

Ji An & Laura M. Stapleton University of Maryland, College Park

May, 2016

WHAT DOES A PROPENSITY SCORE METHOD DO?

Observational data (Treated ≠Control on background covs)

> <u>Match</u> treated & control on confounding covs, mimic a randomized design.

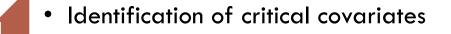
> > Make causal inferences

WHAT IS A PROPENSITY SCORE?

The <u>conditional probability</u> of a participant to be assigned to the treatment condition (Rosenbaum & Rubin, 1983)

logit(
$$\pi_{\text{TREATMENT i}}$$
) = $\beta_0 + \sum_{p=1}^{P} \beta_p X_i$

A GENERAL PS METHOD PROCESS



Estimation of the propensity scores

- Conditioning (matching)
- Balance check

3

5

Treatment effect estimation

- Matching
- Subclassification
- Weighting
 - Inverse probability of treatment weighting (IPTW) $w_i = \frac{T_i}{2} + \frac{1-T_i}{2}$
 - Weighting by the odds

$$w_i = T_i + (1 - T_i) \frac{\hat{e}_i}{1 - \hat{e}_i}$$

INTRODUCTION: PRIMARY ISSUE

The traditional PS method works well in SRS settings

However, in reality... complex sampling (CS) design

- Stage 1: The country regions (strata) Select schools (PSUs)
- Stage 2: School demographic groups (strata)
 Sample students

... Disproportionate selection probabilities... ...

- Consequence of ignoring the CS design
 - Bias in standard error estimates
 - Bias in parameter estimates

Problematic generalizability to the population.

INTRODUCTION: PS ESTIMATION WITH CS DATA

Model-based method

- Multilevel model
- Fixed effects model (Thoemmes & West, 2011)

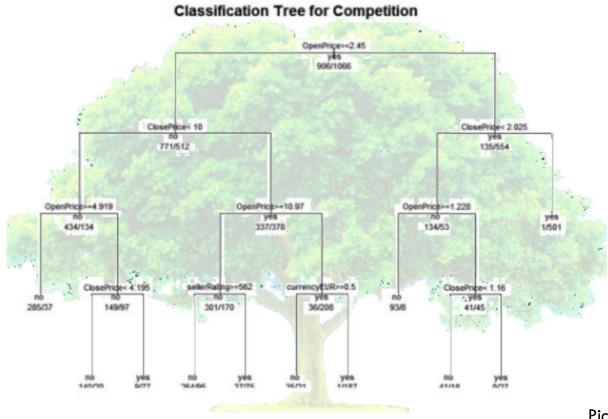
Design-based method

- Sampling weighted regression
- Incorporating sampling weight as a covariate

Nonparametric methods (McCaffrey et al., 2004)

- Classification and regression trees (CART)
- Random forests
- Boosted regression trees
- Etc.

INTRODUCTION: NONPARAMETRIC METHODS



Picture from LinkedIn by Jeffrey Strickland

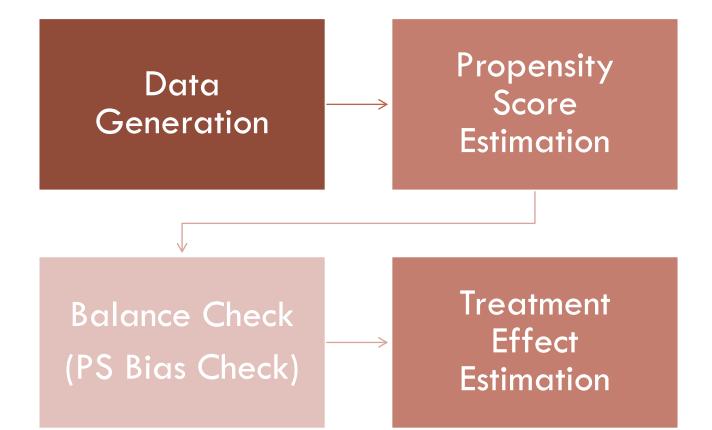
OUR GOAL

Do nonparametric PS methods outperform the other model-based or design-based methods?

- Precision of PS estimates?
- Quality of TE estimates?

