RMSEA = 0.144, CFI = 0.721

Group-specific misfit evenly spread over the countries

Modification indices show a multitude of similarly large values

The usual multiple-group CFA approach fails
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5.5 Input for Nationalism & Patriotism Alignment
in 34 Countries

DATA: FILE = issp.txt;
VARIABLE: NAMES = country v21 v22 v26 v29 v35;

USEVARIABLES = v21-v35;
MISSING = v21-v35 (0 8 9);
CLASSES = c(34);
!KNOWNCLASS = c(country = 1 2 4 6-8 10-22 24-28 30-33 36 37
!40-43);
KNOWNCLASS = c(country);

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = ML;
ALIGNMENT = FREE;

MODEL: %OVERALL%
nat BY v21-v22;
pat BY v26v35;

OUTPUT: TECH1 TECH8 ALIGN;
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Nationalism & Patriotism

STANDARD ERROR COMPARISON INDICATES THAT THE
FREE ALIGNMENT MODEL MAY BE POORLY
IDENTIFIED. USING THE FIXED ALIGNMENT OPTION
MAY RESOLVE THIS PROBLEM.

Choosing group with smallest factor mean to be the reference groups,
this leads to the fixed alignment run:

ANALYSIS:
TYPE = MIXTURE;
ESTIMATOR = ML;
ALIGNMENT = FIXED(28);
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Nationalism and Patriotism Example: Alignment Results

Approximate Measurement (Non-) Invariance by Group
Intercepts for Nationalism indicators (V21, V22) and Patriotism indicators (V26, V29, V35)

V21 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34

V22 (1) 2 3 (4) 5 (6) 7 8 (9) 10 11 12
13 14 (15) (16) 17 18 (19) (20) 21 (22) (23) 24

(25) 26 27 28 (29) 30 31 (32) 33 34

V26 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34

V29 (1) 2 3 (4) (5) 6 7 (8) (9) 10 11 12
(13) 14 15 16 (17) 18 (19) (20) (21) (22) (23) (24)
(25) 26 27 28 29 (30) 31 32 33 (34)

V35 (1) (2) 3 (4) 5 6 7 (8) (9) (10) 11 12
13 14 15 16 17 18 (19) (20) 21 (22) 23 (24)
25 26 (27) (28) (29) (30) 31 32 (33) 34
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Nationalism and Patriotism Example: Alignment Results

Loadings for NATIONALISM factor

V21 1 (2) (3) 4 5 6 7 (8) (9) (10) 11 12
13 14 15 16 17 18 19 20 21 22 (23) (24)

(25) 26 27 28 29 (30) 31 32 33 34
V22 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34

Loadings for PATRIOTISM factor

V26 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 (21) (22) 23 24
25 26 27 (28) 29 30 31 32 33 34

V29 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 (19) 20 21 22 23 (24)
25 26 27 28 29 30 31 32 33 34

V35 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 81/ 206



Nationalism and Patriotism Example: Factor Mean
Comparisons (5% Significance Level)

Results for NATIONALISM factor

Ranking Group Value Groups with significantly smaller factor mean

1 22 0.067 2 19 11 12 9 24 23 10 15 20 33 14 32 29 13 7 6 8
16 4 21 1 26 27 34 30 31 3 25 5

2 28 0.000 19 11 12 9 24 23 15 20 33 14 32 29 13 7 6 8 16 4
21 1 26 27 34 30 31 3 25 5 18 17

3 2 -0.284 6 16 4 21 1 26 27 34 31 3 25 5 18 17
4 19 -0.333 32 13 7 6 16 4 21 1 26 27 34 31 3 25 5 18 17
5 11 -0.344 33 32 13 7 6 16 4 21 1 26 27 34 31 3 25 5 18 17
6 12 -0.352 13 7 6 16 4 21 1 26 27 34 31 3 25 5 18 17
7 9 -0.357 7 6 16 4 21 1 26 27 34 31 3 25 5 18 17
8 24 -0.379 6 16 4 21 1 26 27 34 31 3 25 5 18 17
9 23 -0.388 13 7 6 16 4 21 1 26 27 34 31 3 25 5 18 17
10 10 -0.395 16 4 21 1 26 27 34 31 3 25 5 18 17
11 15 -0.396 13 7 6 16 4 21 1 26 27 34 31 3 25 5 18 17
12 20 -0.413 13 7 6 16 4 21 1 26 27 34 31 3 25 5 18 17
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5.6 Alignment Monte Carlo Studies: How Do We Know
That We Can Trust The Alignment Results?

Simulations in Asparouhov-Muthén Web Note 18 and
Muthén-Asparouhov (2014)
Simulations based on the estimated model:

Request SVALUES for real-data alignment run (parameter
estimates arranged as starting values)
Do a Monte Carlo run with these parameter values as population
values, choosing the sample size and check parameter bias, SE
bias, and the coverage
Do a ”real-data” run on Monte-Carlo generated data from one or
more replications to study the measurement invariance
assessment - does it look like the real-data run?
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Input for Alignment Monte Carlo Study

Copy SVALUES results from real-data run into Monte Carlo run
Delete [g#] statements, do a global change of the class label ”c”
to ”g” (reverse unwanted changes: Montegarlo, Progessors, etc),
and change f BY in OVERALL to give starting values

MONTECARLO: NAMES = ipfrule ipmodst ipbhprp imptrad;
NGROUPS= 26;
NOBSERVATIONS = 26(2000);
NREPS = 100;
REPSAVE = ALL;
SAVE = n2000f-22rep*.dat;

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = ML;
ALIGNMENT = FIXED(22);
PROCESSORS = 8;

MODEL POPULATION:
%OVERALL%
traco BY ipfrule-imptrad*1;
! [ g#1*-0.10053 ];
etc
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Checking the Quality of Alignment

Monte Carlo output gives the average correlation over
replications for the group-specific population factor means and
estimated factor means

A correlation > 0.98 reflects a very similar ordering of the
groups with respect to factor means

Correlations can be high even with a high degree of
measurement non-invariance
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5.7 Alignment Optimization: Binary Math Items
in 40 Countries (PISA)

Items from the PISA (Program for International Student
Assessment) survey of 2003

A total of 9796 students from 40 countries

Analyzed by Fox (2010). Bayesian Item Response Modeling

A 40-group, one-factor model for eight mathematics test items

2-parameter probit IRT model that accommodates country
measurement non-invariance for all difficulty (threshold) and
discrimination (loading) parameters as well as country-specific
factor means and variances
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Input for PISA Alignment with Binary Items using Bayes

DATA: FILE = pisa2003.dat;
VARIABLE: NAMES = cn y1-y8;

CATEGORICAL = y1-y8;
USEVARIABLES = y1-y8;
MISSING = y1-y8(9);
CLASSES = c(40);
KNOWNCLASS = c(cn = 1-40);

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = BAYES;
PROCESSORS = 2;
ALIGNMENT = FREE;
THIN = 10; ! record only every 10th iter; saves alignment time
BITERATIONS = (5000); ! do a minimum of 5000 iterations

MODEL: %OVERALL%
f BY y1-y8;

OUTPUT: TECH1 TECH8 ALIGN;
PLOT: TYPE = PLOT2;
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5.8 Multiple-Group Analysis using Bayes and BSEM
Alignment

The several uses of BSEM with zero-mean, small-variance priors:

Single group analysis (2012 Psych Methods article):
Cross-loadings
Residual covariances
Direct effects in MIMIC

Multiple-group analysis:
Configural and scalar analysis with cross-loadings and/or residual
covariances
Approximate measurement invariance (Web Note 17)
BSEM-based alignment optimization (Web Note 18):

Residual covariances
Approximate measurement invariance
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Bayes and BSEM Alignment

What does Bayes contribute?

1 Bayes with informative, zero-mean, small-variance priors for
residual covariances can allow better configural fit - configural
misfit in some groups is a common problem

2 Bayes with informative, zero-mean, small-variance priors for
measurement parameter differences across groups
(multiple-group BSEM) can allow better scalar fit

MG-BSEM as an alternative to alignment (finds non-invariance)
MG-BSEM-based alignment (advantageous for small samples?)

3 Bayes alignment can produce plausible values for the subjects’
factor score values to be used in further analyses
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Types of Alignment

ML estimation:
ALIGNMENT = FREE
ALIGNMENT = FIXED(value)

Bayes estimation:
ALIGNMENT = FREE
ALIGNMENT = FIXED(group)
ALIGNMENT = FREE(BSEM) - ”BSEM-based alignment”
ALIGNMENT = FIXED(group BSEM)
Adding Inverse Wishart (IW) priors for Theta to allow residual
covariances
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5.9 Multiple-Group BSEM

Muthén & Asparouhov (2013). BSEM measurement invariance
analysis. Web Note 17.

