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Introduction

This chapter provides an introduction to coupled differential equations models of self—
regulating dynamic systems, describes a method for estimating parameters of such models,
and then works through an application of this method to self-disclosure and feelings of
intimacy in a sample of married couples. The methods used include Local Linear Approx-
imation (LLA) of derivatives (Boker & Nesselroade, 2002) and multilevel modeling (i.e.,
generalized linear mixed modeling or GLMM)(see Walls, Schwartz, & Jung, in press, in
this volume) to account for and predict individual differences in parameters of differential
equations. We have chosen to use LLA and multilevel modeling since this affords a simple
and straightforward approach to the estimation of parameters of these models.

Advances in the modeling of longitudinal data have led to the development of tests
of theories modeled as differential equations and based on dynamic systems interpretations
of social and behavioral phenomena. One type of dynamic systems model attempts to
account for self-regulation — the process by which a phenomenon maintains equilibrium
by responding to information about change in the phenomenon’s state. A more complex
dynamical systems model allows regulation in one part of a system to influence the regulation
of another part of a system. For instance, one might consider a married couple a system
composed of two self-regulating members. The self-regulation of feelings of intimacy of
each member of a married couple might influence the self-regulation of feelings of intimacy
in the other.

Funding for this work was provided in part by NIH grants 1R29 AG14983 and K01 MHG64779.
Correspondence may be addressed to Steven M. Boker, Department of Psychology, The University of
Notre Dame, Notre Dame Indiana 46556, USA; email sent to sboker@nd.edu; or browsers pointed to
http://www.nd.edu/ sboker.
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Self-Regulation and Intrinsic Dynamics

Many psychological constructs show trait—like individual differences, that is when
an individual is measured on many occasions his or her mean score may be distinguishable
from other individuals’ mean scores. However, there may also be short—term intraindividual
variability within each person’s score (Nesselroade, 1991). One may reasonably inquire as to
the source of this intraindividual variability. Perhaps this variation is simply some random
fluctuation either due to unreliability of a measurement instrument or due to the influence
of some unmeasured random variable. Or perhaps these fluctuations are due to some sort
of process intrinsic to the individual — thus there is some patterning to the intraindividual
variability such that the current score for a person is somehow predictive of a future score.
In this case one might consider the patterned variability around the stable mean score to
be an instance of an intrinsic dynamical process about an equilibrium value. One may
consider such an intrinsic dynamic using the language of self-regulation (Carver & Scheier,
1998) whereby a process variable continuously changes its value so as to remain within
some “comfort zone” near its set point, i.e., equilibrium value. Psychological constructs
such as well-being (Bisconti, Bergeman, & Boker, 2004) or positive and negative emotions
(Chow et al., in press) may exhibit this type of self-regulating behavior. Physiological
variables such as hormone levels in menstrual cycles may couple with behaviorial variables
such as eating behavior (Nilsson et al., 2004; Varma et al., 1999) so as to form coupled
self-regulating systems.

Dynamical systems theory offers a way to formalize concepts of self-regulation. Let
us call the state of a system the values of the indicators for a psychological construct at one
moment in time and the trajectory of a system the continuously evolving state of the system
over some interval of time. Suppose a system has a stable equilibrium state, in other words a
fixed set—point value for the psychological construct that is, given no other information, the
expected value for that construct. Now we can define a linear dynamical system that has a
basin of attraction around a point attractor by stating that the likelihood that the system’s
future trajectory turns toward the equilibrium state is proportional to the displacement
from the equilibrium state (see e.g., Kaplan & Glass, 1995). Thus the difference between
the equilibrium value and the current value of the psychological construct is negatively
proportional to the curvature in the construct’s trajectory.

Figure 1 plots four trajectories that conform to a model in which the curvature (i.e.,
the change in the slope) is negatively proportional to the displacement from equilibrium.
The slope of the trajectory for some construct x at some selected time ¢ is the tangent to
the trajectory of x at time ¢, that is the first derivative of z; with respect to time and is
written either as dx;/dt, or as ;. The change in the slope of the construct x at time ¢
(the curvature of the trajectory of z) is the second derivative of x; can either be written as
d?zy / dt?, or as ;. In this chapter we will use the notation &; and #; to represent the first
and second derivative of a construct z with respect to time at some selected time t.