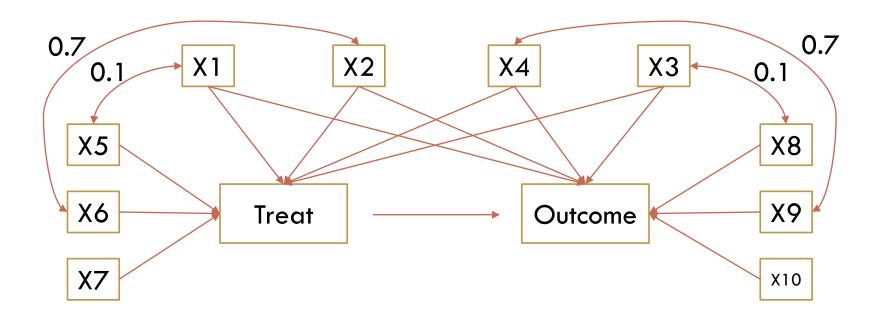
• What is the best way to accommodate CS design in the PS analyses?

METHODS



COVARIATES

Data Generation



Dummy: X1, X3, X5, X6, X8, X9, Treat; others: continuous (Setoguchi et al., 2008; Lee et al., 2010)

POPULATION

Data Generation

About 75, 000 students in the finite population

50 counties
 30 schools per county (private & public)
 ave. 50 students per school (ELL & non-ELL)

- ICC around 0.25 (Hedges & Hedberg, 2007)
- Pop1: main effects only (additivity and linearity) logit(e|Z = 1) $= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7$
- Pop7: moderate non-additivity and non-linearity with 3 quadratic terms &10 interactions (Setoguchi et al, 2008; Lee et al., 2010)

SAMPLE

Data Generation

Two-Stage Sampling:

	Stage 1 (Select schools within each county)		Stage 2 (Select students within each school)	
	Private	Public	ELL	Non-ELL
Рор	33%	67%	25%	75%
Sel rate	50%	25%	≤50%	25%

About 9000-10000 students in each sample

100 replications

PS MODELS

Propensity Score Estimation

7 PS models (5 parametric, 2 nonparametric)

- •M1: **SL** on the baseline covariates.
- •M2: SL on the baseline covariates + the survey weight.
- •M3: SL weighted by the survey weight.
- •M4: Fixed effects model.
- •M5: **ML** with random intercepts.
- •M6: Random forests.
- •M7: Boosted regression trees.

BALANCE CHECK

Balance Check (PS Bias Check)

Accuracy of PS

Absolute bias

Balance

• SMD =
$$\frac{\left[\bar{X}_{pT} - \bar{X}_{pC}\right]}{\sigma_{pT}}$$

Balance weighted by **IPTW** (consistent with the **PS-adjusted** TE)

 Balance weighted by IPTW*SAMPWT (consistent with the PS&CS-adjusted TE)

TE MODELS

Treatment Effect Estimation

IPTW implemented to achieve **ATE**

TE Models

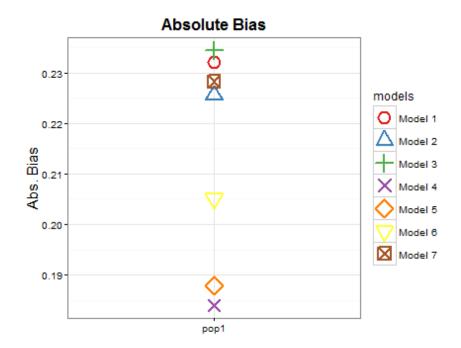
- Naïve (no adjustment at all)
- CS adj. (weighted by SAMPWT)
- PS adj. (weighted by IPTW) (via 7 PS models)
- PS & CS adj. (weighted by IPTW*SAMPWT) (via 7 PS models)

 $\hat{Y} \sim Treat$

(Absence of a fully specified TE model)

RESULTS: ABSOLUTE BIAS

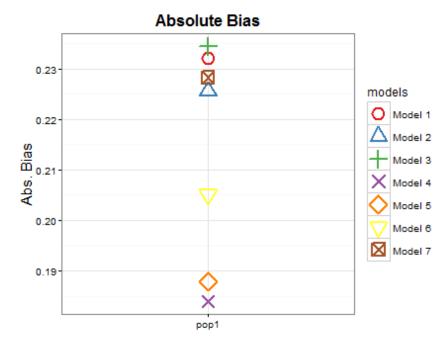
 Models 4 and 5 (<u>the fixed effects and multilevel models</u>) have the best performance in PS accuracy



