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9.1 Introduction 
 

In the behavioral sciences, there is increasing interest in understanding and 
characterizing mechanisms of developmental and behavioral processes.  
Measurements of multiple indicators obtained on multiple occasions on a 
single individual may show some intraindividual change and intraindividual 
variability. Process-oriented theories may predict structural patterning in 
these ideographic measurements.  Structural equations modeling techniques 
can be used to test such theories by fitting confirmatory models of the 
implied dynamical systems to repeated observations data. The current 
chapter explores one method for constructing and testing confirmatory latent 
variable structural models in which the latent constructs (a) evolve 
continuously over time and (b) have linear relationships between their 
derivatives. The method appears to generalize well and is expected to be 
able to be applied to systems well beyond the simple example presented 
here. The chapter will begin with a rationale for studying behavioral 
processes from a dynamical systems perspective, introduce latent differential 
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equations confirmatory factor models, present the results of two simulations
testing the viability of this model for estimating parameters of a simple linear
system, and then discuss future substantive and methodological questions that
this line of modeling may address.

9.2 Self-regulating systems

For the purposes of this chapter we will define apsychological processas the
time–evolving evidence of some behavioral or developmental mechanism. A
psychological process will be assumed to have associated with it a set of indica-
tor variables that change over time in a way that is at least partially determined
by the behavioral or developmental mechanism. One can consider this defini-
tion of a psychological process in terms of one or more latent variables whose
values change in some, at least partially, deterministic way. The lawfulness of
these changes is then considered to be evidence in support of a behavioral or
developmental mechanism.

One form that psychological processes may take is that of aself–regulating
system. Self–regulation involves the notion that changes in a system have or-
derly and lawful relations even in the absence of exogenous effects. Many psy-
chological processes may fit within the framework of self–regulation. Some
possible examples of self–regulating psychological processes include lifespan
development of cognitive abilities (Donaldson & Horn, 1992; McArdle, Ham-
agami, Meredith, & Bradway, in press), adolescent substance abuse (Boker &
Graham, 1998), self–reported mental health in recent widowhood (Bisconti,
2001), or anxiety levels of children (Cummings & Davies, 2002).

Self–regulation can be partitioned into two main categories: active and
passive. A physical example of an active self–regulating system might be the
heating and cooling system in a building. This temperature control system
is self–regulating and has active elements: one or more temperature sensors,
heat sources, cooling sources and perhaps fans for moving the air within the
building. When temperature sensors indicate a measurement that differs from
the desired equilibrium state of the system, active elements are engaged such
that a change in temperature is effected in the building. This change is read
by the sensor and some further activity is triggered. Active self–regulation
generally implies some sort of sensor–effector feedback mechanism.

One physical example of a passive self–regulating system is a pendulum
with friction in the earth’s gravitational field. If the pendulum is raised to one
side and let go, the result is a regular oscillation until friction finally damps
the velocity of the pendulum to its motionless equilibrium state along the axis
between the pivot of the pendulum and the center of the earth. Although lawful
relationships exist relating changes in the pendulum’s motion to its current



Latent Differential Equation Modeling 93

distance from equilibrium, there is no active sensor mechanism turning on and
off an effector that pushes the pendulum first in one direction and then the
other. The movement of the pendulum is a passive response to the unchanging
gravitational field in which it embedded.
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Figure 9.1. Four views of a damped linear oscillator. (a) A single trajectory: the evolving
values over time of displacement from equilibrium for a single set of initial conditions. (b)
A phase space: the evolving values over time of both displacement and the first derivative of
displacement plotted against one another for a single set of initial conditions. (c) A vector field:
the evolving values over one time step of an11× 11 grid of values of initial conditions of both
displacement and the first derivative of displacement, and (d) A sample of initial conditions
displayed as a vector field

Consider the behavior of the system shown in Figure 9.1–a. The value
of the variable (here labeled “displacement”) starts as a positive number and
then as time progresses, the value first becomes negative, then positive, then
negative again; oscillating back and forth around an equilibrium point of zero
displacement. Eventually, the oscillations are damped to nearly zero. The
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curve shown in Figure 9.1–a is called atrajectory; it describes the behavior of
a single individual instance of a system. Note that when time is equal to zero,
this trajectory has a value for its displacement. Also note that at time=0 there
is a slope to the curve. These two values, the displacement and slope (or first
derivative of displacement) are called theinitial valuesfor the trajectory (here
x = 10, ẋ = 0). Every trajectory, that is every individual instance, of this
system has a set of initial values — that is the state of the system at an arbi-
trarily assigned time of zero. In Figure 9.1–b, the value of displacement (here
labeledx) and its first derivative (here labeleḋx) are plotted against one an-
other for the same trajectory shown in Figure 9.1–a. The outer end of the spiral
at (x = 10, ẋ = 0) again represents the initial conditions for this trajectory.
The regularity of the spiral demonstrates that there is a relationship between
the displacement (x) and its first derivative (̇x) with respect to time. However,
this relationship alone does not determine the system, since for any value of
x there is more than one possible value ofẋ. In order to completely describe
this system at some timet, one needs also to take into account the curvature
(second derivative ofx with respect to time) of the trajectory at timet. One
way to visualize this is by the use of avector field(Boker & McArdle, in press)
as shown in Figure 9.1–c. Here we see an eleven by eleven grid of arrows. The
tail of each arrow is located at one point in an eleven by eleven grid of initial
conditions ofx andẋ. The head of the arrow points to where a trajectory would
be a short intervalτ later in time. Arrows that point straight up or straight down
have not changed their value ofẋ. Since the second derivative ofx (written as
ẍ) is the change iṅx, these vertically oriented arrows represent initial condi-
tions in which the trajectory had no curvature, i.e. initial conditions in which
ẍ = 0 during the interval of timeτ .

