The Impact of Bayesian Priors on Specification Search of Structural Equation Modeling

Xinya Liang, University of Arkansas Yanyun Yang, Florida State University

May 25, 2016 Modern Modeling Methods Conference Storrs, CT

Outline	
Introduction to specification search methods	
➢Purposes of study	
➢ Methods	
➢ Results	
➢ Discussion	
➤Future directions	
	2

Bayesian Structural Equation Modeling (BSEM; Muthén & Asparouhov, 2012)

- BSEM starts with an over-parameterized model, and use a backward search method.
- BSEM specifies informative priors with small variances on parameters that are nearly 0 but believed not to be exactly 0.
 - i.e., cross-loadings, correlated errors, etc.
- These parameters are suggested to be freely estimated if the Bayesian credibility interval from the parameter posterior does not cover 0.
 - i.e., parameter estimates are significant.
- ▶ BSEM can be used as a search method.

Features of BSEM

➤Advantages of BSEM

- Incorporates prior knowledge into the posterior estimation
- Does not dependent on the asymptotic theory or multivariate normality assumption
- Handles under-identified models
- Provides multiple suggestions in one analysis
- Disadvantage of BSEM
 - Potentially a long running time

- In practice, factor structures with cross-loadings are common, mainly due to:
 - Random errors in items
 - Items measuring more than one latent construct
- Constraining small cross-loadings to be 0 may result in inflated factor correlation estimates, and more.
- A critical step in BSEM analyses is to make a good selection of priors through sensitivity analyses (Asparouhov, Muthén, & Morin, 2015).
- This study aims to investigate the impact of prior distributions in specification search of small cross-loadings in confirmatory factor analysis (CFA).

Methods		
 # condition # replicat Design factors 	ions: 2000	$\begin{array}{c} & & & \\$
3 Factor structures	Two-factor models with 1, 2, and 4 cross-loadings	A n1 n2 n2 n2 n2 A arr. arr. A arr. A arr. A arr. A arr. A arr. A arr. A arr. A arr. A arr. A arr. A arr. A a arr. A ar.
4 loading specifications	Primary loading: .4 or .7 Cross-loading: .1 or .3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
7 Sample sizes	50, 100, 200, 400, 600, 800, 1000	$\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \xrightarrow{f} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{f} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{f} \begin{array}{c} & & & \\ & & $
		9

Evaluation	
≻Model fit	
• <i>PPP</i> rejection rates at the .05 level	
Model recovery	
 <u>Model recovery rate</u>: proportion of replications successfully recovered the population models. 	
 <u>Solution positive rate</u>: proportion of replications that recovered the population model and extra paramete 	
 <u>95% coverage rate</u>: proportion of replications where 95% credibility interval covers the population value. 	the
	12

Future Directions

- ➤Weakly informative priors on primary loadings and covariance matrices.
- Categorical and non-normally distributed data.
- Subsequent Bayesian searches.
- ➤Model comparison.