Approximate measurement invariance across groups using
zero-mean, small-variance informative priors for the group
differences

Produces ”modification indices” by flagging non-invariant items
as significantly deviating from average (ML-based MIs not
available for categorical items)

Freeing the non-invariant parameters gives proper ”alignment”,
otherwise an alignment run is needed (BSEM-based alignment:
ALIGNMENT = FREE(BSEM);)
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Multiple-Group BSEM: Math Items in 40 PISA Countries

DATA: FILE = pisa2003.dat;
VARIABLE: NAMES = cn y1-y8;

CATEGORICAL = y1-y8;
USEVARIABLES = y1-y8;
MISSING = y1-y8(9);
CLASSES = c(40);
KNOWNCLASS = c(cn = 1-40);

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = BAYES;
PROCESSORS = 2;
MODEL = ALLFREE ;
BITERATIONS = (10000);

MODEL: %OVERALL%
f BY y1-y8* (lam# 1-lam# 8);
[y1$1-y8$1] (tau# 1-tau# 8);
%c#40%
[f@0];
f@1;
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Multiple-Group BSEM: Math Items in 40 PISA Countries,
Continued

MODEL PRIORS:
DO(1,8) DIFF(tau1 #-tau40 #)∼N(0,0.10);
DO(1,8) DIFF(lam1 #-lam40 #)∼N(0,0.10);

OUTPUT: TECH1 TECH2;
PLOT: TYPE = PLOT2;
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Multiple-Group BSEM:
Non-Invariance Findings for PISA Items

Table : PISA countries with significant differences relative to the average
across countries (prior variance = 0.10)

Item Loading Threshold

1 - 2, 12, 18, 22, 28, 39
2 15, 35 29, 38
3 15 23, 34, 35
4 - 12, 27, 40
5 3 7, 37
6 3, 33 5, 18, 25, 27, 37
7 - 9, 24, 27
8 24 -
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Estimated Factor Means for 40 PISA Countries

Figure : Estimated factor means for 40 countries: Comparing BSEM
analysis (X axis) with analysis imposing exact invariance (Y axis)
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5.10 Two-Level Analysis with Random Item Parameters

Groups seen as random clusters

De Jong, Steenkamp & Fox (2007). Relaxing measurement
invariance in cross-national consumer research using a
hierarchical IRT model. Journal of Consumer Research, 34,
260-278.

Fox (2010). Bayesian Item Response Modeling. Springer

Fox & Verhagen (2011). Random item effects modeling for
cross-national survey data. In E. Davidov & P. Schmidt, and J.
Billiet (Eds.), Cross-cultural Analysis: Methods and
Applications

Asparouhov & Muthén (2012). General random effect latent
variable modeling: Random subjects, items, contexts, and
parameters

Bayesian estimation needed because random loadings with ML
give rise to numerical integration with many dimensions
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Two-Level Analysis with Random Item Parameters:
A New Conceptualization of Measurement Invariance

Each measurement parameter varies across groups/clusters, but
groups/clusters have a common mean and variance. E.g.

λj ∼ N(µλ ,σ
2
λ
). (30)
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Random Item Parameters In IRT for Binary Items

Yijk - outcome for student i, in country j and item k

P(Yijk = 1) = Φ(ajkθij +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

This is a 2-parameter probit IRT model where both
discrimination (a) and difficulty (b) vary across country

The θ ability factor is decomposed as

θij = θj + εij

The mean and variance of the ability vary across country

Model preserves common measurement scale while
accommodating measurement non-invariance

The ability for each country obtained by factor score estimation
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5.11 Random Loadings: UG Ex9.19

Part 1: Random factor loadings (decomposition of the factor into
within- and between-level parts) 

 
 
TITLE: this is an example of a two-level MIMIC  
 model with continuous factor indicators,  
 random factor loadings, two covariates on  
 within, and one covariate on between      
 with equal loadings across levels 
DATA: FILE = ex9.19.dat; 
VARIABLE: NAMES = y1-y4 x1 x2 w clus; 
 WITHIN = x1 x2; 
 BETWEEN = w; 
 CLUSTER = clus; 
ANALYSIS: TYPE = TWOLEVEL RANDOM;  
 ESTIMATOR = BAYES; 
 PROCESSORS = 2; 
 BITER = (1000); 
MODEL: %WITHIN% 
 s1-s4 | f BY y1-y4; 
 f@1; 
 f ON x1 x2; 
 %BETWEEN% 
 f ON w;  
 f; ! defaults: s1-s4; [s1-s4]; 
PLOT: TYPE = PLOT2; 
OUTPUT: TECH1 TECH8; 
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5.12 Alignment Summary

Multiple groups/clusters data can be represented by fixed or
random mode models

Having many groups/clusters does not preclude fixed-mode,
multiple-group analysis

Fixed mode modeling can explore the data using non-identified
models:

Alignment optimization methods (Asparouhov-Muthén, Web
Note 18)
Bayesian (BSEM) methods (Muthén-Asparouhov, Web Note 17)

Random mode, two-level modeling:
Conventional two-level factor analysis reveals some limited
forms of non-invariance (intercepts)
Random slope two-level factor analysis reveals more general
forms of non-invariance
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Alignment Summary, Continued

Fixed mode modeling using alignment optimization has many
advantages over random mode modeling:

Convenient, one-step analysis
Points to which groups/clusters contribute to non-invariance
Is not limited to just > 30 clusters, but works well with any
number of groups/clusters (say < 100, or say < 3,000 configural
parameters)
Gives an ordering of the factor means without having to estimate
factor scores for each group/cluster
Allows factor variance variation across groups/clusters without
involving random slopes
Does not assume normally-distributed non-invariance
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To Conclude

The big news: Alignment optimization:
Does modeling with group-specific measurement intercepts,
measurement loadings, factor means, and factor variances
Aligns to minimal measurement non-invariance
Uses EFA-like tools to identify non-identified parameters
Is easy to do

The other news: The Alignment optimization companion
technique - multiple-group BSEM

All available in Mplus Version 7.11

Longer version of the talk available on video at the Mplus web
site www.statmodel.com (see UConn M3 keynote address)
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6. Mixture Modeling

Analysis Methods

Regression mixture models - Modeling of counts, randomized
interventions with non-compliance (CACE)

Latent class analysis with and without covariates

Latent transition analysis

Latent class growth analysis

Growth mixture modeling

Survival mixture modeling

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 103/ 206



Mixture Modeling: Overview of Version 7 Developments

3-step mixture modeling: Analyze-classify-analyze approaches
to investigate covariates and distal outcomes

LCA
Regression mixture analysis
GMM
LTA

Latent transition analysis (LTA)
Introductory examples
New Mplus output
Covariates influencing transition probabilities
Probability parameterization useful for Mover-Stayer LTA
LTA extensions

Residual assocation parameters (version 7.2)

Non-normal within-class distributions (version 7.2)

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 104/ 206



6.1 Latent Class Analysis

 

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 105/ 206



 

 

 

������ ������ �����	 �����


�

���
�

��

���
�

��

���
�

�	

���
�

�
 ����


������


������

���

���

���

����������������

�������	
����
�������
�

������

�������

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 106/ 206



Latent Class, Factor, And Factor Mixture Analysis
Alcohol Dependence Criteria, NLSY 1989 (n = 8313)

Source: Muthén & Muthén (1995)
Latent Classes

Two-class solution1 Three-class solution2

I II I II III
Prevalence 0.78 0.22 0.75 0.21 0.03
DSM-III-R criterion conditional probability of fulfilling a criterion
Withdrawal 0.00 0.14 0.00 0.07 0.49
Tolerance 0.01 0.45 0.01 0.35 0.81
Larger 0.15 0.96 0.12 0.94 0.99
Cut down 0.00 0.14 0.01 0.05 0.60
Time spent 0.00 0.19 0.00 0.09 0.65
Major role-hazard 0.03 0.83 0.02 0.73 0.96
Give up 0.00 0.10 0.00 0.03 0.43
Relief 0.00 0.08 0.00 0.02 0.40
Continue 0.00 0.24 0.02 0.11 0.83
1Likelihood ratio chi-square fit = 1779 with 492 degrees of freedom
2Likelihood ratio chi-square fit = 448 with 482 degrees of freedom
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LCA, FA, And FMA For NLSY 1989

LCA, 3 classes: logL = -14,139, 29 parameters, BIC = 28,539

FA, 2 factors: logL = -14,083, 26 parameters, BIC = 28,401

FMA 2 classes, 1 factor, loadings invariant:

logL = -14,054, 29 parameters, BIC = 28,370

Models can be compared with respect to fit to the data:

Standardized bivariate residuals

Standardized residuals for most frequent response patterns
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Estimated Frequencies And Standardized Residuals

Obs. Freq. LCA 3c FA 2f FMA 1f, 2c
Est. Freq. Res. Est. Freq. Res. Est. Freq. Res.

