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Introduction
Organizations are multilevel in nature

Many topics in organization are related to hierarchical issues, such as
◦ Leadership

◦ Teamwork/Group Dynamic

◦ Communication/Conflict

◦ Organizational effectiveness

◦ Organizational climate and culture

◦ …

The organization researchers always concern about the context of 
organization with its influences on the organizational behaviors

Example also goes for the big-fish-little-pond effect (BFLPE) (Marsh, 2007) 
in education field that achievement at the individual student level has a 
positive effect on academic self-concept, but school- or classroom-average 
achievement has a negative effect on academic self-concept.
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Contextual Variable
A group-level characteristic (such as the organizational climate) 
that is measured by an individual-level variable (such as the 
perceived climate)  is treated as an level-2 explanatory variable. 

The cluster-mean of the individual-level variable (   ) is used as 
the proxy of the group-level characteristic to predict Yij. 
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Contextual Effect (CE)
CE is defined as the partial effect of the contextual variable (    ) on the 
outcome (Yij) after removing the impact of the explanatory variable at 
individual level (Xij). 

CE could be evaluated by the difference between regression coefficients for 
between-sluster and within-cluster in terms of the  hierarchical linear 
model (HLM) framework (Raudenbush & Bryk, 1986; Raudenbush & Willms, 
1995; Algina & Swaminathan, 2011)
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MLM notation
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Level-1 (1) ][)(10 ijjijjjij XXY    

Level-2(Intercept) (2) ][)(01000 jGjj uXX    

Level-2(Slope) (3) 101  j  

Mixed (4) ][)()( 1001100100 ijjjijGij uXXXY    

Contextual effect (5) 1001  C  
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圖 2 脈絡效果(C)與組間迴歸係數(B)及組內迴歸係數(W)的關係圖示 
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Centering issues in MLM
Two approaches for centering the predictors (Enders & Tofighi, 2007 ; 
Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002; Yang & Cai, 2014)

◦ Centering at the Grand Mean; CGM

◦ Centering Within the Cluster; CWC
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Intra-Class Correlation (ICC)
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ICC(1)
• The percent of the total variance in the outcome that is between 

groups (Bryk & Raudenbush, 1992).  
• indicates the amount of variance that could potentially be explained 

by the Level-2 predictors  (Hofmann, 1997)

ICC(2)
• The precision of a group-average score (Bryk & Raudenbush, 1992).  
• determine the reliability of aggregated individual-level data in terms 

of sampling only a finite number of L1 units from each L2 unit. (Bliese, 
2000; LeBreton & Senter, 2008)



While looking at contextual effects

We need both ICCx and ICCy
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Research questions

If both the ICCx and ICCy can affect the estimation of contextual effects? 
And how?

1. In terms of the definition of ICC(1), the magnitudes of variances of     &
are the focus

2. In terms of the definition of ICC(2), the sample size of level-1 and level-2 
are the focus

3. For the cases of limited unit at level-1 and level-2, whether the Bayesian 
estimation is good alternative for traditional ML methods or not?
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Methods of parameter estimation

Frequentist inferences 

based on point estimates and hypothesis tests of significance for the 
measurement and latent variable parameters

◦ Full/Restriction information maximum likelihood estimation
◦ Generalized least squares procedures

Bayesian inferences 

treat parameters as random or variable across a range of possible values. 
Parameters are estimated by a stimulation procedure for creating a confidence 
interval for a central value.

◦ requires the specification of prior distributions for the estimated parameters
◦ simulation techniques (Markov chain Monte Carlo, MCMC) could be used to 

implement Bayesian analysis in multilevel data (Dunson, 2000; Jedidi and Ansari, 2001)
◦ data from small-sample studies is less problematic

As the sample size increases, the posterior distribution will be driven less by the 
prior, and frequentist and Bayesian estimates will tend to agree closely
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Probability density function in Bayesian 
estimation

Estimated parameter  is defined as a random variable
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P(|z)  P(z|)P() 

credibility interval
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MCMC methods

trace and autocorrelation plots
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Gibbs Sampler

Metropolis-Hastings algorithm

Z(1) is a draw from a target 
distribution f (Z)
Z(1)→Z(2)→…→Z(t)
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Trace plots of can be very 
useful in assessing convergence
whether the chain is mixing 
well

burn-in phase



Simulation study
• The explanatory and outcome variables have a normal distribution 
• Contextual effect (CE)=WB=.75-.50=.25
• The ICCx and ICCy are set to [.1,.1], [.1,.5], [.5,.1], [.5,.5].

