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Specification Search

»Theoretical models are imperfect to varying extent
(Box, 1979).
» Purposes of specification search:
* improve model fit
* reduce specification errors

¢ elicit a model best representing the population
model

* provide meaningful interpretations for data

» A conventional search method is to use modification
index (Ml; Sérbom, 1989).

Bayesian Methods

»Bayesian Estimation
e Posterior « Prior x Likelihood
p(@ly) «< p(8)p(y[6) _
* Markov chain Monte Carlo b
(MCMC) S

Posterior p{ &)

Data likelihood p(1{6)

» Priors: non-informative, weakly informative, or
informative.

»Model fit: posterior predictive checking
* Posterior predictive p-value (PPP; if < .05, poor fit):

PPP =P (f(x,0,) < f(x",6;))
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Bayesian Structural Equation Modeling

(BSEM; Muthén & Asparouhov, 2012)

»BSEM starts with an over-parameterized model, and
use a backward search method.

»BSEM specifies informative priors with small variances
on parameters that are nearly 0 but believed not to be
exactly 0.

* i.e., cross-loadings, correlated errors, etc.
»These parameters are suggested to be freely estimated

if the Bayesian credibility interval from the parameter
posterior does not cover 0.

* i.e., parameter estimates are significant.
»BSEM can be used as a search method.

BSEM — with Cross-Loadings

* Informative priors are typically applied to cross-loadings.

e For other parameters believed to be nonzero, such as
primary factor loadings, factor and residual covariance
matrices, non-informative or weakly informative priors can
be imposed.

Initial model Population model
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Features of BSEM

» Advantages of BSEM

* Incorporates prior knowledge into the posterior
estimation

* Does not dependent on the asymptotic theory or
multivariate normality assumption

* Handles under-identified models
* Provides multiple suggestions in one analysis

» Disadvantage of BSEM
* Potentially a long running time

Purpose of Research

» In practice, factor structures with cross-loadings are
common, mainly due to:

¢ Random errors in items
¢ Items measuring more than one latent construct

» Constraining small cross-loadings to be 0 may result in
inflated factor correlation estimates, and more.

» A critical step in BSEM analyses is to make a good selection
of priors through sensitivity analyses (Asparouhov, Muthén,
& Morin, 2015).

» This study aims to investigate the impact of prior
distributions in specification search of small cross-loadings
in confirmatory factor analysis (CFA).




» # conditions: 84
» # replications: 2000
» Design factors

3 Factor Two-factor models with -

structures 1, 2, and 4 cross-loadings %

4 |oading Primary loading: .4 or .7 ' “
specifications | Cross-loading: .1 or .3

7 Sample 50, 100, 200, 400, 600, <

sizes 800, 1000 %

N B
Ador7 N 4or.7

Data Analysis

» Each dataset was fit to a two-factor model with primary
loadings and all possible cross-loadings.

» If cross-loadings were significant at the .05 level, they were
retained in the model.

»The model was then re-specified and compared with the
data-generating model.
» Estimation:
e Gibbs sampler
* Two MCMC chains
* Medians as parameter estimates
* predictive checking procedure for model fit
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Prior Distributions

» All possible cross-loadings

Prior
N(0, .001) +.06
N(0, .005) +.14
N(0, .01) +.20
N(0, .02) +.28
NCRGE) +.34
N(0, .05) +.44
N(0, .08) +.55

»primary loadings: N(0, 10'°)
»factor covariance: IW(0, -3)
»residual variances: IG(-1, 0)

Evaluation

> Model fit

* PPP rejection rates at the .05 level

»Model recovery

* Model recovery rate: proportion of replications
successfully recovered the population models.

 Solution positive rate: proportion of replications that
recovered the population model and extra parameters.

* 95% coverage rate: proportion of replications where the
95% credibility interval covers the population value.
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Rejection Rates
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Solution Positive Rates
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Discussion

»Better model recovery was associated with a simpler model,
larger cross-loading value, and greater sample size.

»Model recovery was the best, when the prior Cl was roughly
around the population cross-loading value.
* > 80% for Models 1 and 2, and > 60% for Model 3.

» Impact of priors:
* Too small variance -> more false positive recovery
* Too large variance -> low model recovery

»Recommendation:

* Consider an informative prior with the Cl boundaries
close to the true value.

* Consider BSEM search results along with Ml suggestions.

* Examine sensitivity of search results to prior
distributions.

Future Directions

»Weakly informative priors on primary loadings and
covariance matrices.

» Categorical and non-normally distributed data.
»Subsequent Bayesian searches.
»Model comparison.
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Thank you!
Questions or Comments?

Xinya Liang (x/014@uark.edu)
Yanyun Yang (yyang3@fsu.edu)
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