5335 5332 -0.07 5307 -0.64 5331 -0.08
941 945 0.12 985 1.48 946 0.18
601 551 -2.22 596 -0.22 606 0.21
217 284 4.04 211 -0.42 228 0.75
155 111 -4.16 118 -3.48 134 1.87
149 151 0.15 168 1.45 147 0.17
65 68 0.41 46 -2.79 53 1.60
49 52 0.42 84 3.80 59 1.27
48 54 0.81 44 -0.61 46 0.32
47 40 -1.09 45 -0.37 45 0.33

Bolded entries are significant at the 5% level.
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Input For FMA Of 9 Alcohol Items In The NLSY 1989

TITLE: Alcohol LCA M & M (1995)
DATA: FILE = bengt05 spread.dat;
VARIABLE: NAMES = u1-u9;

CATEGORICAL = u1-u9;
CLASSES = c(2);

ANALYSIS: TYPE = MIXTURE;
ALGORITHM = INTEGRATION;
STARTS = 200 10; STITER = 20;
ADAPTIVE = OFF;
PROCESSORS = 4(STARTS);
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Input For FMA Of 9 Alcohol Items In The NLSY 1989
(Continued)

MODEL: %OVERALL%
f BY u1-u9;
f*1; [f@0];
%c#1%
[u1$1-u9$1];
f*1;
%c#2%
[u1$1-u9$1];
f*1;

OUTPUT: TECH1 TECH8 TECH10;
PLOT: TYPE = PLOT3;

SERIES = u1-u9(*);
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6.2 3-Step Mixture Modeling

1-step analysis versus 3-step (analyze-classify-analyze) latent class
analysis
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1-Step vs 3-Step: A Hypothetical Genetic Example

Substantive question: Should the latent classes be defined by the
indicators alone or also by covariates and distal outcomes
(antecedents and consequences)?

Example: Study of genotypes (x variables) influencing
phenotypes (y variables)

Phenotypes may be observed indicators of mental illness such as
DSM criteria. The interest is in finding latent classes of subjects
and then trying to see if certain genotype variables influence
class membership

Possible objection to 1-step: If the genotypes are part of deciding
the latent classes, the assessment of the strength of relationship is
compromised

3-step: Determine the latent classes based on only phenotype
information. Then classify subjects. Then relate the
classification to the genotypes
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Substantive Checking of Latent Class Models

Latent class models should be subjected to both statistical and
substantive checking (Muthén, 2003 in Psychological Methods)

Substantive checking can be done by relating latent classes to
antecedents and consequences (covariates and distal outcomes)

The 3-step approach is a useful tool for this
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The Old 3-Step Approach

1 Estimate the LCA model
2 Determine each subject’s most likely class membership
3 Relate the most likely class variable to other variables

The old 3-step approach is problematic: Unless the classification is
very good (high entropy), this gives biased estimates and biased
standard errors for the relationships with other variables.
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The LCA Provides Information About the
Classification Quality

Average Latent Class Probabilities for Most Likely
Class Membership (Row) by Latent Class (Column)

1 2 3

1 0.839 0.066 0.095
2 0.053 0.845 0.102
3 0.125 0.107 0.768

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 116/ 206



The New 3-Step Approach

New Method in Mplus Version 7: 3-Step approach correcting for
classification error

1 Estimate the LCA model
2 Create a nominal most likely class variable N
3 Use a mixture model for N, C and X, where N is a C indicator

with measurement error rates prefixed at the misclassification rate
of N estimated in the step 1 LCA analysis

Bolck, Croon, & Hagenaars (2004) Estimating latent structure
models with categorical variables: One-step versus three-step
estimators. Political Analysis, 12, 3-27.

Vermunt (2010). Latent Class Modeling with Covariates: Two
improved three-step approaches. Political Analysis, 18, 450-469

Asparouhov & Muthén (2012). Auxiliary variables in mixture
modeling: A 3-step approach using Mplus. Mplus Web Note 15.
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Classification Information from Step 1 LCA

Average Latent Class Probabilities for Most Likely
Class Membership (Row) by Latent Class (Column)

1 2 3

1 0.839 0.066 0.095
2 0.053 0.845 0.102
3 0.125 0.107 0.768

log(0.839/0.095) = 2.178
log(0.066/0.095) = -0.364
log(0.053/0.102) = -0.654
log(0.845/0.102) = 2.114
log(0.125/0.768) = -1.815
log(0.107/0.768) = -1.970
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Step 3 Regression on a Covariate

n: Most likely class membership from Step 2 (nominal variable)
c: Latent class variable
x: Covariate
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Input File for Step 3 in the 3-Step Estimation

VARIABLE: NAMES = u1-u5 x p1-p3 n;
USEVARIABLES = x n;
CLASSES = c(3);
NOMINAL = n;

DATA: FILE = man3step2.dat;
ANALYSIS: TYPE = MIXTURE; STARTS = 0;
MODEL: %OVERALL%

c ON x;
%c#1%
[n#1@2.178];
[n#2@-0.364];
%c#2%
[n#1@-0.654];
[n#2@2.114];
%c#3%
[n#1@-1.815];
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Auxiliary Variables In Mixtures: Covariate x and Distal y

VARIABLE: NAMES = u1-u5 x;
CATEGORICAL = u1-u5;
CLASSES = c(3);
AUXILIARY = x(R3STEP);

DATA: FILE = 3step.dat;
ANALYSIS: TYPE = MIXTURE;
MODEL: !no model is needed, LCA is default

VARIABLE: NAMES = u1-u5 y;
CATEGORICAL = u1-u5;
CLASSES = c(3);
AUXILIARY = y(DU3STEP);

DATA: FILE = 3step.dat;
ANALYSIS: TYPE = MIXTURE;
MODEL: !no model is needed, LCA is default
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A Second Look at Distal 3-Step

In some examples the Asparouhov-Muthén distal 3-step method
in Mplus Web Note 15 leads to changes in latent class formation
between Step 1 and Step 3 - warning given in Mplus Version 7.1

Lanza et al. (2013) in the SEM journal propose a different distal
3-step method that avoids changes in class formation. Included
in Mplus Version 7.1 (DCON/DCAT).

Future research needed to evaluate which method, including
Most Likely Class and Pseudo-class, is least sensitive to
violations of assumptions such as no direct effects
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Manual 3-Step Mixture Modeling For Special Models:
A Regression Mixture Example
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3-Step Latent Transition Analysis
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LTA: Step 1

 

��� ��� ��� ���

��

��� ��� ��� ���

��

�

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 125/ 206



LTA: Step 2

For each time point:
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LTA: Step 3
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3-Step Mover-Stayer LTA
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6.3 Latent Transition Analysis Developments

New developments in Version 7:

TECH15 output with conditional class probabilities useful for
studying transition probabilities varying as a function of an
observed binary or nominal covariate such as treatment/control,
ethnicity, or a latent class covariate
LTA transition probability calculator for continuous covariates
Probability parameterization to simplify input for Mover-Stayer
LTA and other models with restrictions on the transition
probabilities
New User’s Guide examples

8.13: LTA for two time points with a binary covariate influencing
the latent transition probabilities
8.14: LTA for two time points with a continuous covariate
influencing the latent transition probabilities
8.15: Mover-stayer LTA for three time points using a probability
parameterization
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6.4 Latent Class and Latent Transition Analysis
with Residual Covariances (Residual Associations)

for Categorical Items In Mplus Version 7.2

Addition of a within-class two-way loglinear model, adding one
association parameter per variable pair

Binary items: saturates the 2×2 table
Ordered polytomous items: Uniform association model
(Goodman 1979)

No need for numerical integration due to adding a factor behind
the pair of items

Association parameter can be equal of different across latent
classes

Covariates allowed, but not direct effects on items

Asparouhov & Muthén (2014). Residual associations in latent
class and latent transition analysis. Forthcoming in Structural
Equation Modeling
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LCA Example: Deciding On The Number Of Classes
For 17 Antisocial Behavior Items (n = 7326)

Five-Class Solution
The five-class solution is substantively meaningful:

Class 1 138.06985 0.01888 High Overall
Class 2 860.41897 0.11771 Property Offense
Class 3 1257.56652 0.17151 Drugs
Class 4 1909.32749 0.26219 Person Offense
Class 5 3160.61717 0.42971 Normative (Pot)

Six-Class Solution - adds a variation on Class 2 in the 5-class solution
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Deciding On The Number Of Classes For 17 ASB Items

Number of classes 1 2 3 4 5 6

Loglikelihood -48168.475 -42625.653 -41713.142 -41007.498 -40808.312 -40604.231
# par. 17 35 53 71 89 107
BIC 96488 85563 83898 82647 82409 82161 .