RESULTS: ABSOLUTE BIAS

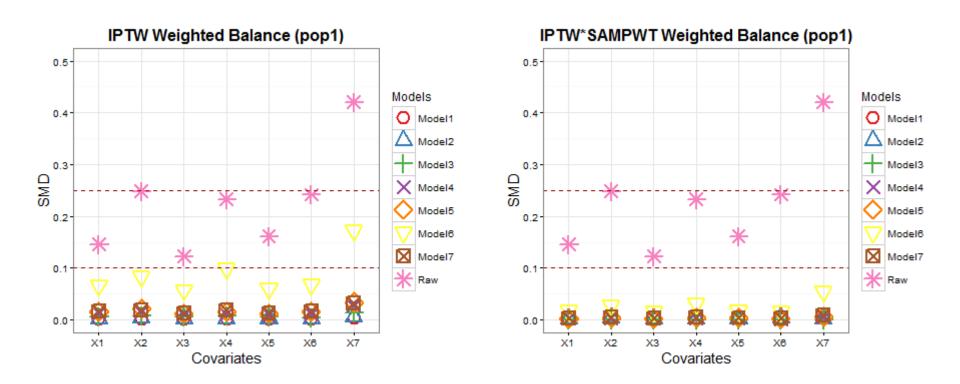
Model 6 (<u>random forests</u>) did not outperform Models 4 and 5 but is better than the others.

(However, when we get to a complex PS model they do!)



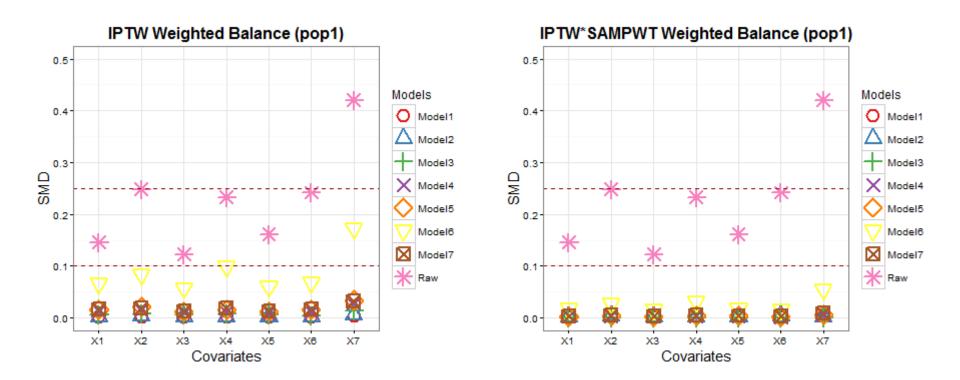
RESULTS: BALANCE

All PS models achieved very good covariate balance.



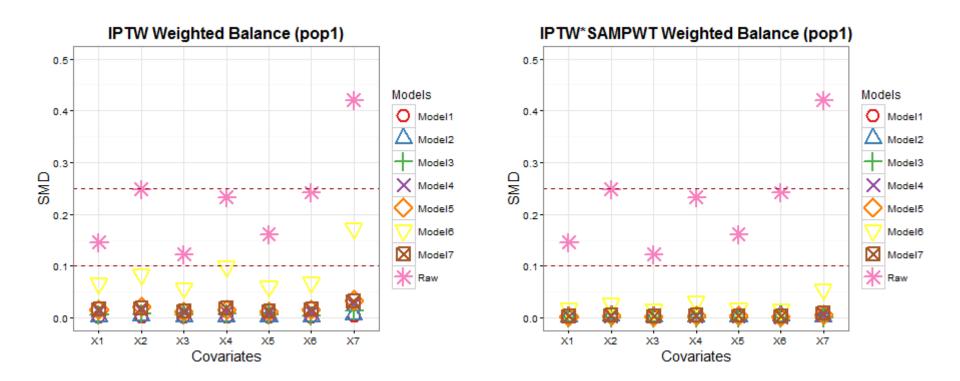
RESULTS: BALANCE

 Combining CS and PS adjustment (IPTW*SAMPWT) produced better balance than using PS adjustment only (IPTW).



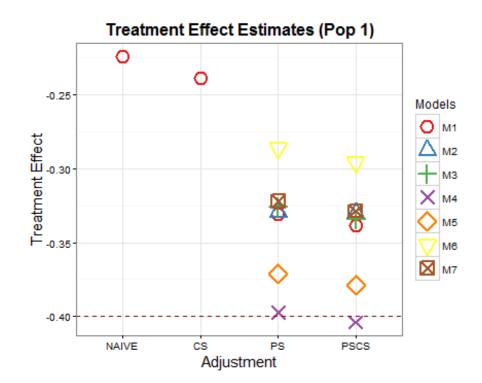
RESULTS: BALANCE

 Random forests yielded worse balance than the other models, yet still good.