Similarly, horizontal arrows in Figure 9.1–c represent initial conditions
for which there was no change inx during the intervalτ . Thus, these initial
conditions had an average derivative,ẋ, of zero. It turns out that for this system,
if we know the value ofx andẋ at timet then we can exactly calculate the value
for ẍ at timet. The way that these three quantities evolve over time will remain
symmetric; that is, when one gets larger another gets proportionally smaller so
that a weighted sum ofx, ẋ, andẍ will always be equal to zero.

It is important to note at this point that active and passivemechanisms
for self–regulation do not necessarily result in different self–regulatingpro-
cesses. For any observed process there might be many self–regulating mech-
anisms which could have generated the data. For instance, the same set of
relationships between derivatives that produced the trajectories in the graphs
in Figure 9.1 might have resulted from either an active or passive mechanism.
The methods discussed in this chapter can be used to falsify hypotheses about
processes. One must be careful to recall that in so doing, we may not neces-
sarily falsify a corresponding hypothesis about mechanisms since the mapping
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from underlying mechanisms to observed processes can be many to one. The
methods we discuss provide estimates of parameters ofintrinsic dynamicsof
a hypothesized system, in other words parameters of a system that exhibits a
self–regulating process.
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Figure 9.2. Measured values from three occasions from 100 instances of two different pro-
cesses. (a) A random sample of initial conditions and three observations from a damped linear
oscillator process. Each observation at occasions 2 and 3 is completely determined by the initial
conditions at occasion 1. (b) A random sample from normally distributed random numbers. All
observations at all occasions are independent of one another. In this case, a null hypothesis of
no underlying process is true.

In Figure 9.1–d is displayed the trajectory evolution over a short interval
of time τ of a random sample of initial conditions. Essentially, it is a ran-
dom sample from the vector field displayed in Figure 9.1–c. This is the sort
of data with which we are concerned: relatively few observations per individ-
ual and a random sample of individuals who may each have their own initial
conditions. These initial conditions may be independent of the self–regulating
psychological process which we wish to understand and for which we wish to
quantify parameters. Such data might be represented by the graphs shown in
Figure 9.2. In Figure 9.2–a are three observations drawn from 100 instances
of the system shown Figure 9.1. In Figure 9.2–b are three observations drawn
from 100 instances of normally distributed random numbers. All of the obser-
vations in Figure 9.2–b are independent: essentially measurement error. Any
method that shows promise, must be able to reliably distinguish between these
two cases. That is to say, if factor scores exhibit no deterministic change within
individual, we must not mistake observed change for a self–regulating process.
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9.3 Differential Equations Models

In the physical sciences, models of processes typically take the form of differ-
ential equations. Differential equations describe the relationships between the
value of a variable and its derivatives with respect to time. Thus, if there were a
proportional relationship between the value of a variable’s displacement from
equilibrium and its instantaneous slope, when displaced from equilibrium by
some exogenous force, the variable would return to equilibrium with a trajec-
tory that was exponential in shape. This is the differential equation form of a
model also known as theproportional change model(see McArdle & Ham-
agami, this volume) and in a discrete time form is the autoregressive model
with fixed coefficients over time.