TECH10 bivariate tests in the 5-class run show need for adding
residual covariances. Adding 4 residual covariances to the 5-class
model:

Loglikelihood = -40603, # parameters = 93, BIC = 82034
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Mplus Version 7.2 LCA Input for 17 ASB items

VARIABLE: NAMES = property fight shoplift lt50 gt50 force threat injure
pot drug soldpot solddrug con auto bldg goods gambling
dsm1-dsm22 sex black hisp single divorce dropout college
onset f1 f2 f3 age94 cohort dep abuse;
USEVARIABLES = property-gambling;
CATEGORICAL = property-gambling;
CLASSES = c(5);

ANALYSIS: TYPE = MIXTURE;
STARTS = 1200 300;
PARAMETERIZATION = RESCOV;

MODEL: %OVERALL%
threat WITH injure;
drug WITH soldpot;
drug WITH solddrug;
soldpot WITH solddrug;

OUTPUT: TECH1 TECH8 TECH10;

Residual covariances can also be specified as class specific.
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LTA with Correlated Residuals

 

��� ��� ��� ��� ��� ��� ��� ���

�� ��

Allowing across-time correlation for each item changes the estimated
latent transition probabilities.
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6.5 Overview of Mixture Modeling
with Non-Normal Distributions in Mplus Version 7.2

1 A new growth mixture modeling (GMM) method
Examples of skew distributions
Normal mixtures
Introducing mixtures of non-normal distributions
Non-normal mixtures of latent variable models:

GMM of BMI in the NLSY multiple-cohort study
Math and high school dropout in the LSAY study
Cat’s cradle concern

Disadvantages and advantages of non-normal mixtures
Mplus specifications

2 A new SEM method: Non-normal SEM
Path analysis
Factor analysis
SEM

References: Asparouhov & Muthén (2014). Structural equation
models and mixture models with continuous non-normal skewed
distributions. Mplus Web Note No. 19. - More to come
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6.6 Examples of Skewed Distributions

Body Mass Index (BMI) in obesity studies (long right tail)

Mini Mental State Examination (MMSE) cognitive test in
Alzheimer’s studies (long left tail)

PSA scores in prostate cancer studies (long right tail)

Ham-D score in antidepressant studies (long right tail)
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Body Mass Index (BMI): kg/m2

Normal 18 < BMI < 25, Overweight 25 < BMI < 30, Obese > 30
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NLSY Multiple-Cohort Data Ages 12 to 23

Accelerated longitudinal design - NLSY97

12 13 14 15 16 17 18 19 20 21 22 23

1997 1,165 1,715 1,847 1,868 1,709 613
1998 104 1,592 1,671 1,727 1,739 1,400 106
1999 108 1,659 1,625 1,721 1,614 1,370 65
2000 57 1,553 1,656 1,649 1,597 1,390 132
2001 66 1,543 1,615 1,602 1,582 1,324 109
2002 1,614 1,587 1,643 1,582 1,324 106
2003 112 1,497 1,600 1,582 1,564 1,283

Totals 1,165 1,819 3,547 5,255 6,680 7,272 8,004 7,759 6,280 4,620 2,997 1,389

NLSY, National Longitudinal Survey of Youth

Source: Nonnemaker et al. (2009). Youth BMI trajectories: Evidence
from the NLSY97, Obesity
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BMI at Age 15 in the NLSY (Males, n = 3194)
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Descriptive statistics for BMI15_2:

n = 3194
Mean:        23.104    Min:         13.394

Variance:    20.068    20%-tile:    19.732
Std dev.:     4.480    40%-tile:    21.142

Skewness:     1.475    Median:      22.045
Kurtosis:     3.068    60%-tile:    22.955

% with Min:   0.03%    80%-tile:    25.840
% with Max:   0.03%    Max:         49.868
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6.7 Mixtures for Male BMI at Age 15 in the NLSY

Skewness = 1.5, kurtosis = 3.1
Mixtures of normals with 1-4 classes have BIC = 18,658,
17,697, 17,638, 17,637 (tiny class)
3-class mixture shown below
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Several Classes or One Non-Normal Distribution?

Pearson (1895)
Hypertension debate:

Platt (1963): Hypertension is a ”disease” (separate class)
Pickering (1968): Hypertension is merely the upper tail of a
skewed distribution

Schork et al (1990): Two-component mixture versus lognormal

Bauer & Curran (2003): Growth mixture modeling classes may
merely reflect a non-normal distribution so that classes have no
substantive meaning

Muthén (2003) comment on BC: Substantive checking of classes
related to antecedents, concurrent events, consequences (distal
outcomes), and usefulness

Multivariate case more informative than univariate
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What If We Could Instead Fit The Data
With a Skewed Distribution?

Then a mixture would not be necessitated by a non-normal
distribution, but a single class may be sufficient
A mixture of non-normal distributions is possible
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6.8 Introducing Mixtures of Non-Normal Distributions
in Mplus Version 7.2

In addition to a mixture of normal distributions, it is now possible to
use

T: Adding a degree of freedom (df) parameter (thicker or thinner
tails)
Skew-normal: Adding a skew parameter to each variable
Skew-T: Adding skew and df parameters (stronger skew possible
than skew-normal)

References

Azzalini (1985), Azzalini & Dalla Valle (1996): skew-normal
Arellano-Valle & Genton (2010): extended skew-t
McNicholas, Murray, 2013, 2014: skew-t as a special case of the
generalized hyperbolic distribution
McLachlan, Lee, Lin, 2013, 2014: restricted and unrestricted
skew-t
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Skew T-Distribution Formulas

Y can be seen as the sum of a mean, a part that produces skewness,
and a part that adds a symmetric distribution:

Y = µ +δ |U0|+U1,

where U0 has a univariate t and U1 a multivariate t distribution.
Expectation, variance (δ is a skew vector, ν the df):

E(Y) = µ +δ
Γ(ν−1

2 )

Γ(ν

2 )

√
ν

π
,

Var(Y) =
ν

ν−2
(Σ+δδ

T)−

(
Γ(ν−1

2 )

Γ(ν

2 )

)2
ν

π
δδ

T

Marginal and conditional distributions:

Marginal is also a skew-t distribution

Conditional is an extended skew-t distribution
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Examples of Skew-T Distributions
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BMI at Age 15 in the NLSY (Males, n = 3194)

Skewness = 1.5, kurtosis = 3.1
Mixtures of normals with 1-4 classes: BIC = 18,658, 17,697,
17,638, 17,637 (tiny class). 3-class model uses 8 parameters
1-class Skew-T distribution: BIC = 17,623 (2-class BIC
= 17,638). 1-class model uses 4 parameters
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6.9 Cluster Analysis by ”Mixtures of Factor Analyzers”
(McLachlan)

Reduces the number of µc, Σc parameters for c = 1,2, . . .C by
applying the Σc structure of an EFA with orthogonal factors:

Σc = Λc Λ
′
c +Θc (31)

This leads to 8 variations by letting Λc and Θc be invariant or not
across classes and letting Θc have equality across variables or not
(McNicholas & Murphy, 2008).
Interest in clustering as opposed to the factors, e.g. for genetic
applications.
(EFA mixtures not yet available in Mplus for non-normal
distributions, but can be done using ”EFA-in-CFA”.)
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6.10 Non-Normal Mixtures of Latent Variable Models

Models:

Mixtures of Exploratory Factor Models (McLachlan, Lee, Lin;
McNicholas, Murray)

Mixtures of Confirmatory Factor Models; FMM (Mplus)

Mixtures of SEM (Mplus)

Mixtures of Growth Models; GMM (Mplus)

Choices:

Intercepts, slopes (loadings), and residual variances invariant?

Scalar invariance (intercepts, loadings) allows factor means to
vary across classes instead of intercepts (not typically used in
mixtures of EFA, but needed for GMM)

Skew for the observed or latent variables? Implications for the
observed means. Latent skew suitable for GMM - the observed
variable means are governed by the growth factor means
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6.11 Growth Mixture Modeling of NLSY BMI Age 12 to 23
for Black Females (n = 1160)

Normal BIC: 31684 (2c), 31386 (3c), 31314 (4c), 31338 (5c)
Skew-T BIC: 31411 (1c), 31225 (2c), 31270 (3c)
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2-Class Skew-T versus 4-Class Normal
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2-Class Skew-T: Estimated Percentiles
(Note: Not Growth Curves)
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2-Class Skew-T: Intercept Growth Factor (Age 17)
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Regressing Class on a MOMED Covariate (”c ON x”):
2-Class Skew-T versus 4-Class Normal
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Recall the estimated trajectory means for skew-t versus normal:
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6.12 Growth Mixture Modeling: Math Achievement
Trajectory Classes and High School Dropout.