We can now formalize a simple linear model of a construct x with a fixed point
equilibrium as

Iit = Nx¢ , (1)

where 1 is some negative valued constant that represents how quickly the trajectory turns
back toward its equilibrium state when it is displaced from its equilibrium. In this way, we
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can see why for this system the equilibrium state is called an attractor — the farther the
trajectory is displaced from the equilibrium state the more it is attracted back towards the
equilibrium.
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Figure 1. Four trajectories in which the curvature of the trajectory of a construct = is negatively
proportional to the displacement from an equilibrium state of zero.

It can be seen why 7 must be a negative value for this attractor to form by examining
Figure 1 in which a construct x conforming to Equation 1 has an equilibrium of z = 0. Look
at Figure 1 and consider the top trajectory including the point labeled a. This trajectory
starts at time ¢ = 0 at the equilibrium (z = 0) and has some positive slope leading to a
positive displacement from equilibrium. Note that at the point labeled a the displacement
is just a bit greater than 6 and there is a high degree of curvature in the trajectory. Prior to
a the slope of the trajectory is positive and after a the slope is negative. Thus, the change
in the slope is negative in the neighborhood of a, and therefore the second derivative Z; is
negative. If x; is positive and &; is negative then 7, the constant coefficient that expresses
their proportional relationship, must be negative. One may also verify that when the
displacement of x from equilibrium is negative (at points ¢ and d in Figure 1) then the
second derivative is positive.

Although the negative relationship between the displacement of x and the curvature
of its trajectory tends to keep the trajectory in the neighborhood of the equilibrium, fluctu-
ations in this simple model do not decrease or increase with time. Figure 2 plots the same
trajectory that passed through the point a in Figure 1, but continues for the interval from
t =0 to t = 80. Note that the points on the trajectory that have a slope of zero (i.e., a,
¢, and e) have the same absolute value of displacement from equilibrium. After the slope
of the trajectory turns from positive to negative in the neighborhood of a, the trajectory
continues to have greater and greater negative slope until point b when it crosses through
equilibrium. Since the displacement is zero, the change in the slope is also zero at b. Thus,
the trajectory continues along the same negative slope and diverges from the equilibrium,
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Figure 2. A trajectory in which the curvature of the trajectory of a construct x is negatively proportional
to the displacement from an equilibrium state of zero, but the fluctuations are not damped.

having more and more negative displacement and consequently greater positive curvature.
By the time the trajectory reaches c¢, the positive curvature has changed the slope from
negative back to positive. But the positive curvature continues until the point d where the
trajectory crosses the equilibrium again. As time progresses, the trajectory continues to
“overshoot” the equilibrium by the same amount.

When the example trajectory for the construct x crosses its equilibrium, its slope is
at a maximum, either as a positive slope or negative negative slope. Equation 1 formalized
a self-regulation in which displacement from equilibrium induced curvature such that a
trajectory moving away from equilibrium would “turn around” and move back towards
equilibrium. Another way to say this is that the system responds negatively to displacement
from equilbrium. Consider what might happen if the system were to respond negatively to
change — that is a self-regulation mechanism that tended to reduce large absolute values
of the slope. In this case, curvature would be negatively proportional to the slope as well
as negatively proportional to the displacement from equilibrium. We can formalize this
relationship as

Ty = nxy + (T (2)

where 1 and ¢ are negative constants (Thompson & Stewart, 1986).

If we plot a trajectory that conforms to Equation 2, it now damps towards equilibrium
as shown in Figure 3. Although the trajectory continues to overshoot the equilibrium,
observe that the points where the slope of the trajectory is zero (i.e., a, ¢, and e) are closer
to zero as time progresses. If some momentary exogenous influence were to displace this
self-regulating construct x away from its equilibrium, one might observe a pattern of return
to equilibrium similar to that shown in Figure 3.

Equation 2 is an example of a second order differential equation, that is an equation
that express relationships between a variable and its first and second derivatives. We have
expressed Equations 1 and 2 as being completely deterministic. In other words, these
equations do not have any residual term. Of course, this is unrealistic in real-world data.
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Figure 3. A trajectory in which the curvature of the trajectory of a construct x is negatively proportional
to the displacement from an equilibrium and also negatively proportional to the slope. Fluctuations from
equilibrium are damped and the trajectory settles to the equilibrium.