◦ The variances of cluster means are set to .1111 or 1.0
◦ The variances of level-1 variables are set to 1.0
◦ ICC=.1111/(.1111+1)=.1; ICC=1/(1+1)=.5

• Ncluster: small(10), medium(30), large(100).
• Nj: small(10), medium(30), large(100).
• Prior distributions of random components: inverse Gamma IG(-1,0), 
IG(.001,.001), and uniform U(0,1000) (Muthén, 2010, Table25-29, pp.21-22）
• replications: 1000 
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Hox, J. J., van de Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey 
analysis from a Bayesian perspective. Survey Research Methods, 6(2), 87-93.
Muthén, B. (2010). Bayesian analysis in Mplus: A brief introduction. Retrieved from 
http://www.statmodel.com/download/IntroBayesVersion%203.pdf

Design based on



Outputs of simulation
• Software: Mplus7.3

• average of the parameter estimates

• standard deviation of the parameter estimates

• average of the estimated standard errors

• mean square error for each parameter (M.S.E.)
◦ the variance of the estimates across the replications plus the square of the bias.

• 95% coverage rate: 
◦ the proportion of the replications where the 95% Bayesian credibility interval 

covers the true value.
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Design summary
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Specification of parameters and true value 

 True values ML  Bayes  
Parameter ICC=.1 ICC=.5  Bayes(1) Bayes(2) Bayes(3) 

Level-1       

W 0.00 0.00 - N(0,1010) N(0,1010) N(0,1010) 

W 0.50 0.50 - N(0,1010) N(0,1010) N(0,1010) 

Var(y) 1.00 1.00 - IG(.001,.001) IG(-1,0) U(0,1000) 

Var(x) 1.00 1.00 - IG(.001,.001) IG(-1,0) U(0,1000) 

Level-2       

X 0.00 0.00 - IG(.001,.001) IG(-1,0) U(0,1000) 

B 0.00 0.00  N(0,1010) N(0,1010) N(0,1010) 

B 0.75 0.75 - N(0,1010) N(0,1010) N(0,1010) 

Var(Y ) .1111 1.00 - IG(.001,.001) IG(-1,0) U(0,1000) 

Var( X ) .1111 1.00 - IG(.001,.001) IG(-1,0) U(0,1000) 

Note. Contextural effect (CE)=WB=.25. ICC specification: variance of X  and Y  set 
to .1111 and the variance of X and Y set to 1.0, ICC=.1111/(.1111+1)=.1; variance of X  and 
Y  set to 1.0 and the variance of X and Y set to 1.0, ICC=.1111/(.1111+1)=.1, ICC=1/(1+1)=.5。
Baye(1): N refers to normal; IG refers to inverse Gamma; U refers to uniform. 
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An example of Mplus 7.3 syntax
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Results of Monte Carlo Simulation 
 True Average Standard deviation MSE 95% cover rate Rate of significant0 

ICCX=  .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 

ICCY=  .10 .10 .50 .50 .10 .10 .50 .50 .10 .10 .50 .50 .10 .10 .50 .50 .10 .10 .50 .50 

A: [NCluster,Nj]=[10, 30], Cases=300 

 W .50                     

 ML  .496 .496 .496 .496 .056 .056 .056 .056 .003 .003 .003 .003 .962 .962 .962 .962 1.00 1.00 1.00 1.00 
 Bayes(1)  .503 .503 .502 .502 .060 .060 .059 .060 .004 .004 .004 .004 .950 .950 .953 .953 1.00 1.00 1.00 1.00 

 Bayes(2)  .502 .502 .502 .502 .060 .060 .060 .060 .004 .004 .004 .004 .956 .956 .955 .955 1.00 1.00 1.00 1.00 

 Bayes(3)  .503 .503 .502 .502 .060 .060 .060 .060 .004 .004 .004 .004 .948 .950 .951 .955 1.00 1.00 1.00 1.00 
B .75                     

 ML  .750 .750 .755 .752 .436 .145 1.154 .385 .190 .021 1.331 .148 .903 .903 .896 .896 .578 .992 .204 .645 
 Bayes(1)  .738 .746 .714 .738 .434 .145 1.157 .386 .189 .021 1.338 .149 .918 .918 .939 .939 .437 .984 .097 .484 

 Bayes(2)  .738 .746 .714 .738 .435 .145 1.158 .386 .189 .021 1.341 .149 .972 .972 .974 .974 .248 .950 .053 .315 

 Bayes(3)  .737 .746 .714 .738 .435 .145 1.617 .387 .189 .021 1.350 .150 .963 .968 .972 .971 .259 .951 .061 .319 
CE .25                     