An Example of Substantive Checking via Predictive Validity
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Dropout:  69% 8% 1% 

Source: Muthén (2003). Statistical and substantive checking in
growth mixture modeling. Psychological Methods.

- Does the normal mixture solution hold up when checking with
non-normal mixtures?
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Growth Mixture Modeling: Math Achievement
Trajectory Classes and High School Dropout
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Growth Mixture Modeling: Math Achievement
Trajectory Classes and High School Dropout

 

29
.9

27
9

31
.2

39
3

32
.5

50
7

33
.8

62
1

35
.1

73
5

36
.4

84
9

37
.7

96
3

39
.1

07
7

40
.4

19
1

41
.7

30
4

43
.0

41
8

44
.3

53
2

45
.6

64
6

46
.9

76
48

.2
87

4
49

.5
98

8
50

.9
10

2
52

.2
21

6
53

.5
33

54
.8

44
4

56
.1

55
8

57
.4

67
2

58
.7

78
6

60
.0

9
61

.4
01

4
62

.7
12

8
64

.0
24

2
65

.3
35

6
66

.6
47

67
.9

58
4

69
.2

69
8

70
.5

81
2

71
.8

92
6

73
.2

04
74

.5
15

4
75

.8
26

8
77

.1
38

2
78

.4
49

6
79

.7
61

81
.0

72
4

82
.3

83
8

83
.6

95
2

85
.0

06
6

86
.3

18
87

.6
29

4
88

.9
40

8
90

.2
52

2
91

.5
63

6
92

.8
75

94
.1

86
4

MATH10

 0 

 5 

 10 

 15 

 20 

 25 

 30 

 35 

 40 

 45 

 50 

 55 

 60 

C
ou

nt

Descriptive statistics for MATH10:

n = 2040
Mean:        63.574    Min:         29.600
Variance:   186.295    20%-tile:    51.430
Std dev.:    13.649    40%-tile:    61.810
Skewness:    -0.317    Median:      65.305
Kurtosis:    -0.467    60%-tile:    68.400
% with Min:   0.05%    80%-tile:    75.280
% with Max:   0.25%    Max:         95.170

(1076 missing cases were not included.)
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Growth Mixture Modeling: Math Achievement
Trajectory Classes and High School Dropout

Best solutions, 3 classes (LL, no. par’s, BIC):

Normal distribution: -34459, 32, 69175
T distribution: -34453, 35, 69188

Skew-normal distribution: -34442, 38, 69191

Skew-t distribution: -34439, 42, 69207

Percent in low, flat class and odds ratios for dropout vs not,
comparing low, flat class with the best class:

Normal distribution: 18 %, OR = 17.1

T distribution: 19 %, OR = 20.6

Skew-normal distribution: 26 %, OR = 23.8

Skew-t distribution: 26 %, OR = 37.3
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6.13 Cat’s Cradle Concern

 

Source: Sher, Jackson, Steinley (2011). Alcohol use trajectories and
the ubiquitous cat’s cradle: Cause for concern? Journal of Abnormal
Psychology.
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Cat’s Cradle Concern: Generated Data (n = 2,000)

Data from a 3-class skew-t (S/K=1.5/4). 3-class skew-t, BIC=43566:
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4-class normal - cat’s cradle with a high/chronic class, BIC=44935:
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Class 1, 41.9%
Class 2, 3.9%

Class 3, 15.2%
Class 4, 39.1%
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6.14 Disadvantages of Non-Normal Mixture Modeling

Much slower computations than normal mixtures, especially for
large sample sizes

Needs larger samples; small class sizes can create problems (but
successful analyses can be done at n = 100-200)

Needs more random starts than normal mixtures to replicate the
best loglikelihood

Lower entropy

Needs continuous variables

Needs continuous variables with many distinct values: Likert
scales treated as continuous variables may not carry enough
information

Models requiring numerical integration not yet implemented
(required with factors behind categorical and count variables,
although maybe not enough information)
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Advantages of Non-Normal Mixture Modeling

Non-normal mixtures

Can fit the data considerably better than normal mixtures

Can use a more parsimonious model

Can reduce the risk of extracting latent classes that are merely
due to non-normality of the outcomes

Can check the stability/reproducibility of a normal mixture
solution

Can describe the percentiles of skewed distributions
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Advantages of Normal Mixture Modeling

Normal mixtures

Can carve out smaller subgroups in the sample that non-normal
mixture modeling might miss, such as tail subgroups with
different behaviors

Can handle smaller class sizes

Can be computed relatively quickly

Can be used as a starting point for non-normal mixture modeling

Can be robust to mild non-normality (LSAY math example,
CACE for JOBS data) - skew/kurtosis less than plus/minus 0.5?
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6.15 Mplus Specifications

DISTRIBUTION=SKEWT/SKEWNORMAL/TDIST in the
ANALYSIS command makes it possible to access non-normality
parameters in the MODEL command

Skew parameters are given as {y}, {f}, where the default is {f}
and class-varying. Having both {y} and {f} is not identified

Degrees of freedom parameters are given as {df} where the
default is class-varying

df < 1: mean not defined, df < 2: variance not defined, df < 3:
skewness not defined. Density can still be obtained

Class-varying {f} makes it natural to specify class-varying f
variance

Normal part of the distribution can get zero variances (fixed
automatically), with only the non-normal part remaining
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6.16 Mplus Input Example: NLSY BMI 2-Class Skew-T GMM

VARIABLE: NAMES = id gender age 1996 age 1997 race1 bmi12 2
bmi13 2 bmi14 2 bmi15 2 bmi16 2 bmi17 2 bmi18 2 bmi19 2
bmi20 2 bmi21 2 bmi22 2 bmi23 2 black hisp mixed c1 c2 c3
c1 wom c2 wom c3 wom momedu par bmi bio1 bmi bio2 bmi
bmi par currsmkr97 bingedrnk97 mjuse97 cent msa
liv2prnts adopted income hhsize97;
USEVARIABLES = bmi12 2 bmi13 2 bmi14 2
bmi15 2 bmi16 2 bmi17 2 bmi18 2
bmi19 2 bmi20 2 bmi21 2 bmi22 2 bmi23 2;
USEOBSERVATIONS = gender EQ -1;
MISSING = ALL (9999);
CLASSES = c(2);

ANALYSIS: TYPE = MIXTURE;
STARTS = 400 80;
PROCESSORS = 8;
DISTRIBUTION = SKEWT;
ESTIMATOR = MLR;
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Mplus Input Example, Continued

MODEL: %OVERALL%
i s q |bmi12 2@-.5 bmi13 2@-.4 bmi14 2@-.3
bmi15 2@-.2 bmi16 2@-.1 bmi17 2@0 bmi18 2@.1
bmi19 2@.2 bmi20 2@.3 bmi21 2@.4 bmi22 2@.5 bmi23 2@.6;
%c#1%
i-q;
i-q WITH i-q;

bmi12 2-bmi23 2(1);
%c#2%
i-q;
i-q WITH i-q;
bmi12 2-bmi23 2(2);

OUTPUT: TECH1 TECH4 TECH8 RESIDUAL;
PLOT: TYPE = PLOT3;

SERIES = bmi12 2-bmi23 2(s);

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 165/ 206



Mplus Output Excerpts: NLSY BMI 2-Class Skew-T GMM

ONE OR MORE PARAMETERS WERE FIXED TO AVOID SINGULARITY OF THE

INFORMATION MATRIX. THE SINGULARITY IS MOST LIKELY BECAUSE THE

MODEL IS NOT IDENTIFIED, OR BECAUSE OF EMPTY CELLS IN THE JOINT

DISTRIBUTION OF THE CATEGORICAL VARIABLES IN THE MODEL.

THE FOLLOWING PARAMETERS WERE FIXED:

Parameter 5, %C#1%: I
Parameter 6, %C#1%: S WITH I
Parameter 8, %C#1%: Q WITH I

THIS MAY ALSO BE DUE TO RESIDUAL VARIANCES CONVERGING TO 0.

