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Cross-correlation and most other longitudinal analyses assume that the association
between 2 variables is stationary. Thus, a sample of occasions of measurement is
expected to be representative of the association between variables regardless of the
time of onset or number of occasions in the sample. The authors propose a method
to analyze the association between 2 variables when the assumption of stationarity
may not be warranted. The method results in estimates of both the strength of peak
association and the time lag when the peak association occurred for a range of
starting values of elapsed time from the beginning of an experiment.

Many psychological experiments involve data that
are composed of multiple observations of the same
variable over time. These data may be only a few
waves of data in a panel study, from tens to hundreds
of observations in a self-report journaling study, or as
many as tens of thousands of observations per vari-

able in psychophysiological time series such as elec-
troencephalogram (EEG), electrocardiogram (EKG),
or motion capture studies. In most cases, multiple
variables are being observed (or as it is sometimes
expressed in the time series literature, sampled) at
each occasion of measurement. The data for which the
methods in this article are appropriate include at least
100 occasions of measurement on at least two vari-
ables for 1 or more participants. Although data with
fewer occasions of measurement could be used, the
method’s usefulness would be reduced. The methods
we propose use Pearson product–moment correlations
to estimate bivariate relationships between continuous
variables. In addition, the algorithms presented here
are specific to data that have equal intervals of time
between observations, although in principle they
could be adapted to unequal intervals.

The reason multiple occasions of measurement are
included in a research design is generally because one
wishes to understand not only the relationship be-
tween multiple variables at the same moment in time
but also the relationships between these variables as
they change over time. Thus the relationship between
variables observed at the same occasion of measure-
ment may only be part of the story. Variables ob-
served at different occasions of measurement may
also be related to one another. These relationships
between variables may have different strengths de-
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pending on the interval of time separating the mea-
surements. The structure of the way that this relation-
ship between variables changes as the interval
between occasions of measurement changes can be an
extremely informative diagnostic as to the nature of
the underlying processes that gave rise to the data.

A number of methods are in common use to model
these relationships between multiple variables at mul-
tiple occasions of measurement. These methods in-
clude autocorrelation and cross-correlation, autore-
gressive and cross-lagged structural models (see, e.g.,
Cook, Dintzer, & Mark, 1980; West & Hepworth,
1991), multivariate time series methods such as au-
toregressive moving average models (see, e.g., Box,
Jenkins, & Reinsel, 1994), cross-spectral or coherence
analysis (Bloomfield, 1976; Warner, 1998), P-
technique factor analysis (e.g., Nesselroade & Ford,
1985), dynamic factor analysis (Molenaar, 1985),
various structural equation model variants proposed
by McArdle and colleagues (e.g., Hamagami,
McArdle, & Cohen, 2000), and nonlinear methods
such as mutual information (Abarbanel, 1996; Boker,
Schreiber, Pompe, & Bertenthal, 1998). Each of these
methods are related in that they all estimate some set
of linear or nonlinear relations between observations
separated by intervals of time while assuming that this
structure remains constant over time. This assumption
of constant relations over time boils down to an as-
sumption known as stationarity (for discussions of
stationarity and nonstationarity, see Hendry &
Juselius, 2000; Shao & Chen, 1987). In order for a
process to be stationary (formally known as weak sta-
tionarity) for any starting time, t, the expected value
of the means, standard deviations, autocorrelations,
frequency spectra, and cross-correlations of a sample
from the process must be equal to the corresponding
population values (Box et al., 1994; Ito, 1993). In
other words, an assumption of stationarity implies that
a set of statistical properties is assumed to hold across
the entire length of time during which the psychologi-
cal process was under observation.

With any simplifying assumption there are positive
and negative consequences. There are two main ben-
efits in assuming that a multivariate time series is
stationary. The first is that one may conclude that any
particular collection of occasions of measurement is
representative of the whole behavior. Closely related,
one may also conclude that all occasions of measure-
ment separated by some time interval, s, have a rela-
tionship that has an expected value that does not
change over the occasions of measurement in the ex-

periment. Thus, by assuming stationarity and making
distribution assumptions, one may calculate means,
covariances, regressions, and standard errors that may
be concluded to be estimates of characteristics of the
behavior as a whole.

Although these positive consequences might seem
to provide arguments in favor of making an assump-
tion of stationarity, it can be dangerous to make as-
sumptions concerning data based on the convenience
or power of a statistical method. Sometimes the as-
sumption of stationarity is untenable. Traditional time
series analyses use methods to remove nonstationarity
so that the remaining stationary process can be ana-
lyzed, a process sometimes known as prewhitening
the time series data (see, e.g., West & Hepworth,
1991). For instance, bivariate time series analysis will
typically remove co-occurring trends and cycles in
order to examine the time-lagged relationship of the
residuals of the two time series. However, not only are
many interesting behavioral phenomena inherently
nonstationary but the very reason that they are inter-
esting lies in the nature of that nonstationarity. One
phenomenon of wide interest to behavioral research-
ers is human communication in its various forms, in-
cluding face-to-face verbal conversation, nonverbal
cues in conversation, written language, and music
production and perception. It is our contention that the
process of human communication is an excellent ex-
ample of when understanding nonstationarity may be
essential to understanding a behavioral phenomenon.

As an example, consider one form of human com-
munication in which differing degrees of stationarity
can be conveniently observed: the production and per-
ception of music. If a musical composition were sta-
tionary, then there would be one function that, given
an interval of time s ms, would give the expected
value of the correlation between the level of air pres-
sure at any one moment in time and the level of the air
pressure s ms later. The logical consequence is that
this musical composition would be composed of a
single repeated waveform: essentially a single phrase
played repeatedly without end by some combination
of instruments.

Although there exist musical compositions that dis-
play this characteristic of unending repetition, most
musical compositions evolve over their span. And al-
though there may be nearly repeating themes in a
composition, new elements and relations between in-
struments tend to be added as the musical piece pro-
gresses. Humans do not tend to produce music that is
stationary. Musical compositions tend to contain both
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elements of predictability and elements of surprise
(Jones, 1993). Over short time spans one may observe
repetition of a phrase, but over longer time spans the
composition will tend to evolve in unexpected ways.

Similarly, an interesting conversation does not in-
volve endlessly repeated verbiage but contains both
redundancy and surprise. It has been long known that
over short time spans a listener may be able to predict
the next word a speaker will say, but over longer time
spans the words tend to be relatively unpredictable
(Aborn, Rubenstein, & Sterling, 1959). Researchers in
psycholinguistics, music perception, and auditory per-
ception have begun to realize that many of the rela-
tionships of interest in their data are nonstationary and
that the nature of that nonstationarity is a crucial topic
for analysis (see, e.g., Bregman, 1990; Gregson &
Harvey, 1992; Miller & Chomsky, 1963).