One benefit to fitting differential equations models accrues in compari-
son with growth curve models (e.g. McArdle & Epstein, 1987). One way of
thinking of growth curve models is that they estimate a single best aggregate
trajectory for a differential equations model. Since each trajectory has its own
set of initial conditions, this implies that a growth curve model is estimating
a single best set of parameters as well as a single best set of initial condi-
tions. A growth curve approach is useful if one is interested in finding this
best trajectory (growth curve) and if the initial conditions for each individ-
ual are in relation to a reference time with a meaningful zero (such as date of
birth) that can be meaningfully compared across individuals. However, when
there is no reference time that can be used to equate individuals with respect to
the dynamic of the system of interest, growth curves can confound individual
differences in initial conditions with individual differences in the parameters
for the curves (see for examples Boker & Bisconti, in press). Fitting lagged
state space models bypasses this problem since initial conditions need not be
estimated. Examples of state space methods include the method proposed in
this chapter, discrete time models (e.g. Jones, 1993), forms of dynamic factor
analysis (e.g. Molenaar, 1985), or stochastic differential equations (e.g. Oud
& Jansen, 2000). In these models individual differences in initial conditions
are not confounded with individual differences in the dynamics of the behavior
since time is only treated as relative to other measurements. Thus state space
models have a distinct advantage when the initial conditions may be due to un-
known exogenous influences: a participant in a study may have an essentially
random state when he or she begins an experimental protocol, but changes in
behavior during the protocol may be reliable (see for a more complete discus-
sion of this so–calledphase problemBoker & Nesselroade, 2002).

For the purposes of this chapter, we will consider one of the simplest dif-
ferential equations: the damped linear oscillator. Many other examples of this
differential equations models exist (see e.g. for introductions Hubbard & West,
1991; Thompson & Stewart, 1986). Suppose there exists a latent variableF
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with a particular form of intrinsic dynamics such that at every timet

F̈ = ζḞ + ηF + eF (1)

where the residualeF is normally distributed with mean zero. Further suppose
that the latent variable exhibits a factor structure such that

xij = 1Fij + uxij (2)

yij = aFij + uyij

zij = bFij + uzij

wherex, y, andz are manifest indicators ofF measured on individuali at
occasionj, 1, a, andb are the factor loadings, andux, uy, anduz are the
corresponding uniquenesses. The factor loading forx is constrained to be 1
in order to identify the scale of the latent variableF . In this way, we have
defined a factor whose score changes over time such that it obeys the intrinsic
dynamic characteristic of a damped linear oscillator. The two parametersη
andζ have useful meanings. The parameterη is proportional to the square of
the frequencyω of oscillation such thatη = −(2πω)2. The parameterζ is the
damping parameter and whenζ is negative, it is similar to the “friction” of a
swinging pendulum. Whenζ is positive, it amplifies change in the system such
that small perturbances at any given time tend to lead to larger changes later.

Figure 9.3 plots six possible trajectories that all conform to Equation 1, but
which have differences in their values ofη andζ. The graphs in each row of
Figure 9.3 have the same value ofη but different values ofζ. The graphs in
each column of Figure 9.3 have the same value ofζ but different values ofη.
The top row has a value ofη that is closer to zero than the bottom row and thus
the top row exhibits slower oscillations than the bottom row of graphs. In the
leftmost columnζ = 0, the value ofζ is a small negative number in the middle
column, and a larger negative number in the rightmost column.

Of course factor scores are unobservable, so we are not able to estimate
individual trajectories. We do not wish to estimate some optimum aggregate
trajectory of these factor scores since that implies an estimation of the unob-
servable initial conditions of the trajectory. Instead, we wish to estimate the
parameters of Equation 1, which are functions of the covariances between the
factor and its derivatives. To do so, we will take advantage of the fact that co-
variances between latent variables can be estimated even when the latent scores
themselves are unknown.

In the next section, we will place this method in context by first present-
ing a brief discussion of a two–step univariate manifest variable method called
Local Linear Approximation (LLA). We will next extend that to the case of a
Univariate Latent Differential Equation (ULDE). We will then present the Mul-
tivariate Latent Differential Equation (MLDE) model that can simultaneously
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Figure 9.3. Six example trajectories for the latent variableF that conform to Equation 1.
Trajectories (a) and (d) have slow and fast frequencies respectively, but have no damping, i.e. are
“frictionless”. Trajectories (b) and (e) have slow and fast frequencies with moderate damping.
Trajectories (c) and (f) have slow and fast frequencies with high damping.

estimate the parameters from Equations 1 and 2. Results of a simulation test-
ing the viability of the MLDE model for estimation of parameters of a known
system will be presented. A second simulation will test whether the MLDE
model will give an answer that is incorrect when presented with factors that
have no time deterministic structure (as in Figure 9.2–B). Finally, we will dis-
cuss potential applications of this method to more complex coupled systems
and nonlinear models.

9.4 Local Linear Approximation

One approach to estimating the intrinsic dynamics of a psychological process
is to first estimate the derivatives of the process for each occasion of measure-
ment and then fit either a regression model (Boker & Nesselroade, 2002), a
structural model (Boker, 2001), or multilevel model (Boker & Ghisletta, 2001)
to those resulting variables. This approach has advantages and disadvantages.
The two main advantages to estimating derivatives prior to estimating the dy-
namical parameters of a system are a great degree of flexibility in specifying
the structure of the differential equation model and being able to use a wide
variety of off–the–shelf estimation procedures. One method for estimating
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derivatives from manifest variable processes is Local Linear Approximation
(LLA).