THESE RESIDUAL VARIANCES AND CORRESPONDING COVARIANCES ARE FIXED TO 0.
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Mplus Output, Continued

Variances
I 0.000 0.000 999.000 999.000
S 11.445 3.046 3.758 0.000
Q 44.779 20.085 2.230 0.026

S WITH
I 0.000 0.000 999.000 999.000

Q WITH
I 0.000 0.000 999.000 999.000
S 18.823 4.986 3.775 0.000
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Mplus Output, Continued

Skew and Df Parameters

Latent Class 1

I 6.236 0.343 18.175 0.000
S 3.361 0.542 6.204 0.000
Q -2.746 1.399 -1.963 0.050

DF 3.516 0.403 8.732 0.000

Latent Class 2

I 4.020 0.279 14.408 0.000
S -0.875 0.381 -2.296 0.022
Q 3.399 1.281 2.653 0.008

DF 3.855 0.562 6.859 0.000
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Mplus Output, Continued

Technical 4 Output: Estimates
derived from the model for Class 1

Estimated means for the
latent variables

I S Q
1 28.138 10.516 -2.567

Estimated covariance matrix for
the latent variables

I S Q
I 48.167
S 25.959 40.531
Q -21.212 32.220 113.186
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Mplus Output Example, Continued

Estimated correlation matrix
for the latent variables

I S Q

I 1.000
S 0.588 1.000
Q -0.287 0.476 1.000

Estimated skew for the
latent variables

I S Q
1 6.653 3.437 -1.588
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7. SEM Allowing Non-Normal Distributions

Non-Normal SEM with t, skew-normal, and skew-t distributions:

Allowing a more general model, including non-linear conditional
expectation functions and heteroscedasticity

Chi-square test of model fit using information on skew and df

Missing data handling avoiding the normality assumption of
FIML

Mediation modeling allowing general direct and indirect effects

Percentile estimation of the skewed factor distributions

Mplus offers six types of SEM:

Regular SEM: Distribution = Normal

ESEM: Exploratory factor analysis measurement model

BSEM: Bayesian analysis with small-variance priors

SSEM: Skewed SEM; Distribution = tdist/skew/skewt
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ML Estimation: Normality Violations in SEM

ML estimate robustness to non-normality in SEM
SEs and chi-square can be adjusted for non-normality (sandwich
estimator, ”Satorra-Bentler”)
MLE robustness doesn’t hold if residuals and factors are not
independent (Satorra, 2002)
Asparouhov-Muthén (2014):

There is a preconceived notion that standard structural
models are sufficient as long as the standard errors of
the parameter estimates are adjusted for failure of the
normality assumption, but this is not really correct.
Even with robust estimation the data is reduced to
means and covariances. Only the standard errors of
the parameter estimates extract additional information
from the data. The parameter estimates themselves
remain the same, i.e., the structural model is still
concerned with fitting only the means and the
covariances and ignoring everything else.
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Non-Normal SEM

Y = ν +Λη + ε

η = α +Bη +ΓX+ξ

where
(ε,ξ )∼ rMST(0,Σ0,δ ,DF)

and

Σ0 =

(
Θ 0
0 Ψ

)
.

The vector of parameters δ is of size P+M and can be decomposed
as δ = (δY ,δη). From the above equations we obtain the conditional
distributions

η |X∼ rMST((I−B)−1(α+ΓX),(I−B)−1
Ψ((I−B)−1)T ,(I−B)−1

δη ,DF)

Y|η ∼ rMST(ν +Λη ,Θ,δY ,DF)

Y|X ∼ rMST(µ,Σ,δ2,DF)
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7.1 SEM Chi-Square Testing with Non-Normal Distributions

Adding skew and df parameters to the means, variances, and
covariances of the unrestricted H1 model
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Non-normal H0 vs H1 test obtained by the H1MODEL option of
the OUTPUT command
Not provided by default because it can be computationally
demanding
H1MODEL has two settings: COVARIANCE (default) and
SEQUENTIAL
H1STARTS: Convergence may be difficult for the H1 model
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7.2 Missing Data with Non-Normal Distributions

Modeling with missing data via the FIML estimator is not robust
to the normality assumptions
The t-distribution EM-algorithm by Liu and Rubin (1995)

A simulated example of the effect of normality violation:
Skew-normal distribution with 5 variables and n = 100000
Missing data for the first variable using the following MAR
missing data mechanism

P(Y1 is missing) =
1

1+Exp(−1+Y2+Y3+Y4+Y5)
. (32)

Population mean for Y1 is 3
√

2/π ≈ 2.4
The standard FIML estimator assuming normality estimates the
mean of Y1 as 2.1
Using the correct distributional assumption and estimating the
saturated skew-normal model the mean estimate is 2.4
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7.3 Path Analysis Mediation Model for BMI
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Mplus Input: BMI Path Analysis

TITLE: NLSY 97 Non-normal SEM
DATA: FILE IS nlsy97 clean.dat;
VARIABLE: NAMES = id gender age 1996 age 1997 race1 bmi12 2

bmi13 2 bmi14 2 bmi15 2 bmi16 2 bmi17 2 bmi18 2
bmi19 2 bmi20 2 bmi21 2 bmi22 2 bmi23 2
black hisp mixed c1 c2 c3 c1 wom c2 wom c3 wom
momedu par bmi bio1 bmi bio2 bmi bmi par
currsmkr97 bingedrnk97 mjuse97 cent msa
liv2prnts adopted income hhsize97;
USEVARIABLES = bmi12 2 bmi17 2 momedu;
USEOBSERVATIONS = gender eq -1;
MISSING = ALL (9999);

ANALYSIS: TYPE = GENERAL;
COVERAGE = 0;
DISTRIBUTION = SKEWT;
STARTS = 32 8; ! typically not necessary
PROCESSORS = 8;

MODEL: bmi17 2 ON bmi12 2;
bmi12 2 ON momedu;

OUTPUT: TECH1 TECH4 TECH8 RESIDUAL STANDARDIZED H1MODEL;
PLOT: TYPE = PLOT3;
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Regression of BMI17 on BMI12: Skew-T vs Normal
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7.4 When Can We Use Z-Tests
and the Usual Direct and Indirect Effects?

Y1 = α1 +β1Y2+β2X+ ε1, (33)

Y2 = α2 +β3X+ ε2. (34)

Z-tests can be used when there is linearity

Normal and non-normal model estimates comparable when there
is linearity

The usual direct (β2) and indirect (β1×β3) effects can be used
when both equations are linear

When do we have linearity?
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When Do We Have Linearity?

Y1 = α1 +β1Y2+β2X+ ε1, (35)

Y2 = α2 +β3X+ ε2. (36)

Questions:

1 β1: E(Y1|Y2,X) linear in Y2?
2 Direct effect, β2: E(Y1|Y2,X) linear in X?
3 β3: E(Y2|X) linear in X?
4 Total effect, β1×β3 +β2: E(Y1|X) linear in X?

Answers:

ε1 and ε2 not skewed: (1) Yes, (2) Yes, (3) Yes, (4) Yes

ε1 skewed but not ε2: (1) Yes, (2) Yes, (3) Yes, (4) Yes

ε1 not skewed but ε2 skewed: (1) Yes, (2) Yes, (3) Yes, (4) Yes

ε1 and ε2 skewed: (1) No, (2) Yes, (3) Yes, (4) No
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Conclusions

Linearity is always fulfilled for β2 and β3

Usual indirect effect β1×β3 is ok if at most one of the residuals
is skewed
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7.5 Path Analysis of the ATLAS Data (n = 861)

 

ATLAS (Adolescent Training and Learning to Avoid Steroids)
intervention

Aimed at increasing perceived severity of using steroids among
athletes

Perceived severity of using steroids is in turn hypothesized to
increase good nutrition behaviors

Source: MacKinnon et al. (2004) in MBR.
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Histograms for the ATLAS Data (n = 861)
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Descriptive statistics for NUTRIT:

n = 861
Mean:         4.083    Min:          1.000

Variance:     1.336    20%-tile:     3.143
Std dev.:     1.156    40%-tile:     4.000

Skewness:     0.129    Median:       4.000
Kurtosis:     0.229    60%-tile:     4.286

% with Min:   0.58%    80%-tile:     5.000
% with Max:   1.51%    Max:          7.000
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Descriptive statistics for SEVERITY:

n = 861
Mean:         5.776    Min:          1.000

Variance:     1.731    20%-tile:     4.000
Std dev.:     1.316    40%-tile:     5.667

Skewness:    -0.793    Median:       6.000
Kurtosis:    -0.228    60%-tile:     6.667

% with Min:   0.46%    80%-tile:     7.000
% with Max:  38.68%    Max:          7.000
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Mplus Input using Skew-T: Path Analysis of ATLAS Data

TITLE: ATLAS
DATA: FILE = mbr2004atlas.txt;
VARIABLE: NAMES = obs group severity nutrit;

USEVARIABLES = group - nutrit;
ANALYSIS: ESTIMATOR = ML;

DISTRIBUTION = SKEWT;
MODEL: severity ON group (a);

nutrit ON severity (b)
group;

OUTPUT: TECH1 TECH4 TECH8 RESIDUAL STANDARDIZED CINTERVAL;
PLOT: TYPE = PLOT3;
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Mplus Output Warning using Skew-T: ATLAS Example

THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE

TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE

FIRST-ORDER DERIVATIVE PRODUCT MATRIX. THIS MAY BE DUE TO THE STARTING

VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION. THE

CONDITION NUMBER IS 0.515D-11. PROBLEM INVOLVING THE FOLLOWING PARAMETER:

Parameter 9, { NUTRIT }

THIS MAY ALSO BE DUE TO RESIDUAL VARIANCES CONVERGING TO 0.