A related argument was advanced by Nesselroade
and Featherman (1991) as applied to life span devel-
opment. They suggested that the intraindividual vari-
ability of a construct over occasions of measurement
may be an important indicator in and of itself. For
instance, variability in trial-by-trial performance has
been used to help understand strategy learning in chil-
dren (Siegler & Jenkens, 1989). Inherent in this argu-
ment is the notion that there may be critical changes
in this variability, that is, nonstationarity, which may
be predictive of important outcomes. It is only a small
step from Nesselroade and Featherman’s position to
suggest that nonstationarity in multivariate time series
may itself prove to be a useful variable when address-
ing a variety of developmental questions.

In fact, the variability or nonstationarity of a vari-
able may indicate only part of the story. We propose
that there may be interesting patterns of variability in
the association between variables. One consequence
of this proposal is that variables may be nearly sta-
tionary in short durations, but much less so over
longer time spans. We use this idea of local station-
arity in order to quantify variability in association.

Variability in a measure of association such as cor-
relation may be important in order to understand, in
particular, how adaptable creatures such as ourselves
behave when the environment is also adapting to us.
In any interpersonal exchange, two or more individu-
als may be adapting to one another, and it therefore
might be expected that the association between the
individuals’ behavior would show a pattern of vari-
ability that would be indicative of the underlying
adaptive process.

The use of nonstationarity of association as a vari-

able in psychological research requires a method that
can quantify fluctuations in the relationships between
variables over time. We propose a composite method,
a few well-known steps and a simple algorithm, that
can be used to estimate time-varying changes in pat-
terns of bivariate predictability in a flexible manner.
We then apply the method to a data set from an ex-
periment in nonverbal communication in order to il-
lustrate its use in a real-world psychological context.

In order to create a method that would be able to
quantify variability of association, we identified three
criteria that had to be fulfilled. The first criterion is
that the method must be able to track changes in the
time lag and strength of association between the two
time series over the course of the experiment. Sup-
pose we measure two variables on multiple occasions
separated by equal intervals and resulting in two vec-
tors of observations X and Y. If an event in X occurs
before a similar event in Y, we might reason that the
event in X may have predicted the event in Y. But
later we may see an event in Y that appears to predict
a later event in X. Such changes in lag and strength of
maximum prediction can be indicative of an underly-
ing dynamic relationship between the constructs that
gave rise to the data in X and Y. The variance of the
time lag and variance of strength of association will
give estimates of two types of nonstationarity in the
bivariate time series.

Second, within some set bounds the method should
estimate the interval of time between occasions of
measurement at which a maximum association be-
tween two time series occurs and the strength of that
association. The importance of finding a best lag of
association has been long recognized (e.g., Cattell,
1963). Often, one is only interested in the association
between events that are separated by no more than
some fixed bound (a few seconds, a few minutes, a
day, etc.), whereas events that occur outside this
bound are likely to be only spuriously related. Within
that bounded interval of time, there may be a lag
between an event that occurs in time series X and a
similar event that occurs in time series Y. The method
should give an estimate of the time lag between the
event in X and the event in Y as well as the strength
of association between the two events.

Finally, the method should be flexible with respect
to the inherent trade-off between the reliability of es-
timates of association between variables and the sen-
sitivity to changes in the estimates of association. As
more occasions of measurement are used to create an
aggregated estimate of association, longer durations
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of time will be aggregated. This will tend to lead to a
more accurate estimate of association from a statisti-
cal standpoint but will simultaneously reduce the sen-
sitivity needed to measure short-duration fluctuations
in a process. At the present time, we see no way
around this reliability–sensitivity trade-off other than
both decreasing the interval of time between occa-
sions of measurement and simultaneously increasing
the number of occasions. The optimal trade-off be-
tween sensitivity and reliability is likely to be differ-
ent for each experiment, because how quickly the pre-
dictive relationship between psychological processes
changes will be dependent on which processes are
being studied, and each individual experiment may
incorporate its own unique interval between occasions
of measurement. Thus, the method must allow flex-
ibility in assigning parameters that control the asso-
ciated reliability and sensitivity.

As an example, we examined the coordination be-
tween movements made by pairs of individuals en-
gaged in conversation. Facial expression, eye contact,
pupil dilation, posture, gesture, and interpersonal dis-
tance may potentially be considered as elements of
nonverbal communication. We tracked individuals’
hand and head motions during a 10-min conversation
and examined the association between the overall ve-
locity of 2 conversants’ head movements and between
the left hand of 1 conversant and the right hand of the
other. Previous work has indicated that the pattern of
association between 2 conversants’ movements can be
nonstationary (Rotondo & Boker, 2002). The example
conversational experiment tests the hypothesis that
auditory interference in the form of amplified traffic
noise with a loudness equivalent to that of a subway
train will change the structure of the coordination be-
tween 2 conversants’ movements. The proposed
method allows an estimate of the nonstationarity in
the conversants’ movements when noise is present as
opposed to when noise is absent.

Cross-Correlation

A common method for estimating the association
between events in two time series is cross-correlation,
the correlation between two time-varying stimuli or
events over time intervals that may or may not be
coincident. Essentially, a vector of sequential occa-
sions of measurement is selected from each time se-
ries such that both vectors contain the same number of
occasions, and then the Pearson product–moment cor-
relation is calculated for these two vectors. The vec-

tors may or may not begin at the same occasion of
measurement. The interval of time separating the be-
ginning occasion of measurement for the two vectors
is the lag or offset. A vector of sequential measure-
ments sampled from a time series is often called a
window.

Suppose we wish to cross-correlate two time series,
each containing N observations, X � {x1, x2, x3, . . . ,
xN} and Y � {y1, y2, y3, . . . , yN}, with equal intervals
of time, s, between observations. If we assume sta-
tionarity and choose a positive lag of � observations,
the cross-correlation between X and Y at a lag � is a
function r of X, Y, and � that can be defined as

r�X, Y, �� =
1

N − � �i=1

N−�
�xi − X� �yi+� − Y�

SD�X�SD�Y�
, (1)

where X̄ and Ȳ are the grand means and SD(X) and
SD(Y) are the standard deviations of X and Y, respec-
tively, over all occasions of measurement. This is
merely an ordinary Pearson correlation between the
two time series lagged by � observations (a time in-
terval corresponding to � times s, the sampling inter-
val).

Variations of cross-correlation similar to Equation
1 are commonly used in psychological research. For
instance, cross-correlation has been used in theories
of audition (e.g., Cherry, 1961; Licklider, 1959), of
motion perception (e.g., Reichardt, 1961; Santen &
Sperling, 1985), and of form detection and pattern
recognition (e.g., Dixon & Di Lolo, 1994; Dodwell,
1971; Glass & Switkes, 1976). Most researchers as-
sume the observed data come from stationary pro-
cesses, where means and variances are constant over
time. This yields mathematical tractability at the ex-
pense of possibly oversimplifying the model for the
process of interest.