We can add a residual term e; that conforms to standard regression assumptions (i.e.,
independent, normally distributed, with a mean of zero) and reexpress Equation 2 as a
regression equation that would allow us to estimate the coefficients 1 and ¢

Ty =nxe + (T + ey . (3)

Thus if we were to have estimates of the values of x;, T, and #; for a sample of values of
time, we can estimate the values of  and ¢ using multiple regression (Boker & Nesselroade,
2002). We will return to this idea in a later section, but first we will present a short
digression on a model that is popular in longitudinal analysis: autoregression.

Many trajectories are possible that still conform to Equation 3 (see Nesselroade &
Boker, 1994, for some examples). One such trajectory is shown in Figure 4 which can also
be modeled more simply as the first order differential equation

Ty = ary + e, (4)

where « is a negative constant coefficient that expresses the negative proportional rela-
tionship between the displacement of a construct z from its equilibrium at time ¢ and the
instantaneous slope of x at time t. This results in a negative exponential trajectory that
returns towards equilibrium but does not overshoot. If we sample a negative exponential
trajectory at discrete intervals of time 7, the value of x; and x¢4 44, Will be a simple linear
proportion 3 such that § is between 0 and 1.

Autoregressive models are often conceptualized as a variable having an influence on
itself over time. But one may also consider these models within the framework of self-
regulating dynamical systems as a process that regulates back to equilibrium without an
overshoot. Equation 3 can be used to fit data generated by a model conforming to a
first order autoregressive process. Thus the model in Equation 3 is more general than
autoregressive modeling, although at the expense of being less parsimonious. However, if
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Figure 4. A trajectory in which the slope of the trajectory of a construct x is negatively proportional to
the displacement from equilibrium. Any displacement from equilibrium leads to a return to equilibrium.

one suspects that a self-regulating construct might overshoot its equilibrium (i.e., oscillate),
then a first order model (whether autoregressive or differential equation) is inappropriate
since its self-regulation does not behave in this way.

In this chapter, we are interested in data from married couples that may show os-
cillation and that also may show mutual influence between two individuals. In order to
build a model for these data we must first consider the possibility that two systems are
coupled together. The next sections will explore some possibilities for theoretical models of
coupled dynamics and how we might take into account individual differences in equilibria,
self-regulation, and coupling between individuals.

Coupled Regulation and Coupled Dynamics

Suppose two self-regulating systems of the form shown in Equation 3 not only reg-
ulated themselves, but also regulated each other. In this case the definition of the system
we are studying must include both of the self-regulating subsystems as well as their mutual
influence on each other. How might we think of such a system?

One commonly used metaphor in dynamical systems is that of a pendulum with
friction, a system that can be approximated by Equation 3. Consider a system composed of
two pendulums X and Y as illustrated in Figure 5. Each pendulum may have its own length,
thereby determining the frequency at which it would swing if no outside influence were in
effect. Each pendulum might also have its own friction at the pivot. The acceleration (i.e.,
second derivative) due to gravity G is constant, but the acceleration in the direction in
which each pendulum can move is proportional to its displacement from equilibrium. Thus,
for instance & is proportional to x as is formalized in Equation 3.

Now suppose we add a coupling between the two pendulums in the form of a linear
spring. In this way, there might be an additional contribution to the second derivative of
each pendulum from the displacement and velocity (first derivative) of the other pendulum.
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Figure 5. A system composed of two pendulums coupled together with a linear spring. Each pendulum
may have its own length rod and its own friction at the pivot. The acceleration due to gravity G is
constant, but its effect on each pendulum is proportional to the displacement from equilibrium.

We might formalize this relationship as

B = e+ GEr + Yo (MY + ) + ea (5)
U = MyYe + Gt + Yy(Mee + Coy) + eys (6)

where 7, and (, are the frequency and damping coefficients for the x variable, 7, and ¢, are
the frequency and damping coefficients for the x variable, and 7, and v, are the coupling
strengths for x and y respectively. Note that in this model the same coefficients 1, and ¢, are
used in the equation for regulating x as well as y. This suggests that the same mechanism
for self-regulation is used within a variable as well as in coupling of the variables together.

There is one major difference between the system modeled in Equations 5 and 6 and
the pendulums example in Figure 5. In the pendulums example, the strength of the spring’s
pull on z is exactly matched by the strength of the spring’s pull on y. Thus, the coupling
is symmetric in Figure 5. But in a system such as a married couple one need not assume
that v, = 7y, that is the influence of the husband on the wife may not be the same as the
influence of the wife on the husband. In fact, one may not even wish to assume that these
effects have the same sign! Thus, the system in Equations 5 and 6 may potentially exhibit
asymmetric coupling — a difficult system to build from pendulums and springs.