LLA assumes that the process can be approximated linearly over short
intervals of time and that the derivatives at a timet can be estimated from
measurements occuring within some small intervalτ of the chosen timet. First
the slopes between measurements at timet − τ andt + τ are calculated and
then the estimates of the first and second derivatives at timet are given by the
average of these two slopes and the change in these two slopes respectively.
This simple–minded estimation of the derivatives can do remarkably well in
estimating dynamical parameters.

While LLA has the advantage of using only three occasions of measure-
ment to estimate the derivatives, it can prove to have biased estimates of the dy-
namical parameters when the intervalτ is not optimal (Boker & Nesselroade,
2002). In addition, measurement error can masquerade as high frequency sig-
nal. While there are indications that there may be solutions to these technical
problems, LLA is at the core a manifest variable method. If one is interested
in the dynamics of a variable for which a score cannot be directly observed,
then LLA is inappropriate. In this case we would wish to have a measurement
model for such a latent construct.

9.5 Univariate Latent Differential Equation Model

There are two ways that measurement models are commonly constructed, ei-
ther across variables as in a factor model or across time as in a latent growth
curve model. We will start by building a measurement model across time, but
with some differences from the standard growth curve approach. In most com-
mon forms of latent growth curve modeling, one allows one or more degrees of
freedom in the loadings for each latent curve variable and also allows the latent
variables to freely covary. In the latent differential equation approach, we allow
no degrees of freedom in the loadings for the latent variables, constraining the
loadings in such a way that the latent variables are estimates of the derivatives
of the time series. This part of the approach is similar to Savitzky–Golay fil-
tering (Savitzky & Golay, 1964). Then, we use the covariances between these
latent derivatives to estimate regression parameters between them.

Suppose that we have measured a variablex at four equally spaced occa-
sions separated by an interval of timeτ on a sample ofN subjects resulting in
anN × 4 data matrixX. Now consider the three matricesL , A, andS defined
in Equations 3, 4, and 5 below. A loading matrixL is constructed such that
it will estimate the value ofx, its first derivative, and second derivative at the
time midway between the second and third occasions of measurement.
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L =


1 −1.5τ (−1.5τ)2/2
1 −0.5τ (−0.5τ)2/2
1 0.5τ (0.5τ)2/2
1 1.5τ (1.5τ)2/2

 (3)

The matrixL is similar to a growth curve loading matrix in that the first col-
umn estimates an intercept. Thus the first column ofL identifies a latent vari-
able which takes on a value for each row vector of values{xi1, xi2, xi3, xi4}
wherei is a row in the data matrixX. We won’t directly observe this latent
variable, but will estimate its covariances with other latent variables.

The second column estimates a slope such that the value of the intercept
occurs midway between the second and third occasions and the time scale of
the slope is the interval of timeτ between occasions. The value of the latent
variable identified by the second column is then an estimate of the first deriva-
tive of each row of the data matrixX evaluated midway between the second
and third columns.

The third column estimates a quadratic curvature in a latent variable that
is scaled byτ and also scaled by1/2. This latent variable takes on a value for
each row in the data matrixX that is an estimate of the second derivative of that
row at a time midway between the second and third occasions of measurement.

To understand why the loadings are constructed in this way, note that each
column is the indefinite integral of the column to its left and centered around
the middle time. Thus since

∫
1dτ = τ and

∫
τdτ = τ2/2, we can construct

an estimate of the first and second derivatives using these weights.
Then, the covariance structure between the latent variables is defined using

McArdle and McDonald’s RAM notation (McArdle & McDonald, 1984).

A =

 0 0 0
0 0 0
η ζ 0

 (4)

S =

 VF CFdF 0
CFdF VdF 0

0 0 Vd2F

 (5)

U =


Vux1 0 0 0

0 Vux2 0 0
0 0 Vux3 0
0 0 0 Vux4

 (6)

The error structure can then be defined in the matrixU as shown in Equa-
tion 6. In this case we are assuming independent error of measurement. Now,
we can calculate the expected covariancesR̂ between the observed variablex
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at the four occasions of measurement using the matrix expression shown in
Equation 7.

R̂ = L(I − A)−1S(I − A)−1′
L ′ + U (7)

This model may then be fit using a structural modeling program such
as Mx (Neale, Boker, Xie, & Maes, 1999). An Mx script for fitting this
model as well as the multivariate case can be downloaded from the web at
http://www.nd.edu/~sboker.

x1 x3x2 x4

ux1 ux2 ux3 ux4

1111

F dF d2F

1 1
1 1 -1.5-.5 .5

1.5 1.125
.125
.125
1.125

ζ

η
Vd2FVF

Vux1 Vux2 Vux3 Vux4

VdF

Figure 9.4. Path diagram of a Univariate Latent Differential Equation (ULDE) Model.