We illustrate the use of cross-correlation with two
example data sets, each containing data recorded us-
ing motion-tracking equipment from the movements
of pairs of participants sampled at 80 Hz (80 occa-
sions of measurement per second). The first data set is
from 2 participants who were asked to dance while
mimicking each others’ movements, and the second
data set is from 2 participants engaged in conversa-
tion. We use these two examples of coordinated be-
havior because the dancing behavior should be rela-
tively stationary because of the repeating nature of the
synchronizing auditory stimulus to which the partici-
pants were asked to dance. The coordination of head
behavior from conversation has been found to exhibit
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a great deal of nonstationarity in previous work in our
lab (Rotondo, 2000).

In the first data set, 2 individuals are dancing with
one another while listening to a repeating rhythm.
Dancer A is instructed to lead, and Dancer B is in-
structed to follow Dancer A’s movements as closely
as possible. The movements that they make are likely
to be highly synchronized with each other as well as
being synchronized with the rhythm. Because the
rhythm is repeating, the dancers are synchronizing
with a stationary signal. Thus, we would expect that
there would be a stable pattern of cross-correlation
over the whole trial. A plot of the average cross-
correlation between the 2 dancers’ movements as cal-
culated using Equation 1 is shown in Figure 1a. There
is a high degree of association between the 2 dancers’
movements at synchrony and at ±1,600 ms. The
rhythm with which the dancers were synchronizing
repeated every 1,600 ms, so this suggests that the
dancers were making movements in time with this
rhythm such that their movements also tended to re-
peat with the same cycle. These data are largely in
conformance with an assumption of stationarity, so
the overall cross-correlational pattern is strong.

Now consider the coordination between head
movements produced as 2 individuals converse. It
seems likely that these movements might not occur at
exactly the same time. Sometimes Conversant A
would initiate a head movement that Conversant B
would respond to a short time later. Similarly, Con-
versant B may sometimes make a head movement that
Conversant A would later respond to. Thus the cor-
relation between lagged observations of position or

orientation might turn out to be greater than that be-
tween synchronous observations. However, some-
times the response may be in the same direction as the
stimulus, and sometimes it may be in the opposite
direction. Thus it might be that over short time scales
there could be a high degree of association, but, be-
cause of nonstationarity, overall there might be only
low values of cross-correlation. Figure 1b plots the
overall cross-correlation between the 2 conversants’
head movements. Only weak relationships are evi-
dent. This could mean that there really is not much
coordination in the conversation, or it could be that
there is short-term coordination along with nonsta-
tionarity. Standard methods that assume stationarity
cannot distinguish between these two possibilities.

Thus, although a single measure of cross-
correlation may give a good estimate of association
between two behavioral time series, it may not give an
estimate of the expected value of that association in
the same way as calculating a mean of numbers drawn
from a normal distribution. Instead, aggregating
across the whole time series when global stationarity
does not hold may be more akin to calculating the
mean of a multimodal distribution. In fact, there may
not be a stable expected value of association between
two behavioral time series. The examination of pat-
terns of change in the association between two time
series may be a legitimate area of inquiry in and of
itself. For this reason, we now consider a more tem-
porally detailed analysis that can be calculated using
many short cross-correlational windows in which the
starting time of windows of observations is incre-
mented or swept over the whole data set.

Figure 1. Overall lagged cross-correlations for (a) whole body movements of 2 individuals
dancing during a 40-s trial and (b) head movements of 2 individuals during a 5-min dyadic
conversation.
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Windowed Cross-Correlation

One way to examine how the strengths and lags of
association between two time series are changing over
time is to use only short intervals of data from each
time series to estimate the association and then select
these windows so that their starting points represent
increasing elapsed time from the beginning of the
experiment. This has the advantage of only making an
assumption of local stationarity rather than assuming
stationarity over the whole time series.

Using short, overlapping windows that cover the
time series results in a moving estimate of association
and lag that has to be calculated in a way that does not
favor one variable over another, because global sta-
tionarity is not assumed. Thus we must split the lags
and calculate the cross-correlation in the following
manner. Suppose we have two data vectors, each with
N observations, X � {x1, x2, x3, . . . , xN} and Y �
{y1, y2, y3, . . . , yN}, with equal intervals between ob-
servations of length s. Further suppose a window size
wmax, a time lag � on the integer interval −� max � �
� �max, and an elapsed time index i from the begin-
ning of the data vector. Note that for every �max there
will always be an odd number of integers in the in-
terval −� max � � � �max. For each i � {�max + 1, �max

+ 2, . . . , N − �max − wmax}, a pair of windows Wx and
Wy can be selected from the two data vectors X and
Y, respectively, as follows:

Wx = ��xi, xi+1, . . . , xi+wmax
� if � � 0

�xi−�, xi+1−�, . . . , xi+wmax−�� if � � 0� (2)

and

Wy = ��yi+�, yi+1+�, . . . , yi+wmax+�� if � � 0

�yi, yi+1, . . . , yi+wmax
� if � � 0�. (3)

Now the cross-correlation between the windows Wx
and Wy can be defined as

r�Wx, Wy� =

1

wmax
�
i=1

wmax �Wxi − ��Wx�� �Wyi − ��Wy��

SD�Wx�SD�Wy�
, (4)

where �(Wx) and �(Wy) are the means and SD(Wx)
and SD(Wy) are the standard deviations of the win-
dows Wx and Wy, respectively.

Note that the choice of which window is to be
lagged back in time from i, the original elapsed time
index into the data vectors X and Y, depends on

whether � is greater than or less than zero. When a
time series is nonstationary, not making this distinc-
tion can bias the overall value and lag of the correla-
tion. Thus, if the calculation were made in the same
way as in Equation 1, it could matter which variable
was assigned to X and which to Y. By selecting the
windows in the manner of Equations 2 and 3, we
guarantee a mirror symmetry such that the resulting
set of cross-correlations as � ranges from −�max to
+�max will contain the same values in reverse order
when the variables in X and Y are swapped.

To illustrate how the windows are chosen and re-
sults are stored, we present a simplified example in
Figure 2. In this example, a maximum lag of �max �
1 is chosen and the steps are displayed in which the
first four pairs of windows are selected from two data
vectors X and Y. At the bottom of the diagram is
displayed one method for storing the resulting corre-
lations between selected windows into a results ma-
trix. Windowed and lagged cross-correlation requires
four parameters to be selected by the researcher: win-
dow size (wmax), window increment (winc), maximum
lag (�max), and lag increment (�inc). In the simplified
illustration in Figure 2, window size is 6, window
increment is 2, maximum lag is 1, and lag increment

Figure 2. Four pairs of windows (Wx , Wy) selected from
two data vectors, X and Y. Results of correlating each pair
of windows are stored in the results matrix, whose columns
represent the relative lag of the two windows and whose
rows represent the starting time of the window selected
from X. t � index of occasion of measurement.
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is 1. The results matrix will have a number of columns
equal to (�max * 2) + 1 and number of rows equal to
the largest integer less than (N − wmax − �max)/winc.