The coupled dynamical system defined by Equations 5 and 6 can be simulated nu-
merically in order to gain some understanding of its behavior. Figure 6 plots the results of
a simulation calculated using the numerical integration function NDSolve in the Mathemat-
ica (Wolfram Research, 2003) software. The two variables 2 and y are set to have different
intrinsic dynamics: the ratio 7, /1, = 1/1.28. In addition, ¢, is negative while ¢, is positive.
Thus one could think of the dynamics of x as being inhibitory whereas the dynamics of y
are excitatory. The x and y variables are coupled together with equal and positive cou-
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Figure 6. Two instances of coupled trajectories, x and y, that exhibit self-regulation as well as mutual
influence. Although each figure has parameters that conform to the linear system from Equation 2,
differences in initial conditions can result in apparently irregular trajectories.

pling coefficients v, = 7, = 0.3 leading to moderately strong coupling. The only difference
between the trajectories in Figure 6—a and Figure 6-b is in their initial conditions.

Notice how, in Figure 6—a the trajectory from the variable x passes through maxima
at points a, b, and ¢. But at first these maxima are increasing from a to b and then the
maxima are decreasing from b to ¢. Similarly the minima for y, points d, e, f and g, first
appear to be damping to zero from d to e to f and then increase again from f to g. There
is not a clear monotonic pattern of increasing or decreasing fluctuations over time. This
results from the opposite sign of the two damping parameters where (; < 0 and ¢, > 0.
Also note that even though the intrinsic frequency of y is faster than x (1, > n,), y does
not appear to oscillate faster than x. Observe that at the point @, the maximum of x
occurs prior to the maximum of y. Later at point ¢, the maximum of y occurs prior to
the maximum of z. Then on the next maximum x precedes y again. The two systems are
coupled together into a mutually dependent, self-regulated and other-regulated frequency.

Now consider the two simulated trajectories x and y in Figure 6-b. These two tra-
jectories are generated by the system of equations with the same coefficient values as the
two trajectories in Figure 6-a, and yet the trajectories appear remarkably different. The
only difference between Figure 6-a and Figure 6-b is that the x trajectory is started at
time ¢t = 0 at a value g = 2 in Figure 6-a and zg = —2 in Figure 6-b. In this case, the
first three maxima at a, b and c for the trajectory of z vary more widely than they did
previously. After the maximum at ¢ the trajectory does not cross the equilibrium before it
begins to diverge from equilibrium again. The trajectory for y also differs markedly from
the previous figure including an initial period where the trajectory appears to be following
a negative exponential before it changes to an oscillation.

In dynamical systems terminology, Figure 6-b exhibits the effect of transient dynam-
ics, that is behavior that is due to some exogenous influence (in this case our arbitrarily
setting the values of z and y at time ¢ = 0) as well as being due to the dynamics of the
system itself. In the real world of psychological systems we must expect that exogenous
influences will occur frequently, creating transient perturbations in the observed trajecto-
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ries of measured psychological constructs. For this reason, in self-regulating systems it is
essential to consider the possibility that apparently differing trajectories might not belong
to different classes as could be concluded if one we had used a latent growth curve model on
the trajectories in Figures 6—a and 6-b. Instead, it might be that similar intrinsic dynamics
(i.e., similar self-regulatory mechanisms) might produce very different trajectories given
different exogenous influences. One method for testing this hypothesis lies in the use of
state space embedding for modeling the covariances between derivatives in order to estimate
coefficients of differential equation models of self-regulation.

Time Delay Embedding

In order to estimate coefficients in a differential equation model, for instance Equa-
tion 3, one must find a way to either reparameterize the model so that it does not contain
derivatives or find a way to use the data to estimate the effects of the derivatives on one
another. In each of these cases one must have multiple occasions of measurement on any
one individual; in other words a time series. Suppose we have measured the individual ¢
on the variable x at p occasions separated by equal intervals of time s. A time series for
individual 7 is a vector of observations x = {z1, x2, 23, ... Zp—1,2p}. The intrinsic dynamics
of = are evidenced by the ordered sequence of observations; If we were to randomize the
sequence, the resulting vector would have the same distribution of scores, but any evolving
self-regulation of these observations would be lost. It is the way the x1 leads to z9 and xo
to x3 that captures the self-regulation of the system. This simple observation led to some
formal theorems (Whitney, 1936; Takens, 1985) that show that it is, in theory, possible to
recover the dynamics of a system from short, ordered sequences of observations as long as
a time delay constant and number of embedding dimensions is properly chosen. We will
demonstrate this idea using a simple example.