A path diagram of the example ULDE model using RAM diagrammatic
conventions (McArdle & Boker, 1990; Boker, McArdle, & Neale 2002) is pre-
sented in Figure 9.4. Note that with four occasions of measurement, this model
is just identified, so the predicted covariance matrix can always exactly repro-
duce the observed covariance matrix. If one has five or more occasions of
measurement, the ULDE model can provide a fit statistic estimating how well
the dynamics of the process are fit by the model. However, note that at the
latent variable level, the example damped linear oscillator differential model is
saturated. Thus, there is no opportunity for misfit in this model at the latent
variable level. Observed misfit in this example can only be at the measurement



102 Steven Boker, Michael Neale and Joseph Rausch

level. However, one might test whether either one or both of the parametersη
andζ are zero by fitting a model without them and testing the difference in fit
between that and the latent variable saturated model.

If one has very many occasions of measurement on one variable and one
individual, the ULDE method may still be used. The univariate time series
may be embedded into a 4 or 5 dimensional space using the method of state
space embedding (Sauer, Yorke, & Casdagli, 1991; Takens, 1985; Whitney,
1936) to create a lagged covariance matrix across a chosen intervalτ . Further-
more, if one has many observations on many individuals, one might create an
individual–identified state space embedding data matrix and fit a ULDE model
using the raw scores so that individual differences in differential equations pa-
rameters might be estimated.

9.6 Multivariate Latent Differential Equation Model

We next consider the case where a measurement model for a latent variable is
indicated both across manifest variables within time as well as within manifest
variables across time. In the case of a single occasion of measurement, a mea-
surement model for a latent variable is frequently constructed across variables
as a confirmatory factor model. We present a model in which a confirmatory
factor model holds within any single occasion of measurement and covariance
between indicators across time is accounted for by the intrinsic dynamics of
the latent variable: the differential equations model at the level of the latent
structure.

Suppose we have observed three manifest variables at four occasions. This
is the minimum number of variables and occasions that will allow the Mul-
tivariate Latent Differential Equation (MLDE) model to be identified both
within occasion and across indicators as well as within indicator and across
time. We now build a data matrix such that the first four columns are the four
occasions of measurement for the first indicator, the next four columns are
the four occasions of measurement for the second indicator and the last four
columns are the four occasions of measurement for the third indicator. Thus
one row of the data matrix would be

{xi1, xi2, xi3, xi4, yi1, yi2, yi3, yi4, zi1, zi2, zi3, zi4} (8)

wherexi1 is the first occasion of measurement for the first indicator for theith
row of the data matrix.

Now the predicted covariance matrix of these indicators can be calculated
from the four matricesL , A, S, andU. The first four rows of the loading matrix
L shown in Equation 9 are constructed as before with three columns using the
fixed intervalτ . The second set of four rows are the same, but are weighted
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by an estimated parametera that is the factor loading for the variabley on
the latent variableF . Similarly the third set of four rows are weighted by an
estimated parameterb.

The structure of the covariance between the latent variable and its latent
derivatives is defined using the matricesA andS shown in Equations 10 and
11. The example structure is again the second order linear differential equation
defining a damped linear oscillator. This is by no means the only dynamical
system that can be estimated using the MLDE approach. In fact, one of the
principal advantages of this approach is that the model at the latent level is
easily and flexibly specified and estimated for more than one factor.

L =



1 −1.5τ (−1.5τ)2/2
1 −0.5τ (−0.5τ)2/2
1 0.5τ (0.5τ)2/2
1 1.5τ (1.5τ)2/2
a a(−1.5τ) a(−1.5τ)2/2
a a(−0.5τ) a(−0.5τ)2/2
a a(0.5τ) a(0.5τ)2/2
a a(1.5τ) a(1.5τ)2/2
b b(−1.5τ) b(−1.5τ)2/2
b b(−0.5τ) b(−0.5τ)2/2
b b(0.5τ) b(0.5τ)2/2
b b(1.5τ) b(1.5τ)2/2



(9)

A =

 0 0 0
0 0 0
η ζ 0

 (10)

S =

 VF CFdF 0
CFdF VdF 0

0 0 Vd2F

 (11)

We can now fit the model using a structural equations modeling package
such as Mx. The predicted covariance of this model can be calculated in the
same way as for the ULDE model as shown in Equation 12.