Each of the parameter selections used in calculating
the matrix of windowed and lagged cross-correlations
has consequences with respect to the measures of re-
lation that are calculated and the degree to which the
results matrix is a summary rather than a recapitula-
tion of the data vectors. It is important to be guided in
the selection of these parameters by substantive
theory as well as an exploration of a set of pilot data.
In this way these parameters can then be fixed and
used to estimate windowed and lagged associations in
a second data set in a statistically testable manner.

The window size, wmax (the number of observations
in the data vectors Wx and Wy), should be chosen to
be small enough so that the assumption can be made
of little change in lead–lag relationship within the
number samples in the window. However, if the win-
dow size is too small, the reliability for the correlation
estimate for each sample will be reduced. Choosing
the window size involves confronting the reliability–
sensitivity trade-off discussed earlier. The analyst
should make this choice based on substantive and
theoretical considerations in order to optimize the
method for his or her particular data.

The window increment, winc, is the number of
samples between successive changes in the window
for the X vector as illustrated in Figure 2, c and d. The
window increment is therefore also the amount of
time that elapses between the correlations stored in
successive rows in the results matrix. If the window
increment is too short, there may be little change be-
tween successive rows in the results matrix, but if the
window increment is too long, there may be so much
change that successive rows in the results matrix will
appear to be unrelated. Short window increments also
lead to large numbers of rows in the results matrix.
Thus one wishes to choose a window increment as
long as possible, but not so long that the relation
between successive rows in the results matrix is lost.

The maximum lag, �max, is the maximum interval
of time that separates the beginning of the two win-
dows selected from their respective data vectors. The
greater the maximum lag, the greater the interval of
time that can separate behaviors for which estimates
of coordination can be obtained. However, large
maximum lags will tend to lead to large numbers of
columns in the results matrix. It is thus up to the
researcher to select the greatest interval of time sepa-
rating a behavior from participant X and a behavior

from participant Y that would be considered to be of
interest.

The lag increment, �inc, is the number of samples
between successive changes in the window for the Y
vector as shown by the difference between columns a
and b in Figure 2. The lag increment is thus also the
interval of time separating successive columns in the
results matrix. Short lag increments lead to little
change between successive columns in the results ma-
trix, whereas long lag increments lead to apparently
unrelated successive columns. The shorter the lag in-
crements, the more columns there will be in the re-
sults matrix. Thus, a good choice of lag increments
will be the longest lag increment that still results in
related change between successive columns. In this
way the size of the results matrix can be minimized
while patterns in change in the lead–lag structure of
the coordination of the conversants can still be exam-
ined.

An implementation written in portable C code of
the windowed lagged cross-correlation algorithm is
available on the Web: http://www.nd.edu/∼sboker.
The code can be compiled for MS-DOS, Apple OS X,
or most flavors of Unix. It inputs an ASCII text file
with two columns of data, outputs a results matrix as
shown above, and includes command line options to
control all the parameters discussed above.

Examples of the results of a windowed cross-
correlation analysis applied to two example behavior-
al data sets are shown in Figure 3. In each of these
graphs, the abscissa plots the lag of the two windows,
the ordinate plots the elapsed time during the trial, and
the color represents the value of the cross-correlation
at each combination of lag and elapsed time. Thus, the
rows and columns in these two graphs correspond to
the rows and columns in the results matrix from Fig-
ure 2 and the colors correspond to the values in the
results matrix. Note that in these graphs, elapsed time
increases as the value on the ordinate increases. Thus,
the first row from the results matrix is the bottom row
of the graph and the last row of the results matrix is at
the top of the graph. In this way the cross-correlations
at any particular value of elapsed time are shown as
the colors from a horizontal slice through the graph.

The cross-correlations between the 2 dancers’
movements are plotted in Figure 3a. Note that after
about 8 into the trial, the pattern of cross-correlations
becomes stable; that is, each horizontal slice through
the graph is much like the next horizontal slice. Thus,
vertical stripes are formed when the associations be-
tween variables are stable over time and therefore the
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association between the variables is stationary. When
we observe the vertical stripes in Figure 3a, it is evi-
dent that the pattern of association between the danc-
ers’ movements becomes stationary shortly after (i.e.,
about 8 s after) the beginning of the trial.

On the other hand, the cross-correlations between
the two conversants’ head motions plotted in Figure
3b do not show a pattern of vertical stripes of color. In
fact, there are relatively large changes between sub-
sequent horizontal slices through the graph. Thus, the
lags of the cross-correlational association between the
two conversants’ head movements are changing rap-
idly as elapsed time in the trial increases. This pattern
of association is nonstationary.

Although the cross-correlations in Figure 3b do not
form vertical stripes, there does seem to be some sort

of pattern to the variability of this association. As
elapsed time increases, it seems that the stripes mostly
are diagonal from lower right to upper left. That is, the
peak cross-correlations appear to change from posi-
tive to negative lags. In order to be able to analyze
patterns of change in the peak cross-correlation, we
have developed a peak-picking algorithm that selects
the peak correlation at each elapsed time according to
some flexible criteria. The next section introduces this
peak-picking method and presents the parameters for
controlling the selection of peak cross-correlations.

The Peak-Picking Algorithm

One possible way to estimate the time lag of the
predictive association between two time series is to
find the peak cross-correlation that is closest to a
lag of zero. For instance, suppose an event of duration
1 s occurs in data vector window Wx and a similar
event occurs 2 s later in data vector window Wy. In
this case, we would expect a peak cross-correlation
between the two windows at a lag of � � 2/s, where
s is the sampling interval of the observations in the
windows expressed in seconds. In order to find such a
lag between two similar events, we require a defini-
tion of what is meant by a “peak.” As is so often the
case in data analysis, the best definition may depend
on the characteristics of the phenomena and the de-
sign of the experiment. We have defined a peak to be
a maximum value of cross-correlation centered in a
local region in which values are monotonically de-
creasing on each side of the peak. The analyst must
define the size of this local region to be large enough
so that spurious local noise is rejected but small
enough so that meaningful peaks are not rejected.

We now describe the peak-picking algorithm in
specific terms and then describe it diagrammatically
so as to provide an intuitive understanding of both
how the algorithm works and how changing its con-
trol parameter will affect the results obtained. A com-
plete implementation of the algorithm provided in S-
PLUS language source code is available for download
from http://www.nd.edu/∼sboker.