ONE OR MORE PARAMETERS WERE FIXED TO AVOID SINGULARITY OF THE

INFORMATION MATRIX. THE SINGULARITY IS MOST LIKELY BECAUSE THE

MODEL IS NOT IDENTIFIED, OR BECAUSE OF EMPTY CELLS IN THE JOINT

DISTRIBUTION OF THE CATEGORICAL VARIABLES IN THE MODEL.

THE FOLLOWING PARAMETERS WERE FIXED:

Parameter 6, SEVERITY

Parameter 10, { DF }

THIS MAY ALSO BE DUE TO RESIDUAL VARIANCES CONVERGING TO 0.

THESE RESIDUAL VARIANCES AND CORRESPONDING COVARIANCES ARE FIXED TO 0.

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 185/ 206



Mplus TECH8 Output

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 7

E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.73445257D+04 0.0000000 0.0000000 EM
2 -0.24821348D+04 4862.3909305 0.6620429 EM
3 -0.24821348D+04 0.0000000 0.0000000 EM

Minimal Lambdaˆ2: 0.0000

Minimal Lambdaˆ2: 0.0000
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Mplus Output using Skew-T: ATLAS Example

MODEL FIT INFORMATION

Number of Free Parameters 10

Loglikelihood
H0 Value -2482.100

Information Criteria
Akaike (AIC) 4984.200
Bayesian (BIC) 5031.781
Sample-Size Adjusted BIC 5000.024
(n* = (n + 2) / 24)
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Mplus Output using Skew-T, Continued

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

SEVERITY ON
GROUP 0.001 0.007 0.221 0.825

NUTRIT ON
SEVERITY 16.156 75.696 0.213 0.831
GROUP -0.042 0.178 -0.234 0.815

Intercepts
SEVERITY 7.026 0.004 1583.721 0.000
NUTRIT -109.337 531.877 -0.206 0.837

Residual Variances
SEVERITY 0.000 0.000 999.000 999.000
NUTRIT 1.299 0.249 5.224 0.000

Skew and Df Parameters
SEVERITY -1.815 0.044 -41.431 0.000
NUTRIT 29.191 137.394 0.212 0.832
DF 9763.312 0.000 999.000 999.000
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Mplus Input Switching to Skew-Normal:
ATLAS Example

ANALYSIS: ESTIMATOR = ML;
DISTRIBUTION = SKEW;

MODEL: severity ON group (a);
nutrit ON severity (b)
group;

OUTPUT: TECH1 TECH4 TECH8 RESIDUAL STANDARDIZED CINTERVAL;
PLOT: TYPE = PLOT3;
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Mplus Output Warning using Skew-Normal

ONE OR MORE PARAMETERS WERE FIXED TO AVOID SINGULARITY OF THE

INFORMATION MATRIX. THE SINGULARITY IS MOST LIKELY BECAUSE THE

MODEL IS NOT IDENTIFIED, OR BECAUSE OF EMPTY CELLS IN THE JOINT

DISTRIBUTION OF THE CATEGORICAL VARIABLES IN THE MODEL.

THE FOLLOWING PARAMETERS WERE FIXED:

Parameter 6, SEVERITY

Parameter 9, { NUTRIT }

THIS MAY ALSO BE DUE TO RESIDUAL VARIANCES CONVERGING TO 0.

THESE RESIDUAL VARIANCES AND CORRESPONDING COVARIANCES ARE FIXED TO 0.

TECH8 Minimal Lambda: 0.0000
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Mplus Output using Skew-Normal

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

SEVERITY ON
GROUP 0.001 0.007 0.214 0.830

NUTRIT ON
SEVERITY 0.768 0.034 22.363 0.000
GROUP -0.019 0.079 -0.239 0.811

Intercepts
SEVERITY 7.027 0.004 1587.559 0.000
NUTRIT -1.215 0.213 -5.701 0.000

Residual Variances
SEVERITY 0.000 0.000 999.000 999.000
NUTRIT 1.325 0.064 20.748 0.000

Skew and Df Parameters
SEVERITY -1.815 0.044 -41.438 0.000
NUTRIT 1.261 0.000 999.000 999.000
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Mplus Input using Skew-Normal with {nutrit@0}

ANALYSIS: ESTIMATOR = ML;
DISTRIBUTION = SKEW;

MODEL: severity ON group (a);
nutrit ON severity (b) ;
group;
{nutrit@0};

MODEL CONSTRAINT: NEW(indirect);
indirect = a*b;

OUTPUT: TECH1 TECH4 TECH8 RESIDUAL STANDARDIZED CINTERVAL;
PLOT: TYPE = PLOT3;
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Mplus Output

MODEL FIT INFORMATION

Number of Free Parameters 8

Loglikelihood
H0 Value -2482.121

Information Criteria
Akaike (AIC) 4980.242
Bayesian (BIC) 5018.307
Sample-Size Adjusted BIC 4992.901
(n* = (n + 2) / 24)
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Mplus Output, Continued

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

SEVERITY ON
GROUP 0.001 0.007 0.214 0.830

NUTRIT ON
SEVERITY 0.074 0.030 2.453 0.014
GROUP -0.018 0.079 -0.227 0.820

Intercepts
SEVERITY 7.027 0.004 1587.598 0.000
NUTRIT 3.667 0.178 20.630 0.000

Residual Variances
SEVERITY 0.000 0.000 999.000 999.000
NUTRIT 1.325 0.064 20.748 0.000

Skew and Df Parameters
SEVERITY -1.815 0.044 -41.438 0.000
NUTRIT 0.000 0.000 999.000 999.000

New/Additional Parameters
INDIRECT 0.000 0.000 0.214 0.831
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Mplus Input for Regular Normal Distribution:
ATLAS Example

TITLE: ATLAS
DATA: FILE = mbr2004atlas.txt;
VARIABLE: NAMES = obs group severity nutrit;

USEVARIABLES = group - nutrit;
ANALYSIS: ESTIMATOR = ML;
MODEL: severity ON group (a);

nutrit ON severity (b)
group;

MODEL CONSTRAINT: NEW(indirect);
indirect = a*b;

OUTPUT: TECH1 TECH8 STANDARDIZED CINTERVAL;
PLOT: TYPE = PLOT3;
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Mplus Output for Regular Normal Distribution:
ATLAS Example

MODEL FIT INFORMATION

Number of Free Parameters 7

Loglikelihood
H0 Value -2795.639
H1 Value -2795.639

Information Criteria
Akaike (AIC) 5605.277
Bayesian (BIC) 5638.584
Sample-Size Adjusted BIC 5616.354
(n* = (n + 2) / 24)
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Mplus Output for Regular Normal Distribution, Continued

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

SEVERITY ON
GROUP 0.273 0.089 3.058 0.002

NUTRIT ON
SEVERITY 0.074 0.030 2.453 0.014
GROUP -0.018 0.079 -0.228 0.820

Intercepts
SEVERITY 5.648 0.061 92.308 0.000
NUTRIT 3.667 0.178 20.630 0.000

Residual Variances
SEVERITY 1.711 0.082 20.748 0.000
NUTRIT 1.325 0.064 20.748 0.000

New/Additional Parameters
INDIRECT 0.020 0.011 1.913 0.056
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Summary Comparison of Models for the ATLAS Example

Model LL No. par’s BIC

Skew-t -2482 10 5032
Skew-normal -2482 8 5018
Normal -2796 7 5639
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7.6 Path Analysis of Firefighter Data (n = 354)

Intervention on eating fruits and vegetables

Y ON M X;

M ON X;

Sources:

Yuan & MacKinnon (2009). Bayesian mediation analysis.
Psychological Methods

Elliot et al. (2007). The PHLAME (Promoting Healthy
Lifestyles: Alternative Models Effects) firefighter study:
outcomes of two models of behavior change. Journal of
Occupational and Environental Medicine
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Firefighter M and Y Distributions
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Summary Comparison of Models for the Firefighter Example