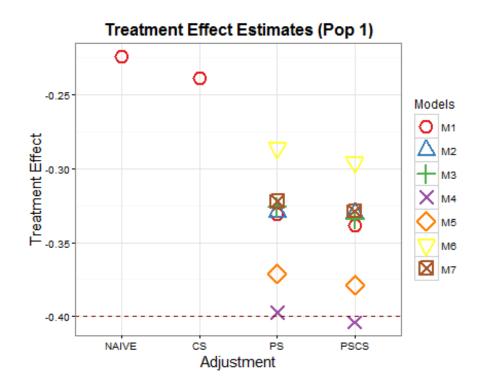
RESULTS: TREATMENT EFFECT

 Models 4 and 5 had the best performance for estimating (the PS and therefore) the TE in the absence of a fully specified TE model.



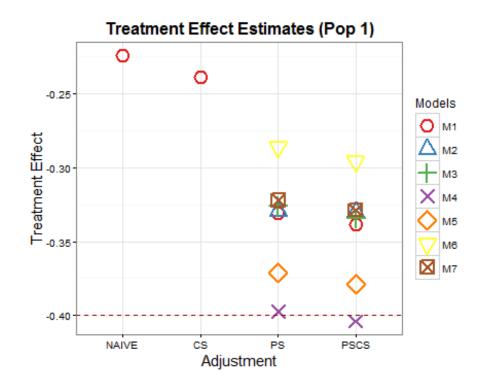
RESULTS: TREATMENT EFFECT

The nonparametric methods did NOT outperform Models 4 and 5 when the PS model is correctly specified.



RESULTS: TREATMENT EFFECT

 Adjustment for CS does make a difference in the <u>accuracy of TE</u> (although in this simulation it's relatively small)!



RESULTS: TREATMENT EFFECT (SE)

Adjustment for CS does make a difference in the <u>precision of TE</u>! 8

RESULTS: TREATMENT EFFECT (SE)

Good news: the nonparametric methods ranked better in terms of the precision of TE!

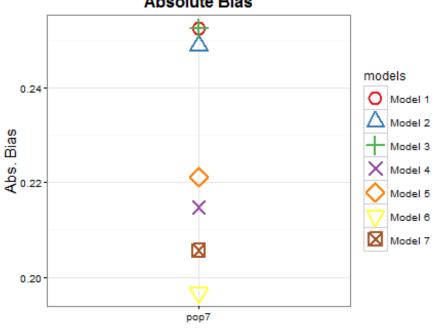
CONCLUSION (1)

Do nonparametric PS methods outperform the other model-based or design-based methods?

No.

However... when the PS model is unknown and thus is misspecified by parametric models... Absolute Bias

(POP7)



CONCLUSION (2)

• What is the best way to accommodate CS design in the PS analyses?

PS Estimation	Conditioning	Effect	TE Estimation
M1: SL	IPTW	ATE	Naïve (no adjustment)
M2: SL+SAMPWT			CS adj. (SAMPWT)
M3: SL(SAMPWT)			PS adj. (IPTW)
M4: Fixed effect			PS & CS adj. (IPTW*SAMPWT)
M5: Multilevel			
M6: Random forests			
M7: Boosted regression			

CONCLUSION (2)

• What is the best way to accommodate CS design in the PS analyses?

PS Estimation	Conditioning	Effect	TE Estimation
M1: SL	IPTW	ATE	Naïve (no adjustment)
M2: SL+SAMPWT			CS adj. (SAMPWT)
M3: SL(SAMPWT)			PS adj. (<i>IPTW</i>)
M4: Fixed effect			PS & CS adj. (IPTW*SAMPWT)
M5: Multilevel			
M6: Random forests			
M7: Boosted regression			

FUTURE RESEARCH

Other matching methods...

PS Estimation	Conditioning	Effect	TE Estimation
M1: SL	IPT₩	ATE	Naïve (no adjustment)
M2: SL+SAMPWT	Matching	ATT	CS adj. (SAMPWT)
M3: SL(SAMPWT)	Subclassification	ATE/ATT	PS adj. (<i>IPTW</i>)
M4: Fixed effect	WBO	ATT	PS & CS adj. (IPTW*SAMPWT)
M5: Multilevel			
M6: Random forests			
M7: Boosted regression			

FUTURE RESEARCH

- Other matching methods..
- Misspecified PS models...

PS Estimation	Conditioning	Effect	TE Estimation
M1: SL	IPTW	ATE	Naïve (no adjustment)
M2: SL+SAMPWT	Matching	ATT	CS adj. (SAMPWT)
M3: SL(SAMPWT)	Subclassification	ATE/ATT	PS adj. (<i>IPTW</i>)
M4: Fixed effect	WBO	ATT	PS & CS adj. (IPTW*SAMPWT)
M5: Multilevel			
M6: Random forests			
M7: Boosted regression			

Thank you!

jian12@umd.edu