R̂ = L(I − A)−1S(I − A)−1′
L ′ + U (12)

In this example, the matrix of unique variancesU is specified as a diagonal
matrix of free parameters, thereby constraining all of the common variance be-
tween indicators within and across time to be accounted for by the differential
equation relating the common factor and its derivatives. Note that while this is
the minimum number of indicators required to identify a single factor within
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time across indicators and the minimum number of occasions to identify the
model within indicator across time, there are many more degrees of freedom in
the covariance matrix of indicators than there are estimated parameters. This
is a strong test of the dynamics of a latent variable. But note that at the la-
tent variable level, this example model is fully saturated and it is only in the
measurement model that we have a potential for misfit to the data. Thus, if
we observe substantial misfit, we might consider other more complicated rela-
tionships such as across–time factors unique to each indicator. Such a model
would suggest that there was both a common dynamic to all of the indicators
and a separate dynamic within each indicator.
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Figure 9.5. Path diagram of the example Multivariate Latent Differential Equation (MLDE)
model with three indicators observed at four occasions and the latent differential structure mod-
eled as a damped linear oscillator.

A path diagrammatic representation of this example MLDE model is pre-
sented in Figure 9.5. Again, we have used the RAM diagramming conventions
for representing factor and unique variances. There are many ways in which
this model might usefully be extended. For instance, we could use more indica-
tors to gain a better estimate of the common factor. We might find that a single
factor was insufficient to fit the measured variables. Two or more factors might
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have independent dynamics, or might be coupled over time. A second way this
model might be extended is that we might have more occasions of measure-
ment and find that higher order derivatives were required to fit the observed
dynamics of the indicators.

This model may also be fit to data comprised of many occasions of mea-
surement on a single individual using the state space embedding method for
building a lagged data matrix as mentioned in the previous section. Or one
might have multiple indicators and many occasions of measurement on many
individuals. In this case a multiple group full information maximum likelihood
approach could be used that would allow each individual to take on individual
dynamical parameters while loading constraints force metric factor invariance
of the measurement model across individuals.

9.7 Simulation of Multivariate Oscillators

In order to test the efficacy of the MLDE modeling procedure, two simula-
tions were implemented. The first simulation tested the behavior of the MLDE
model under a variety of parameter conditions and sampling intervals. The
simulated data was calculated using Mathematica (Wolfram Research, 2002)
using Runge–Kuttah fourth order numerical integration. We simulated data
using the damped linear oscillator model from Equation 1. We created 90 in-
stances of the damped linear oscillator each with oneη parameter chosen from
a set of 10 conditions,

η = {−0.2,−0.6,−1.0,−1.4,−1.8,−2.2,−2.6,−3.0,−3.4,−3.8} ,

oneζ parameter chosen from a set of 9 conditions,

ζ = {−0.04,−0.03,−0.02,−0.01, 0.00, 0.01, 0.02, 0.03, 0.04} ,

and then numerically integrated the resulting differential equation to produce
10,000 observations of the oscillator. The integration step was chosen to be
small (0.05) so that a wide range of simulated intervals between occasions of
measurement could be tested.

Thus, for any chosen combination ofη andζ there was a vector of 10,000
“true scores” from a damped linear oscillator. A sampling interval,τ was
chosen from the set of integers from 1 to 16. Then an instance of a 300 indi-
viduals by 24 observations simulated data matrix was constructed as follows.
The ith row of the simulated data matrix was calculated from a sample “in-
dividual” set of 4 true scores{Fiti , Fi(ti+τ), Fi(ti+2τ), Fi(ti+3τ)} drawn from
the selected damped linear oscillator vector where the index of the first oc-
casionti was a pseudorandom number uniformly distributed on the interval
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{1 . . . 1500}. Next, six indicator scores were generated for each true scoreFik

wherek is an element of the set{ti, ti + τ, ti + 2τ, ti + 3τ}.

xi1k = 1.0Fik + 0.625ui1k (13)

xi2k = 0.5Fik + 0.825ui2k

xi3k = 0.4Fik + 0.500ui3k

xi4k = 0.7Fik + 1.125ui4k

xi5k = 0.6Fik + 0.750ui5k

xi6k = 0.3Fik + 1.000ui6k

whereuijk is a pseudorandom number drawn from a normal distribution with
zero mean and unit variance. The communalities of these observed scores
depended on the variance ofF , and thus on the sampling intervalτ and on the
selected combination ofη andζ from the true score vector.

In this way, 10 data matrices were generated for each combination ofη,
ζ andτ , resulting in a total of 14,400 data matrices. An MLDE model with
6 indicators, 4 occasions and a latent differential structure of a damped lin-
ear oscillator were fit to each of these data matrices using Mx. Results were
aggregated over the 10 replications within eachη × ζ × τ condition cell.

The factor loadings from Equation 13 were recovered well when the model
fit the simulated data reasonably well. There were some conditions ofη andτ
that violated the Nyquist limit (see e.g. for an introduction Hamming 1977) for
our four occasion samples and thus models fit to those data matrices performed
extremely poorly if they converged at all.