Distribution LL Number of parameters BIC

Normal -1058 7 2157
t-dist -1045 8 (adding df) 2137
Skew-normal -1055 9 (adding 2 skew) 2162
Skew-t -1043 10 (adding df and 2 skew) 2144

The skew-normal run needed STARTS= 32 8

The df parameter of the t-distribution is needed to capture the
kurtosis, but skew parameters are not needed

The t-distribution allows for heteroscedasticity in the Y residual
as a function of M; the conditional expectation functions are
linear; usual indirect effect valid
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Comparing Normal and T-Distribution Estimates
Normal distribution - regular SEM

Two-Tailed
Estimate S.E. Est./S.E. P-Value

M ON
X 0.397 0.119 3.346 0.001

Y ON
M 0.142 0.051 2.755 0.006
X 0.108 0.116 0.926 0.354

Intercepts
Y 0.418 0.056 7.417 0.000
M 0.000 0.058 0.000 1.000

Residual Variances
Y 1.125 0.085 13.304 0.000
M 1.203 0.090 13.304 0.000

New/Additional Parameters
INDIRECT 0.056 0.026 2.127 0.033

T-distribution

M ON
X 0.371 0.110 3.384 0.001

Y ON
M 0.119 0.059 2.003 0.045
X 0.134 0.115 1.161 0.246

Intercepts
Y 0.384 0.055 6.940 0.000
M 0.005 0.053 0.093 0.926

Residual Variances
Y 0.872 0.088 9.963 0.000
M 0.829 0.092 9.006 0.000

Skew and Df Parameters
DF 7.248 1.851 3.915 0.000

New/Additional Parameters
INDIRECT 0.044 0.026 1.718 0.086
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7.7 Indirect and Direct Effects in Mediation Modeling

Regular indirect and direct effects are not valid for skew-normal
and skew-t

Modeling non-normality and non-linearity needs the more
general definitions based on counterfactuals

The key component of the causal effect definitions,
E[Y(x,M(x∗)|C = c,Z = z], can be expressed as follows integrating
over the mediator M (C is covariate, Z is moderator, X is ”cause”):

E[Y(x,M(x∗)) | C = c,Z = z] =∫ +∞

−∞

E[Y|C = c,Z = z,X = x,M = m]× f (M|C = c,Z = z,X = x∗) ∂M.

Muthén & Asparouhov (2014). Causal effects in mediation modeling:
An introduction with applications to latent variables. Forthcoming in
Structural Equation Modeling.
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7.8 Non-Normal Factor Distribution

Wall, Guo, & Amemiya (2012). Mixture factor analysis for
approximating a nonnormally distributed continuous latent factor with
continuous and dichotomous observed variables. Multivariate
Behavioral Research.
- Normal-ML estimates robust to non-normality for λ s, but not for γu

MIXTURE FACTOR ANALYSIS 281

(c)

(d)

FIGURE 2 (Continued).
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Non-Normal Factor Distribution

Figure 6 of Wall et al. (2012):306 WALL, GUO, AMEMIYA

FIGURE 6 Histograms of simulated underlying factor values and factor score estimates

obtained from the normal factor model and the mixture factor model with 4 components

(Mix4) for the illustrative numerical example.

(Figure 7), the normal factor model has shrunk the large values down more than

it should (i.e., on the high end true values are larger than predicted by the normal

model) and it spreads out values on the low end more than it should (i.e., more

variability on the low end in the normal factor model predictions than there is

in the true latent factor). Both of these “misses” by the normal factor model are

corrected to some extent by the factor mixture model with 4 components. That

is, the factor score estimates from the mixture factor model line up more closely

with the true underlying factor values (bottom left of Figure 7). We further note

that the estimated probabilities of class membership found in the mixture factor

model with 4 components were 82.8%, 13.5%, 3.4%, and 0.2%. The component

with probability 0.2% included just one observation corresponding to the single

large value of the true underlying factor near 10. Thus, despite whether this

latent value might be described as an outlier or just a typical observation from a

skewed distribution (as it is here), the mixture factor model provides an accurate

predicted value for it.

DISCUSSION

In a latent factor model with both continuous and dichotomous observed vari-

ables, it was found that misspecifying the latent variable as normal and using

normal maximum likelihood leads to downward bias in the estimated path

relating the factor to the dichotomous outcome that worsens as the true la-

tent factor distribution deviates further from normality (e.g., becomes more

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 1
2:

08
 0

5 
A

pr
il 

20
12

 

Factor distribution can be more parsimoniously specified as
skew-t than the authors’ mixture of normals

Mplus gives percentiles for the estimated distribution
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Factor Distribution Estimated by 1-Class Skew-T

 

 -2
 

 -1
.5

 

 -1
 

 -0
.5

 

 0
 

 0
.5

 

 1
 

 1
.5

 

 2
 

 2
.5

 

 3
 

 3
.5

 

 4
 

 4
.5

 

 5
 

 5
.5

 

 6
 

 6
.5

 

 7
 

 7
.5

 

 8
 

 8
.5

 

 9
 

 9
.5

 

 1
0 

F

 0 

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9 

 1 

D
is

tri
bu

tio
n

Percentiles for the
estimated distribution of

F in Class 1:

5%-tile:      0.078
10%-tile:     0.168
25%-tile:     0.438
50%-tile:     0.924
75%-tile:     1.591
90%-tile:     2.348
95%-tile:     2.852

Bengt Muthén & Tihomir Asparouhov Advances in Mplus Version 7.2 206/ 206


	1.  Overview of New Features in Mplus Version 7.2
	2.  Mediation Analysis with Effects Based on Counterfactuals/Potential Outcomes (Causal Inference)
	2.1  Causal Effects in Software
	2.2  The Issues, Intuitively
	2.3  Causal Effect Definitions
	2.4  Example: Aggressive Behavior and Juvenile Court Record
	2.5  Categorical Mediator: Smoking Data Example
	2.6  Binary Mediator and Binary Distal Outcome
	2.7 Sensitivity Analysis of Mediator-Outcome Confounding

	3. Bayesian Analysis
	4. Factor Analysis (IRT) and SEM
	5. Analysis Choices for Multiple Groups/Clusters
	5.1 Papers on New Techniques
	5.2 Fixed Mode: Refresher on Multiple-Group Factor Analysis
	5.3 Multiple-Group Factor Analysis: A New Method - Alignment Optimization
	5.4 Alignment Example: Cross-Cultural Data on Nationalism and Patriotism
	5.5 Alignment Optimization: Analysis of Nationalism & Patriotism in 34 Countries
	5.6 Alignment Monte Carlo Studies
	5.7 Alignment Optimization: Binary Math Items in 40 Countries (PISA)
	5.8 Multiple-Group Analysis using Bayes and BSEM Alignment
	5.9 Multiple-Group BSEM
	5.10 Two-Level Analysis with Random Item Parameters
	5.11 Random Loadings: UG Ex9.19
	5.12 Alignment Summary

	6. Mixture Modeling
	6.1 Latent Class Analysis
	6.2 3-Step Mixture Modeling
	6.3 Latent Transition Analysis Developments
	6.4 Latent Class and Latent Transition Analysis with Residual Covariances for Categorical Items In Mplus Version 7.2
	6.5 Overview of Mixture Modeling with Non-Normal Distributions in Mplus Version 7.2
	6.7 Normal Mixtures
	6.8 Introducing Mixtures of Non-Normal Distributions in Mplus Version 7.2
	6.9 Cluster Analysis by "Mixtures of Factor Analyzers" (McLachlan)
	6.10 Non-Normal Mixtures of Latent Variable Models
	6.11 GMM of BMI in the NLSY Multiple-Cohort Study
	6.12 LSAY Math Achievement Development and High School Dropout
	6.13 Cat's Cradle Concern
	6.14 Disadvantages and Advantages of Non-Normal Mixture Modeling
	6.15 Mplus Specifications
	6.16 Mplus Input and Output for NLSY BMI 2-Class Skew-T GMM

	7. SEM Allowing Non-Normal Distributions
	7.1 SEM Chi-Square Testing with Non-Normal Distributions
	7.2 Missing Data with Non-Normal Distributions
	7.3 Path Analysis Mediation Model for BMI
	7.4 When Can We Use Z-Tests and the Usual Direct and Indirect Effects?
	7.5 Path Analysis of the ATLAS Data
	7.6 Path Analysis of the Firefighter Data
	7.7 Indirect and Direct Effects in Mediation Modeling
	7.8 Non-Normal Factor Distribution