The peak-picking algorithm operates on a vector,
V, of cross-correlations (one row from the results ma-
trix shown in Figure 2) by starting at the element in
this vector whose index, c, corresponds to a lag of
zero. Because the lagged and windowed cross-
correlation procedure described above always gener-
ates a results matrix with an odd number of columns
([�max * 2] + 1), the initial value of c will be c � �max

Figure 3. Density plots of windowed and lagged correla-
tion result matrices from (a) 20 s of body velocities during
dyadic dance and (b) 25 s of head velocity during dyadic
conversation. High positive values of correlation are red,
zero values of correlation are green, and high negative val-
ues of correlation are orange. For these plots, window size
is 120 samples, window increment is 20 samples, maximum
lag is 400 samples, lag increment is 10 samples, and sam-
pling rate is 80 Hz.
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+ 1. The output from the peak-picking algorithm is
two numbers, the lag of the selected peak relative to c
and the value of the cross-correlation at that peak. The
control parameter that has to be defined prior to start-
ing the algorithm is Lsize, the size of the local region
that defines a peak. The algorithm is described in
general below and is enumerated in detail in the Ap-
pendix. A few additions to this algorithm have been
made in order to account for exceptional cases and are
discussed separately at the end of this section.

In Figure 4 we present the steps of the algorithm
diagrammatically for an easy-to-find peak. In general,
what happens is that the search region is incremen-
tally increased until finally a local region is centered
over a peak; then the lag index at the peak and the
value of the cross-correlation at the peak are returned.

The search starts at a lag of zero within the vector
of cross-correlations plotted in the solid curved line as
shown in Figure 4a. In Figure 4b, the search region
begins with a size equal to the size of the local regions
and is always centered over a lag of 0. The local
regions L1 and L2 overlap each other at the start of the
search. A maximum is found for each local region, but
the maximum is not centered within the local region.
In Figure 4, c and d, the search region has increased
enough so that the local regions no longer overlap.
Still, the maximum in each local region L1 and L2 is
not centered within its respective region. In Figure 4e
the search region is increased once more, the local
region L2 now has a maximum at its center, and the
values of the cross-correlation are monotonically de-

creasing on either side of the maximum. A peak is
identified as being found. In Figure 4f the value and
index of the cross-correlation at the peak are returned
and the algorithm stops.

We have isolated four problems that can lead to the
spurious selection of a peak. We first summarize these
problems and the solutions we implemented. We then
present a more detailed description of the parametric
choices involved in tailoring this peak-picking algo-
rithm to a particular variable of choice. Remember,
one must tailor the algorithm in an exploratory man-
ner on a set of pilot data prior to applying the algo-
rithm in a confirmatory manner to a data set of inter-
est.

The first problem is that the selection of a spurious
peak could be due to high-frequency noise in the
cross-correlation—that is, if the lines plotted in a
graph such as that in Figure 1 were “rough.” In order
to minimize this problem, we use a loess smoothing
function (Cleveland & Devlin, 1988) on the cross-
correlation values prior to selecting a peak. We fur-
ther discuss the smoothing procedure below. The sec-
ond problem is that a peak might be a minor
fluctuation, a local maximum, rather than a larger
maximum that is at a slightly larger lag with the same
sign. In order to reduce this problem, we require a
peak to be defined as a maximum with some chosen
number of successively smaller values on each side of
it. The third problem is that a spurious peak might
have a smaller value than a larger peak with a some-
what larger lag of the opposite sign. To reduce this

Figure 4. Diagrammatic representation of the steps (a–f) of the peak-picking algorithm. L
� local region; Max � maximum; R � search region.
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problem, we do not select a peak with a lag of one
sign when there are successively increasing values
with an equal lag of the opposite sign. The fourth
problem is that there may be no credible peak within
a range of lags that is appropriate to the phenomena
under study—for instance, all correlations within the
range of lags might be equal to one another. To solve
this problem, we allow the search to terminate as hav-
ing failed after searching within some appropriate
range and to return an indicator for missing values for
the value and index of the peak. All of these solutions
are implemented in the S-PLUS code available at
http://www.nd.edu/∼sboker.

Figure 5 presents four example cross-correlation
graphs that illustrate problems that arise in selecting
peak values. All of the plots in Figure 5 were
smoothed using the loess smoother (Cleveland &
Devlin, 1988). This smoother is a semi-parametric
smoother in that it uses locally weighted regression
to provide an estimate of the changes in cross-
correlation with respect to the values of the lag. Loess
requires two parameters: a fitting function and a span.
The fitting function is generally either linear or qua-

dratic. The span refers to the proportion of the total
data vector that is used in smoothing. For instance, a
span of .25 uses the 25% of the elements in the data
vector with indices nearest to a target index to pro-
duce a smoothed value at the target index. In the
peak-picking algorithm we have used a quadratic re-
gression function and a span of .25 in calling the loess
function. This effectively fits a quadratic function to
each lag in the cross-correlation using a weighted se-
lection of those 25% of the cross-correlations that are
nearest in time to the target lag. Our peak-picking
function then fits an interpolation spline through the
results of the loess function so that there is an inter-
polated cross-correlation value between each lag. In
this way we have found that we can improve the
temporal resolution of the estimate of the lag of maxi-
mum association. That is to say, by using interpola-
tion, we can estimate the time lag of peaks that occur
between occasions of measurement. This procedure
relies on an assumption of continuity in the change in
time lag of maximum association as elapsed time
increases. All of these smoothing steps are included
in the S-PLUS source code available at http://

Figure 5. Four types of peaks found in cross-correlation graphs. (a) The peak is chosen at
the dotted vertical line in an easy-to-find case. (b) In ambiguous cases in which two small
peaks are near lag zero, the algorithm chooses the larger peak even though it is farther from
zero. (c) Sometimes the peak is exactly at zero. (d) In some cases there may be no peak that
fits the chosen parameters, and so the algorithm terminates and returns missing value indi-
cators.
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www.nd.edu/∼sboker, and their parameters should not
have to be changed in most cases.

The smoothed and interpolated cross-correlation
graphs shown in Figure 5 come from pilot data in a
nonverbal conversation experiment in which head
nodding was tracked for 2 participants over a 5-min
conversation. These cross-correlations are calculated
from 4 s of head nodding tracked from the 2 conver-
sants. Figure 5, a and c, are cases in which the loca-
tion of the peak is obvious. Still, even in this case, the
peak is only obvious within the confines of the chosen
maximum lag interval �max that was used to calculate
the cross-correlation function. Note that in Figure 5c
the overall maximum within the displayed window
occurs at a lag of −2 s. However, this maximum does
not fit our definition of a peak because it does not
have a region of smaller correlations on each side of
it within the chosen maximum lag. Thus, in this case
we have chosen to ignore maxima such as these be-
cause they fall outside the bounds of lags that are of
interest for this particular substantive phenomenon.
One must choose a maximum lag so as to capture the
possible lags of interest and exclude lags that are not
of interest. We chose a maximum lag �max � 2 s × s,
where s is the sampling interval, in order to capture
events that were within 2 s of each other, but also to
exclude events separated by greater intervals of time.
This interval was chosen by comparing results of a
range of choices of �max and then running the lagged
windowed cross-correlation method on pilot data
from a separate head motion experiment. Greater val-
ues of �max tended to obscure the correlation structure,
and smaller values of �max tended to produce results
that were not smooth and thus contained many spuri-
ous peaks. We tempered this decision with qualitative
observations of human head nodding behavior, which
indicated that a 2-s range was not an unreasonable
time frame in which agreement nods could occur.