Time—delay embedding (also known in the physics literature as state space embed-
ding) is a method for creating a data set that will allow the estimation of coefficients of
differential equation models such those presented in the previous sections. The essential
idea is easier than it might sound. One begins with a time series vector of observations
x = {x1,22,23,...Tp—1,%p}, chooses a time delay constant, 7, and a number of embed-
ding dimensions d and then produces a state space matriz. The embedding dimension d
is the number of columns in the state space matrix, in other words how many observa-
tions are in a “short sequence of observations”. The time delay constant 7 represents how
many observations to skip forward to obtain the next observation in a “short sequence of
observations”.

As an example, let us suppose we have 40 observations in a vector x and we choose
a time delay of 7 = 2 and embedding dimension d = 3. From our time series vector x we
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then create the embedded state space matrix X as

[z @3 @5 |
T2 T4 Te
r3 Ty X7
T4 Te T8

T34 T36 T38
T35 37 T39
Z36 T38 T40

Each row of X contains three observations, a “short sequence of observations” and could
be considered to be a point in a 3—dimensional space: a state space. The ordering of the
columns is important, since it preserves the time—ordered nature of each short sequence of
observations. However, the ordering of the rows of this matrix does not matter. If we have
chosen the time delay and embedding dimension correctly (see Sauer, Yorke, & Casdagli,
1991), all of the sequential information will be contained in the relationship between the
columns. Although there still is sequential dependence between the rows as they are ordered
above, that sequential dependence contributes nothing additional to the estimation of pa-
rameters for a differential equations model. This means that we might, for instance select a
random sample of rows and reorder it and still be able to obtain estimates of the coefficients
of a differential equation that had generated these data (see Boker & Nesselroade, 2002, for
a more lengthy discussion).

There are several methods that can be used to estimate differential equation mod-
els from state space embedded data. Stochastic Differential Equations methods (see e.g.,
Arminger, 1986; Singer, 1998; Oud & Jansen, 2000) transform the model into an integral
form so that coefficients can be estimated directly from the time delayed observations. While
this has some advantages, estimation of such models involve complications arising from in-
tegration of the error term. Another approach is to transform the embedded state space
matrix so that explicit estimates of derivatives are obtained and then use standard statistical
techniques to obtain parameter estimates (see e.g., Boker & Graham, 1998; Boker, 2001).
This is the approach that will be used in the current chapter. A third method called Latent
Differential Equations (LDE) generates latent variable estimates of the derivatives and then
estimates coefficients from the covariances between these latent variables (see Boker, Neale,
& Rausch, 2004, for an introduction). Each of these methods has their advantages and
disadvantages. We will focus on using the second approach, Local Linear Approximation
(LLA) to transform our state space embedded data matrix into explicit estimates of deriva-
tives and discuss how we chose the time delay and embedding dimension for this problem.
We will then use multilevel modeling to estimate the coefficients of a differential equation
model of coupling between husbands and wives. We chose LLA for the estimation due to
the simplicity of the approach and its ability to use standard multilevel estimation routines.
We chose to use a multilevel model for two reasons: We expect that there may be consid-
erable differences between marriages in the dynamics of self— and other-regulation, and we
wish to see if we can account for these individual differences using marital satisfaction as a
predictor.
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Accounting for Individual Differences in Dynamics

Dynamical systems modeling focuses on how the current state of a system of variables
leads to the future state of those variables. In this way, a dynamical systems analysis is
concerned with how change in a system evolves — and this is why differential equations are
frequently used to specify dynamical models. Individual differences in a dynamical system
might be manifested in several ways. First, there might be differences in equilibria. One
might think of this as individual differences in central tendency of a variable over time,
and these could be estimated for instance in a mean and slope multilevel model where each
individuals’ central tendency is changing slowly over time. Second, there may be individual
differences in the mechanism that regulates how a variable fluctuates about the equilibrium
in the absence of other influences. These differences could be estimated as individual dif-
ferences in the coefficients of a differential equation model of the intrinsic dynamics of a
variable. Finally, there might also be individual differences in how variables are coupled
together. Some participants might be more reactive or responsive to outside influences than
others. Or, in a coupled set of differential equations, there might be individual differences
in the strength of the coupling parameter.