 ML  .254 .254 .259 .256 .439 .156 .155 .388 .193 .024 1.334 .151 .900 .916 .900 .906 .164 .476 .108 .198 
 Bayes(1)  .236 .244 .211 .235 .440 .158 .141 .392 .194 .025 1.347 .154 .916 .931 .940 .937 .101 .364 .067 .092 

 Bayes(2)  .236 .244 .211 .236 .440 .158 .162 .393 .194 .025 1.349 .154 .970 .970 .974 .972 .051 .221 .034 .054 
 Bayes(3)  .235 .243 .211 .235 .440 .158 .165 .394 .193 .025 1.358 .155 .962 .966 .971 .966 .055 .222 .035 .056 

B: [NCluster,Nj]=[30, 30], Cases=900 

 W .50                     

 ML  .500 .500 500 .500 .033 .033 .033 .033 .001 .001 .001 .001 .957 .957 .960 .960 1.00 1.00 1.00 1.00 

 Bayes(1)  .500 .500 .500 .500 .035 .035 .035 .035 .001 .001 .001 .001 .938 .947 .938 .943 1.00 1.00 1.00 1.00 

 Bayes(2)  .500 .500 .500 .500 .035 .035 .035 .035 .001 .001 .001 .001 .941 .941 .941 .941 1.00 1.00 1.00 1.00 
 Bayes(3)  .500 .500 .500 .500 .035 .035 .035 .035 .001 .001 .001 .001 .940 .941 .941 .940 1.00 1.00 1.00 1.00 

B .75                     

 ML  .735 .745 .719 .740 .218 .073 .590 .197 .048 .005 .349 .039 .927 .927 .923 .923 .931 1.00 .274 .965 

 Bayes(1)  .747 .749 .750 .750 .217 .072 .583 .194 .047 .005 .340 .038 .948 .948 .962 .962 .904 1.00 .239 .948 
 Bayes(2)  .747 .749 .749 .750 .217 .073 .585 .195 .047 .005 .342 .038 .960 .960 .965 .965 .886 1.00 .210 .943 

 Bayes(3)  .747 .749 .749 .750 .217 .072 .584 .195 .047 .005 .341 .038 .963 .960 .967 .969 .894 1.00 .223 .939 

CE .25                     

 ML  .236 .246 .220 .240 .220 .079 .591 .200 .049 .001 .350 .040 .926 .933 .921 .923 .216 .876 .097 .268 

 Bayes(1)  .247 .249 .250 .250 .218 .079 .583 .196 .048 .006 .340 .039 .945 .955 .958 .954 .197 .836 .062 .235 
 Bayes(2)  .247 .249 .249 .250 .219 .079 .585 .197 .048 .006 .341 .039 .961 .960 .965 .966 .167 .841 .058 .202 

 Bayes(3)  .247 .249 .249 .250 .218 .079 .585 .197 .048 .006 .341 .039 .968 .962 .966 .963 .165 .842 .056 .205 

[continued] 

  



May 25, 2016 NATIONAL TAIWAN NORMAL UNIVERSITY 19

[continued] 

 True Average Standard deviation MSE 95% cover rate Rate of significant0 
ICCX=  .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 .10 .50 

ICCY=  .10 .10 .50 .50 .10 .10 .50 .50 .10 .10 .50 .50 .10 .10 .50 .50 .10 .10 .50 .50 

C: [NCluster,Nj]=[100, 30], Cases=3000 

 W .50                     

 ML  .500 .500 .500 .500 .018 .018 .018 .018 .0003 .0003 .0003 .0003 .957 .957 .956 .956 1.00 1.00 1.00 1.00 
 Bayes(1)  .500 .500 .500 .500 .019 .018 .019 .019 .0003 .0003 .0003 .0003 .946 .944 .944 .944 1.00 1.00 1.00 1.00 

 Bayes(2)  .500 .500 .500 .500 .019 .019 .019 .019 .0003 .0003 .0003 .0004 .945 .945 .945 .944 1.00 1.00 1.00 1.00 

 Bayes(3)  .500 .500 .500 .500 .019 .019 .019 .019 .0003 .0003 .0004 .0004 .944 .944 .946 .944 1.00 1.00 1.00 1.00 
B .75                     

 ML  .746 .749 .743 .748 .115 .038 .305 .102 .013 .002 .093 .010 .938 .938 .950 .950 1.00 1.00 .699 1.00 
 Bayes(1)  .750 .750 .754 .752 .119 .040 .311 .106 .014 .002 .101 .011 .937 .939 .938 .938 1.00 1.00 .694 1.00 