The pattern of cross-correlations in Figure 5b con-
tains two peaks, a small peak with a negative lag near
a lag of zero and a larger peak with a positive lag
somewhat farther from lag zero. Such patterns can
often occur when cross-correlations are calculated on
cyclic phenomena. Because the increasing correla-
tions for the positive lag within the search region
become greater than the smaller peak before the
smaller peak is identified as being centered in its local
region, the local region switches to the positive lag
and thus the larger peak becomes identified. There-
fore, the size of the local region is critical in identi-
fying which peak will be selected in cases such as

this. One must decide what temporal interval is of
interest, because the size of the local region acts as a
low-pass filter, effectively removing cyclic phenom-
ena with frequencies greater than 1/Lsize, where Lsize

is the time interval of the local region.
The cross-correlations in Figure 5d do not have a

peak that fits our definition. Thus, the algorithm stops
when it reaches �max, the maximum size that its search
region can assume. The values that are returned for
the peak index and peak value in this case are codes
for missing values, because no peak was identified. If
the local region had been set to be smaller, there
would have been several possible candidate peaks.
However, we have chosen in this case to reject such
small peaks by the choice of Lsize, the size of the local
region.

The power of this approach to finding the lag of the
maximum correlation closest to a lag of zero becomes
evident when we use the algorithm on a matrix of
windowed cross-correlations. Now we can automati-
cally obtain, for each elapsed time, an estimate of the
maximum association between two variables with the
minimum time lag. Thus, the peak-picking algorithm
can be used for each row in a results matrix of win-
dowed cross-correlations, resulting in a vector of lags
and a vector of strengths of peak association.

In Figure 6, a and b, are plotted the lags of the peak
cross-correlation for the same example data that were
previously plotted in Figure 3, a and b, respectively.
As was noted, it is apparent that the lag of the peak
correlation is relatively stable in the dance data after
an initial adaptation phase lasting about 8 or 9 s. How-
ever, it is apparent by inspection that there is much
more variability in the association during conversa-
tion. In addition, there is an intriguing pattern of rela-
tively shallow negative slopes and much greater posi-
tive slopes—like a sawtooth pattern—that may be
indicative of a behaviorally relevant pattern in con-
versation. One substantive interpretation of these
shallow negative slopes is that during conversation,
Individual A begins to nod his head, leading to a
similar head nod of Individual B, but then after a short
period of time Individual A slows his head nod so that
Individual B begins to lead. This exchange of predic-
tive leads in head motions may be an important and as
yet unreported communicative aspect of nonverbal
communication.

We next present an example of how this method
can be put to use in an experimental setting. The
example application uses motion capture data from
our lab, where we have been studying adaptive asso-
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ciations between individuals’ movements during con-
versation.

Example Application

Many researchers suggest there is a close relation-
ship between posture, gesture, and speech (e.g., Con-
don & Ogston, 1966; Dittman & Llewellyn, 1969;
Scheflen, 1964). According to the functions posture
and gesture serve, speech-related nonverbal cues were
divided by Ekman and Friesen (1969) into three main
types: emblems, illustrators, and regulators. Emblems
refer to those nonverbal acts that have a direct trans-
lation, such as nodding the head when meaning “yes.”
Their function is explicitly communicative and is rec-
ognized as such. Illustrators are movements that are
tied directly to speech and facilitate communication
by amplifying and elaborating the verbal content of
the message—for instance, swinging one’s arms when
speaking of playing golf. Regulators are movements
that guide and control the flow of conversation, influ-
encing who is speaking and how much is said. In-
stances of regulators include postural shifts and
changes in gaze direction. Kendon (1981) argued that
people may choose to use emblems in preference to
speech, because in certain communicative contexts
there may be distinct advantages in using gesture. For
instance, because communication through posture and
gesture is silent, environmental noise would be un-
likely to interfere with nonverbal communication,
whereas spoken language could become difficult to
understand in the presence of a loud sustained noise.

We hypothesize that when people are engaged in
conversation in a noisy environment, they may use
posture and gesture in a way that carries more infor-
mational content so as to disambiguate their verbal
communications. Higher informational content means

that movements are less likely to be redundant and are
more likely to be surprising to an interlocutor. Given
this hypothesis, the association between two individu-
als’ movements in a noisy environment would be ex-
pected to have greater variability in both time lag and
maximum correlation than would the association be-
tween movements of the same individuals conversing
in a quiet environment. We performed an experiment
in order to test this hypothesis and used windowed
cross-correlation and the peak-picking algorithm to
test whether there was greater variability in interper-
sonal coordination when loud environmental noise
was present.

Method

Participants. Participants were 8 (4 dyads) fe-
male undergraduate senior students from Clark At-
lanta University who volunteered for the study and
who were not compensated. Participants were previ-
ously acquainted, having participated in a summer
internship program with one another.

Apparatus. An Ascension Technologies (Burling-
ton, VT) MotionStar 16 sensor magnetic motion
tracking system was used to track the motions of par-
ticipants. Each sensor is a cube approximately 3 cm
on a side and provides three dimensions of position
and three dimensions of orientation information
sampled at 80 Hz with a resolution of approximately
1.5 mm in position and 2° of arc in orientation. Eight
sensors were placed on each individual: one on the
back of a baseball cap worn tightly on the head, one
strapped just below each elbow using a neoprene and
Velcro around-the-limb strap, one held to the back of
the back of each hand with an elastic weight-lifting
glove, one held to the sternum with a neoprene and
Velcro vest, and one strapped just below each knee

Figure 6. Peak-picking algorithm results for time lag of peak correlation for (a) 20 s of body
velocities during dyadic dance and (b) 25 s of head velocity during dyadic conversation.
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with a neoprene and Velcro around-the-limb strap.
Each sensor was connected to the MotionStar system
computer with a long cable. Thus each individual had
a bundle of eight cables that were gathered and posi-
tioned behind the participant in order to provide the
minimum of interference with movement.

Participants were seated approximately 2 m from
each other with the magnetic transmitter sitting to one
side of them. Because of the relatively small size of
the room (3.5 × 3.5 m), the transmitter was so close to
the individuals that the motion of the hands nearest
the transmitter was inaccurately recorded. Thus, we
have used only head motion of each participant and
one hand from each participant (the left hand of 1
participant and the right hand of the other) in our
analysis.