Figure 9.6 presents the results of fitting the MLDE model to all conditions
of η andτ whenζ = 0. This is the condition where there is no damping, i.e.
similar to a frictionless pendulum. As can be seen in Figures 9.6–a and –b,
there is a reasonably good correspondence between the true value ofη and the
mean estimated value ofη except when large values ofτ are combined with
large negative values ofη (seen as the “cliff” on the right side of the graph). In
fact, when the value ofτ is such that4τ are greater than one half the period of
the oscillation, the model does not fit. This is exactly the Nyquist limit which
states that the sampling interval must be less than one half the period of the
oscillation one wishes to estimate.

The mean bias in estimation ofη is plotted in Figure 9.6–c. The bias is
low except near the Nyquist limit and when the sampling interval is short. The
median bias as a percentage of the true value ofη over all cells that did not
violate the Nyquist limit was 6.2%. This small positive bias was primarily due
to cases approaching the Nyquist limit but which were not formal violations.
When the sampling interval is short there is little change in the true score in
comparison with the added measurement error. Thus, the communalities of the
observed scores are quite low in this combination of conditions, resulting in
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Figure 9.6. Results of fitting an MLDE model forζ = 0 over all conditions ofη andτ . (a) The
mean estimated value ofη versusτ and the true value ofη. (b) The true value ofη versusτ and
the true value ofη. (c) Mean bias of estimation (Figure a minus Figure b). (d) The likelihood
ratio fit function (χ2).

highly variable estimates ofη. Figure 9.6–d plots the mean likelihood ratio fit
statistic (χ2) over the 10 replications in each condition cell. Note that the fit
statistic does a good job of flagging bias due to the Nyquist limit. Of course
in real data, one does not know where this limit might be and thus having the
χ2 as a diagnostic is useful. Unfortunately, theχ2 does not help in recognizing
low communalities, but communalities can be estimated in other ways, so this
is not problematic.

Figure 9.7 presents the results of the simulation for a chosen value ofη =
−.06, the slowest frequency shown in Figure 9.6. For values ofτ > 8, the
estimated value ofζ is a reasonably good approximation of the true value ofζ,
exhibiting low bias, although the variability of estimation is higher than for that
of η. However, for values ofτ < 8, the estimated value ofζ shows very high
variability. Again, for small values ofτ , with a very small time step constant
(0.05) in the numerical integration used for the simulation, there will be little
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Figure 9.7. Results of fitting an MLDE model forη = −0.6 over all conditions ofζ andτ .
(a) The mean estimated value ofζ versusτ and the true value ofζ. (b) The true value ofζ
versusτ and the true value ofζ. (c) Mean bias of estimation (Figure a minus Figure b). (d) The
likelihood ratio fit function (χ2).

variance in the derivatives in comparison with the added measurement error.
Thus with low communalities, it is not unexpected that the standard error of
estimation ofζ will be large whenτ is small.

9.8 Simulation with No Time Dependence

In discussing Figure 9.2 we suggested that a useful method would need to be
able to distinguish random fluctuations in a score from fluctuations due to a
self–regulatory process. The reason this can be problematic can be understood
by considering Figure 9.2–b in which all observations are independent draws
from a normal distribution. Suppose one drew an extreme observation at the
second occasion. The expected value of the first and third observation given
the extreme value are still zero. Thus, the more extreme the value of the second
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occasion, the greater the expected “bend” at the second occasion. Thus there
is a built–in correlation between the second derivative at the second occasion
and the value of the variable at that occasion. In fact, using Local Linear
Approximation, there is a calculated correlation of -0.8 between the value of
the variable and its estimated second derivative. This is why it is difficult to
distinguish between the cases in Figures 9.2–a and 9.2–b.

We simulated a vector of factor scores as independent draws from a normal
distribution and repeated the simulation experiment described above. There
was an immediately obvious difference between the results of this simulation
and the simulation with a true linear oscillator generating the factor scores. The
values of theχ2 fit function for the case with no time dependence in the factors
were on average approximately 50 times larger than the fit function values of
for the simulation with true linear oscillation.

In the first simulation, maximumχ2 fit function value for the true linear
oscillator across all conditions was 335 whenτ was small enough that the 4
occasions were within the Nyquist limit. Even when Nyquist limit violations
are included, the maximumχ2 value was 1699 for the true linear oscillator
data.

By contrast, the minimum value ofχ2 in the case in which the factor scores
were independent across time was 10,294 (160 simulated data sets). In every
one of the simulated data sets with no time dependence, the linear oscillator
was clearly rejected by the value of the fit function. It should be noted that the
within occasion factor loadings were, in almost every case, correctly calculated
for the time independent data. Thus it was not simply that the models did not
converge correctly for the time independent data.