 Bayes(2)  .750 .750 .755 .752 .119 .039 .318 .106 .014 .002 .101 .011 .946 .942 .946 .942 1.00 1.00 .678 1.00 

 Bayes(3)  .750 .750 .754 .752 .120 .040 .317 .106 .014 .002 .101 .011 .941 .947 .946 .942 1.00 1.00 .681 1.00 
CE .25                     

 ML  .247 .249 .244 .248 .116 .042 .305 .103 .013 .002 .093 .011 .939 .939 .939 .950 .580 1.00 .119 .681 
 Bayes(1)  .250 .250 .254 .251 .120 .043 .317 .107 .014 .002 .101 .011 .940 .946 .941 .942 .572 1.00 .135 .664 

 Bayes(2)  .250 .250 .254 .251 .120 .043 .318 .107 .014 .002 .101 .011 .945 .950 .950 .944 .553 1.00 .124 .652 
 Bayes(3)  .250 .250 .254 .251 .120 .043 .317 .106 .015 .002 .100 .011 .943 .951 .947 .943 .559 1.00 .128 .658 

D: [NCluster,Nj]=[100, 100], Cases=10000 

W .50                     

 ML  .500 .500 .500 .500 .010 .010 .010 .010 .0001 .0001 .0001 .0001 .963 .963 .963 .963 1.00 1.00 1.00 1.00 

 Bayes(1)  .500 .500 .500 .500 .010 .010 .010 .010 .0001 .0001 .0001 .0001 .952 .952 .951 .951 1.00 1.00 1.00 1.00 

 Bayes(2)  .500 .500 .500 .500 .010 .010 .010 .010 .0001 .0001 .0001 .0001 .954 .954 .953 .953 1.00 1.00 1.00 1.00 
 Bayes(3)  .500 .500 .500 .500 .010 .010 .010 .010 .0001 .0001 .0001 .0001 .957 .957 .953 .954 1.00 1.00 1.00 1.00 

B .75                     

 ML  .747 .749 .742 .747 .109 .036 .313 .105 .012 .001 .098 .011 .937 .937 .943 .943 1.00 1.00 .693 1.00 

 Bayes(1)  .744 .748 .731 .744 .104 .035 .301 .100 .011 .001 .091 .010 .949 .949 .953 .953 1.00 1.00 .651 1.00 
 Bayes(2)  .744 .748 .731 .744 .104 .035 .301 .100 .011 .001 .091 .010 .953 .953 .952 .952 1.00 1.00 .642 1.00 

 Bayes(3)  .744 .748 .731 .744 .100 .035 .301 .100 .011 .001 .091 .010 .959 .953 .954 .959 1.00 1.00 .643 1.00 

CE .25                     

 ML  .247 .249 .241 .247 .109 .038 .313 .105 .012 .001 .098 .011 .936 .944 .942 .941 .657 1.00 .144 .691 

 Bayes(1)  .245 .248 .241 .244 .104 .036 .301 .100 .011 .001 .091 .010 .943 .955 .953 .954 .622 1.00 .113 .653 
 Bayes(2)  .244 .248 .231 .244 .104 .036 .301 .100 .011 .001 .091 .010 .953 .954 .953 .953 .610 1.00 .108 .639 

 Bayes(3)  .244 .248 .231 .244 .104 .035 .301 .100 .011 .001 .091 .010 .958 .960 .956 .955 .605 1.00 ..107 .638 

Note. CE: Contextual effect=WB=.25. Bayes(1)(2)(3) refers to IG(.001,.001)、IG(-1,0)、U(0,1000). 
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Results of simulation
The matching effects 
◦ a higher ICCx combined with a lower ICCy [.5,.1] is more efficient

◦ a smaller ICCx combined with a higher ICCy [.1,.5] is worst efficient

The point estimation of the Bayesian estimation is similar to the 
maximum likelihood method. the Bayesian estimation shows the 
superiority of predicting the true value of the parameters, 
especially when the Ncluster is low,

the Bayesian method is a good alternative to the maximum 
likelihood method for estimating the contextual effects in the 
multilevel models while the number of cluster is small (ie. Less 
than 10). 
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Data sources

Selected data from 

(1)Study of organizational culture and effectiveness (Chiou, Kao, and Liou, 2001)

(2)MOST project based a large-scale survey on the high-tech compnies at HsinChu
Science Park in Taiwan 

Sample

A total of 45 companies 1200 employees  741 male (61.8%) , 459 female (38.3%),

Average cluster size is 26.67  (Median 25,  minimum 5, maximum 64
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Empirical Application

Level-1 employee

Level-2 company

Individual job 
satisfaction

Average of job 
satisfaction

organizational climate 
perception (OC_L2)

Individual organizational 
climate perception (OC_L1)
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Data information
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Descriptive statistics and correlation coefficients 

Variables 
Descriptive statistics Correlation 

N Mean std min max  1. 2.  