Procedure. Participants were informed that they
were in an experiment measuring “magnetic fields
during conversation” in order to minimize self-
consciousness about their posture and gestures. Par-
ticipants were not informed that the experiment would
include the noise manipulation. In debriefing, no par-
ticipants guessed that we were actually recording their
movements. Participants were strapped into the sen-
sors and were asked to engage in a 5-min free con-
versation while seated about 2 m apart from each
other. The experimenter then left the room. During
one half of the conversation the room was quiet, and
during the other half of the conversation a loud (90
db, A-weighted) traffic noise was played over loud-
speakers located in two corners of the room. The or-
der of the noise was counterbalanced so that for half
of the dyads the noise occurred in the first half of the
conversation and for the other half of the dyads the
noise occurred in the latter half of the conversation.
The traffic noise had been recorded in stereo at a local
street corner and included sounds of cars, trucks, and
motorcycles that were multitracked, time delayed, and
rerecorded with reverb so as to approximate the sound
at a busy intersection in the downtown of a large city.
For an intuitive understanding of the apparent loud-
ness of the sound, note that the sound pressure in the
room was equivalent to that present at a subway plat-
form when a train is arriving.

Results

Because the stated hypothesis concerns the associa-
tion between movements, we first calculated the ve-
locity of the head and hands for each person for each
sampled time during the experiment. Velocity was

calculated for the head, Vhead, and one hand, Vhand, of
each participant for each time t as

V�t� = ��xt+1 − xt−1

2S �2

+ �yt+1 − yt−1

2S �2

+ �zt+1 − zt−1

2S �2�1�2

, (5)

where xt−1, Yt−1, and zt−1 are the positions of the sen-
sor in centimeters along the three spatial axes at one
sample prior to time t, and S is the interval of time
between samples, S � 1/80 s. The resulting velocity
vectors (in centimeters per second) for the head mo-
tions for each participant from the whole session were
then used as input to the windowed cross-correlation
analysis. The velocity vectors from the left hand of 1
participant and the right hand of the other participant
were cross-correlated in the same way.

We chose to analyze windows of 4 s of data be-
cause on the basis of previous experiments (Boker &
Rotondo, 2002; Rotondo & Boker, 2002) it seemed
reasonable that the production and perception of a
gesture or head nod would occur within 2 s of each
other. Thus the window size, wmax, was chosen to be
wmax � 4 s × 80 samples/s � 320 samples. We chose
to increment the window by 1/8 s in order to be able
to capture rapid changes in lead and lag, so winc was
set to be 1/10 s × 80 samples/s � 8 samples. We set
the maximum lag to be �max � 2 s × 80 samples/s �
160 samples and the lag increment �inc � 1/10 s × 80
samples/s � 8 samples.

The windowed cross-correlations were run sepa-
rately on the portions of the conversation with noise
and without noise so that there would not be a set of
windowed correlations that crossed the boundary be-
tween the noise and no-noise conditions. The result-
ing matrices from the windowed cross-correlational
analysis were submitted to the peak-picking algorithm
to calculate peak correlations nearest a lag of zero and
their respective time lags. A loess smoothing span of
.25 was used, producing a moderate amount of regres-
sion spline smoothing of the cross-correlation data.
The peak-picking algorithm was called with a local
region size Lsize � 4, which corresponds to four
cross-correlation lags, each of which was �inc �
1/10 s. Thus the effective local region used for the
peak picking was 0.4 s so cyclic movements faster
than 2.5 cycles per second were rejected.

The mean and variance of the vector of peak cor-
relation values and the associated vector of lags were
calculated for each dyad within each condition. Thus
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comparisons could be made between estimates of the
overall amount of coordination between individuals in
the two conditions. Similarly, the variability of the
coordination magnitude and lag could also be com-
pared across conditions. The resulting means and
variances of the peak correlation values and their as-
sociated lags were used as dependent variables in uni-
variate mixed model regression analyses grouped by
dyad and fit using the S-PLUS software function
nlme. A test for order effects was made, but in no case
did the order of the noise (first half vs. latter half of
the conversation) significantly predict any of the out-
come variables, so the order predictor variable was
dropped from the analysis.

The mixed effects model was specified such that
the intercept term was allowed to vary across dyads.
The noise condition was dummy coded (0 � silence
and 1 � noise) and used as a fixed predictor of the
selected outcome variable as follows:

yij � b0j + b1xij + eij, (6)

where yij is the selected dependent variable for the ith
noise condition during the jth dyad session, xij is the
ith noise condition during the jth dyad session, b0j is
the intercept term for the jth dyad session, b1 is the
regression coefficient of noise predicting the selected
outcome variable, and eij is an independent identically
distributed random variable. The results of these
analyses are presented in Tables 1 and 2.

Both the mean and variance of the peak correlation
increased significantly when the environmental noise
was present (see Table 1). Thus individuals’ move-
ments were more highly correlated in the presence of
noise, and at the same time there was more variability
in the value of the peak association. Only the variance
of the lag between individuals increased significantly

when noise was present (see Table 2). Thus the pre-
dictive association between individuals’ movements
tended to have lags that were farther from synchrony
(a lag of zero) when exposed to the environmental
noise.

Discussion

The results supported the hypothesis of greater
variability in the coordination between conversing in-
dividuals when in the presence of noise than when
there was no interfering noise. Thus, the variability of
the time lag and value of peak association increased
significantly for both the head and the hand in the
presence of noise. No change was observed in the
mean value of the time lag of peak association, but
this was expected. Because individuals were ran-
domly assigned to chairs, there was no reason why
one would expect individuals in Chair A to behave
differently than those in Chair B, and therefore there
should be no change in the mean value of the lag of
the peak cross-correlation across noise conditions.

However, there was a significant increase in the
coordination between conversants when the noise was
present. Although this finding was not anticipated in
the hypothesis, it is intriguing. It appears that indi-
viduals more closely coupled their movements to each
other when verbal communication became more dif-
ficult. These findings, albeit interesting, are from a
small and most likely nonrepresentative sample of
individuals and thus may not generalize to the popu-
lation of English-language conversational dyads. We
present these results solely in order to illustrate the
use of the methods.

General Discussion

The combination of the use of windowed cross-
correlation with our peak-picking algorithm allows

Table 1
Noise Condition Predicting the Mean and Variance of the
Value of the Peak Windowed Cross-Correlation for Head
and One Hand Using Four Independent Univariate Mixed
Model Regressions Grouped by Dyad

Dependent variable � SE Z

Head
M 0.041 0.015 2.745*
Variance 0.009 0.002 3.523*

Hand
M 0.043 0.011 3.843*
Variance 0.012 0.002 6.946*

Note. Noise was coded silence � 0, noise � 1.
* p < .05.