9.9 Discussion

Data sets were simulated that mimicked an experimental design in which 300
independent individuals were measured on six indicator variables on four oc-
casions separated by equal intervals of time. All individuals in each simu-
lated data set had a single factor that had an intrinsic dynamic in accord with
a damped linear oscillator differential equation model with fixed parameters.
Independent identically distributed measurement error was added to each ob-
servation. The MLDE model was able to simultaneously recover low bias es-
timates of the factor loadings and differential equations parameters if the total
interval between the first and last observation was(a) smaller than the Nyquist
limit of one half the period of the true oscillation and (b) large enough that the
communalities of the indicators was greater than 0.5. The MLDE method ap-
pears to be much less sensitive to measurement interval than other methods for
direct estimation of differential equations parameters from derivatives explored
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by the authors (Boker & Nesselroade, 2002; Boker, 1999). This means that the
MLDE method does not require more than a gross estimate of the period of
any hypothesized cyclicity in the process under analysis.

In addition, the inclusion of a measurement model opens up a variety of
possibilities for extensions to the model. For instance, many longitudinal de-
signs are not equal interval. If all subjects are measured on the same schedule,
the time intervalτ used in the matrixL can take on appropriate values for each
row so that estimates of the covariance between latent derivatives can still be
obtained and thus the covariance between their derivatives can still be obtained.
This applies even when some indicators are measured on a different schedule
than others as long as there is a centering time around which all observations
can be synchronized. This could be very useful when attempting to estimate
the latent dynamic structure of a variable measured, for instance, with pencil
and paper as well as physiological instruments. Physiological measures are
likely to be observed much more frequently than questionnaire or psychome-
tric measures. Being able to correct for these time scale differences is critical
to estimating coupling between psychological and physiological measures.

A further extension of the model could use latent indicators for missing ob-
servations (as in e.g. McArdle & Hamagami, 1992). When many observations
are available on each individual (or pre–defined group), it is possible to build
a multigroup model where each individual’s (or group’s) dynamic parameters
could be estimated while constraints on factor invariance were maintained.

9.10 Weaknesses

There are several weaknesses of the LDE methods. First, the data require-
ments are substantial. One must have measured several variables on many
occasions on many individuals in order to both estimate within and between
individual parameters. The model as presented here also requires that the pro-
cess be stationary, that is, the estimated parameters may not change over time.
A windowed extension to this method (perhaps along the lines of Boker, XU,
Rotondo, & King, 2001) may be able to relax the stationarity requirement.

The chosen interval between occasions of measurement must be short
enough so that at least 8 observations can occur within a single period of oscil-
lation when the latent structure includes a second derivative. This means that
a process must be measured relatively often in comparison with its period of
fluctuation.

Finally, when the rows of the lagged data matrix are not independent ob-
servations, that is when single individuals may contribute more than one row to
the lagged data matrix, the standard errors for the dynamic parameters calcu-
lated by maximum likelihood will be smaller than the true variability in these
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Figure 9.8. Path diagram of a multivariate latent differential equations model with two coupled
latent variables.

parameters. Resampling by blocks may be one solution, but as far as is known
to the authors, this is still an open problem.

9.11 Future Directions

While adding a multivariate measurement model to direct differential equa-
tions estimation has benefits in and of itself, the main benefit foreseen by the
authors is extension to dynamical systems with multiple factors and coupling
between factors. As a first step in this direction, consider the model shown in
the path diagram in Figure 9.8.

Here, two latent variables each have a separate dynamic structure and each
of them influences the dynamic of the other. At the latent level, this is a system
of two second order differential equations. Each latent variable has its own set
of indicators and these indicators need not be measured at the same intervals
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as long as there is a synchronizing timet that is the same at the center of each
group of observations. This type of model could easily be extended to systems
of three or more (possibly nonlinear) differential equations.

Finally, we see promise for the MLDE method to be applied to behavioral
genetics data. A reasonable hypothesis might be that a dynamical process has
both additive genetic as well as environmental influences. The MLDE method
seems likely to be able to be adapted to estimate these influences. Sibling inter-
action may possibly be constructively modeled using coupled systems similar
to the coupled oscillator shown in Figure 9.8.

If one is attempting to design experiments that can take advantage of meth-
ods in dynamical systems modeling, we have the following recommendations.
It goes without saying that you should measure as often as you can afford, ob-
tain as many occasions per individual as you can afford, and measure as many
individuals as you can afford. When budgets are limited, trade–offs must be
made. The absolute minimum number of occasions per individual is four in
order to use an ULDE or MLDE model. But if at all possible try to obtain ten
so that you will have access to more options and better parameter stability. In
this case you will still be making an assumption that all individuals’ dynamic
parameters are equal. If you wish to relax that assumption you will need a
minimum of around 30 observations per individual and will have much better
power with 100 observations per individual. In order to get stable estimates
of the factor loadings, you will need at least 300 quadruples of measurements.
This sounds forbidding, but remember that this needn’t be 300 individuals if
you have many quadruples of observations from each individual. Finally, it
is extremely important to remember that if you expect cyclicity in your data
you must measure often enough that the interval between the first and last ob-
servation in a quadruple of occasions is less than one half the period of the
cycle.
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