Company level         

1 OC jX  45 3.622 .627 2.535 4.267 1.00     

2 JS 
jY  45 3.509 .683 2.514 4.125 .875** 1.00  

Employee level         

1 OC Xij 1200 3.649 .649 1.000 5.000 1.00     

2 JS Yij 1200 3.504 .755 1.000 5.000 .589** 1.00  

* p<.05 ** p<.01  

F Eta2 Variance
ICC rwgjwithin between

X: perceived climate 9.28* .257 .2822 .1230 .309 .876
Y: job satisfaction 8.27* .235 .3604 .1175 .251 .867
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.890

.294

.596

.294

Grand-mean centering

Group-mean centering

  ML   Baysian  

  CGM CWC  CGM CWC 

Fixed        

Intercept 00 2.450(.260) .292(.239)  2.447(.281) .293(.259) 

  [1.940,2.960] [-.177,.760]  [1.900,3.005] [-.213,.805] 

OC_L1 10 .596(.028) .596(.028)  .595(.028) .596(.029) 

  [.541,.652] [.541,.652]  [.540,.650] [.540,.650] 

OC_L2 01 .294(.072) .890(.066)  .296(.078) .890(.072) 

  [.153,.435] [.761,1.019]  [.141,.446] [.727,1.024] 

Contextual C  .294(.072)   .295(.077) 

   [.153,.435]   [.143,.445] 

Random       

Within 2 .261(.011) .261(.011)  .262(.011) .262(.011) 

  [.240,.282] [.240,.282]  [.241,.284] [.241,.284] 

Between 0 .014(.011) .014(.011)  .017(.008) .017(.008) 

  [.003,.025] [.003,.025]  [.007,.037] [.007,.036] 

Model fit       

Level-1  .348(.025) .270(.022)  .348(.025) .270(.022) 

R2  [.298,.398] [.226,.314]  [.297,.397] [.226,.313] 

Level-2  .473(.172) .892(.048)  .445(.162) .880(.056) 

R2  [.129,.817] [.796,.988]  [.122,.734] [.738,.953] 
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Summary of Results
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trace and autocorrelation plots 
for C, W, B

Estimates with .95BCI of 0
(between-cluster random effect)

Estimates with .95BCI of 2

(within-cluster random effect)

Estimates with .95BCI of C Estimates with .95BCI of B Estimates with .95BCI of W

Bayesian results of empirical data



Some insights
1. We need to consider the clustering nature of the human data.

2. ICC play an important role in multilevel data analysis for both 
predictors and outcomes

3. Both ICCx and ICCy with matching pattern may have impact on the 
analysis

4. ICC(1) and ICC(2) reflect different psychometrical characters

5. The ICCs of latent variables are extensive with the ICCs concepts of 
manifest variables 

6. Careful choice of estimation methods can provide the unbiased, 
consistent, and utilized estimates. Bayesian method is one of the 
alternatives.
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Further works
Make a more comprehensive simulation about the effects of 
matching ICCx and ICCy on a full range of conditions

◦ Magnitude of ICCx and ICCy

◦ Differentiate the ICC2 from ICC1 

◦ Different sample size of Level-1 and Level-2

The advantage of Bayesian inferences on the cases of small 
sample size

Integrating the sampling error with measurement error
◦ Appling the Latent variable modeling, i.e., the doubly latent multilevel models (ML-

SEM) (Marsh, Lüdtke et al. 2009 , 2012; Lüdtke et al., 2008; 2011)

◦ Testing for the effects of indicator-number, magnitude of factor loading, on the 
estimation of contextual effects  
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◦ What’s the influences of ICC(1), ICC(2)

◦ What’s the matching effect of ICC(1)(2) on x and y

◦ What’s the impact of the sample size

◦ What’s the impact of the item number 

◦ What’s the estimation of the contextual effects

While sampling errors meet measurement errors in 
the multilevel data, 

What might be happened?
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Thanks for listening 

May 25, 2016 30

For further information, please email hawjeng@ntnu.edu.tw

NATIONAL TAIWAN NORMAL UNIVERSITY

mailto:hawjeng@ntnu.edu.tw