Table 2
Noise Condition Predicting the Mean and Variance of the
Lag of the Peak Windowed Cross-Correlation for Head
and One Hand Using Four Independent Univariate Mixed
Model Regressions Grouped by Dyad

Dependent variable � SE Z

Head
M 0.374 0.331 1.131
Variance 5.091 1.241 4.102*

Hand
M −0.221 0.287 −0.767
Variance 13.818 4.505 3.067*

Note. Noise was coded silence � 0, noise � 1.
* p < .05.
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the empirical estimation of variability in a fundamen-
tally different way than the usual examination of
within-variable change over time. These methods al-
low the estimation of variability in the association
between variables. The way in which the value of the
peak association between variables changes and the
way in which the temporal lag changes can be ex-
tremely informative as to the structure of adaptive
relationships between individuals or the predictive ca-
pacity exhibited between variables within an indi-
vidual over time.

We expect that methods such as those explicated
here will become much more prevalent as psycholo-
gists begin increasingly to use experimental designs
that measure a set of variables on many occasions
from a sample of individuals. Prime examples for the
use of the methods described here are physiological
measurements (i.e., EEG, EKG, galvanic skin re-
sponse, single-cell recordings of neuron activation)
taken over the course of an experiment, data from
journaling studies in which individuals repeatedly
self-report on several variables over an extended pe-
riod of time, or motion capture experiments such as
the example application reported above. Other psy-
chological data such as longer daily diary studies with
approximately 100 occasions of measurement or more
may also be amenable to exploratory analysis with the
methods presented here. In order for the algorithms to
be useful, (a) each window must contain sufficient
observations to reliably estimate the cross-correla-
tions and (b) there must be a sufficient number of
windows in order to reliably estimate the pattern of
change in the time lags and strength of association
between the variables. Estimating the actual number
of observations that is sufficient for (a) and (b) above
requires a power calculation dependent on the hypoth-
esized effect size and required significance level for
each of (a) and (b).

Other methods have been developed for the analy-
sis of nonstationary and nonlinear time series. These
methods fall into four basic groups: (a) those that
emphasize forward prediction such as Kalman filter-
ing, nonlinear prediction, and mutual information; (b)
those that emphasize system identification and de-
scription such as Lyapunov exponents, correlation di-
mension, and surrogate data; (c) those that emphasize
graphical description and exploration such as state
space plots and recurrence diagrams; and (d) those
that emphasize noise reduction (for introductions, see
Abarbanel, 1996; Heath, 2000; Kantz & Schreiber,
1997). The windowed cross-correlation and peak-

picking method differs from these other techniques in
that its primary goal is the analysis of the change in
the association between variables over time. The most
closely related method known to the authors is an
information transfer method proposed by Schreiber
(2000) in which entropy is used as the measure of
association between the time series. Schreiber’s
method differs substantially from ours in that his
method does not attempt to estimate time-varying pat-
terns of association between variables.

The primary disadvantage to the windowed cross-
correlation and peak-picking analysis is that it re-
quires the analyst to choose several parameters in or-
der to appropriately estimate the changing pattern of
association between variables. A preliminary sample
of data must be used to tune these parameters prior to
using the method for hypothesis testing. We have
found this process of exploration of preliminary
samples to be illuminating in its own right, and so we
now conduct pilots of our experiments so that we can
adjust both the parameters and our hypotheses prior to
gathering larger and inevitably more expensive
samples to test these revised hypotheses without ad-
justing the parameters of the windowed cross-
correlation and peak-picking algorithms.

The particular choices of parameters for the win-
dowed cross-correlation and peak-picking algorithms
used here apply only to the particular experimental
paradigm presented in the example analysis. How-
ever, the flexibility of choice in these parameters
means that the algorithms are very general in the types
of repeated measures data to which they may be ap-
plied. Any continuous variable bivariate time series
data in which an assumption of stationarity in linear
association between the variables might be invalid is
a candidate for analysis with these algorithms.

A second disadvantage is that the assumption of
local stationarity may frequently be violated to some
degree, and this may produce downward bias in the
estimates of the magnitude of the cross-correlations
and the variances of the lags. Although this remains
an unsolved problem with our method, it produces
errors in the conservative direction, underestimating
the magnitudes of effects.

A third disadvantage is one that plagues all mod-
eling methods: an unobserved variable may be the
cause of the associations estimated between the ob-
served variables. Although this method estimates
time-lagged associations, this does not necessarily im-
ply causality between the observed variables.

Finally, the methods presented here estimate peak
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correlations and their associated lags but do not im-
pose a testable model of the process that gave rise to
the nonstationarity in the first place. An advance on
these methods would be the creation of a multivariate
model that would predict patterns of changes in peak
cross-correlations among several variables in such a
way that particular hypotheses concerning the short-
term dynamics of the processes involved could be
rejected.

It seems unlikely that living, adapting individuals
will always exhibit predictive associations between
variables that are stable and unchanging over time.
And yet this is exactly the assumption that is generally
made in order to provide a statistically tractable esti-
mate of those associations. It seems much more likely
that in adaptive relations between variables some-
times Person A will lead and Person B will follow and
sometimes the reverse, sometimes variable X will pre-
dict Y and sometimes the reverse, and sometimes sys-
tem J will drive system K and sometimes the reverse.
We propose that the time has come to develop new
methods that are able to relax the assumption of un-
changing structure over time in the association be-
tween variables. It is our expectation that the devel-
opment of such methods will lead to a deeper and
more realistic understanding of human behavior.
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Appendix

The Peak-Picking Algorithm

1. A search region size Rsize is defined as the smallest
integer such that Rsize � (Lsize/2).

2. A search region R is defined as a sequential and in-
creasing set of integers of size Rsize centered on c, the index
corresponding to a lag of zero between the two cross-
correlated data vectors as follows: R � {c − Rsize, . . . , c −
1, c, c + 1, . . . , c + Rsize}.

3. Two local regions are defined: L1 as the first Lsize

integers in R and L2 as the last Lsize integers in R.
4. The maximum value L1max of the cross-correlations in

V with indices contained in the local search region L1 is
calculated.

5. If the index of L1max is the center element of L1 and
the values from V on either side of L1max are monotonically
decreasing, then a peak has been found. In this case, the
value L1max and its index are returned and the algorithm
stops. Otherwise, the algorithm goes to the next step.

6. The maximum value L2max of the cross-correlations in
V with indices contained in the local search region L2 is
calculated.

7. If the index of L2max is the center element of L2 and
the values from V on either side of L2max are monotonically
decreasing, then a peak has been found. In this case, the
value L2max and its index are returned and the algorithm
stops. Otherwise, the algorithm goes to the next step.

8. Rsize is incremented by one, and then if Rsize � �max,
the process is repeated from Step 2.

9. If Rsize > �max, then no viable peak was found and the
algorithm returns a missing value indicator for both the peak
value and peak index and then stops.
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