Prior to specifying a multilevel differential equations model, we will need to account
for individual differences in equilibrium values by centering each person’s time series around
their respective equilibrium values. One way to accomplish this is to fit a slope and intercept
model to each person’s time series and save the residuals from the predicted slope and
intercept as input to the differential equations analysis. These slopes and intercepts will
not be used in the current analysis since here we are focusing on the short term dynamics
rather than on individual differences in equilibria. But reliable differences in equilibrium
values might be also be informative, and if so, one might use methods such as those described
elsewhere in this volume (Walls et al., in press) to model them.

We now create a differential equations model of the residuals calculated above by
adapting Equations 5 and 6 to account for individual differences in coefficients using a mul-
tilevel modeling framework. Suppose we were to be interested in the dynamics of husbands’
feelings of intimacy and how they were influenced by the wives’ feelings of intimacy. A
second order linear differential equation for the self-regulation and spousal regulation of
Husbands’ Intimacy could be written such that

Tij = MixTij + CiaTij + NiyYij + Ciyl¥ij + €ij (8)
Niz = Coo + Uo;
Gz = c10+ U
Niy = €20+ U2
Gy = c30+us;

where x;; is the ith couple’s Husband Intimacy score and y;; is the ith couple’s Wife
Intimacy score at the jth occasion'. We continue to use & to indicate the first derivative

! Although the notation used here for the multilevel models differs from the notation presented elsewhere in
this volume, this notation is popular in many areas of psychology, especially educational psychology. We feel
that it simplifies the presentation of the ideas while maintaining an accurate account of the modeling. The
equivalence between this notation used here and the generalized linear mixed models notation is explained
in detail in the first chapter of this volume (Walls et al., in press)
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and I to indicate the second derivative of a variable with respect to time. In the second
level model, the constants cgg, c19, cog, and c3p represent the mean value of the respective
random coefficient and wg;, wy;, uo;, and wug; represent the unique contribution to that
random coefficient for the ith couple. A second model of the same form would be needed
to specify the self-regulation and spousal regulation of Wive’s Intimacy

Specifying the dynamics of a coupled variable in this way has the advantage that
once derivatives are estimated from the data, coefficients can be easily estimated using
standard mixed effects software such as SAS PROC MIXED or the lme() function in R
(Pinheiro & Bates, 2000). The general advantages of multilevel modeling accrue to this
specification as well, including accounting for dependency within a couple and accounting
for non—balanced missing at random incomplete data. The major disadvantage of this
specification is that the system is not solved simultaneously for all self-regulated variables
and so the solution may be suboptimal. This could lead to bias in the parameter estimates
and might obscure potentially reliable coupling effects. However, at this point, we do not yet
have a viable alternative to the current specification. We suspect that such an alternative
may be developed in the near future.

Example: Daily Intimacy and Disclosure in Married Couples

The experience of intimacy is the outcome of an interpersonal process of self-revealing
disclosure to which the partner responds in a supportive, understanding way (Laurenceau,
Rivera, Schaffer, & Pietromonaco, 2004; Reis & Shaver, 1988). An implicit aspect of the
intimacy process is that each partner in a relationship has a desired level of intimacy and
connectedness that can be conceived as an equilibrium range. In addition, amount of self-
disclosure to a partner, which is often a way to start the intimacy process, may also be
regulated with respect to a disclosure equilibrium level. Day—to—day experience of intimacy
fluctuates around this desired level and the amount of self-disclosure to a partner, which
is often a way to start the intimacy process, is regulated with respect to an intimacy
equilibrium level.

Some relationship theorists have referred to a phenomenon of intimacy regulation in
close relationships, a dyadic process reflecting a balance of the intimacy and autonomy needs
of each partner (Prager & Roberts, 2004). As noted, an inherent assumption in this balance
is the idea that intimacy is not consistently increasing over the course of a marriage, but
rather, fluctuates in accordance to a desired level (Laurenceau, Feldman Barrett, & Rovine,
in press). Nevertheless, one spouses level of intimacy may change not only as a function
of their own desired intimacy level but also change as a function of the other spouses
intimacy level. Close relationships, such as marriage, exhibit a high degree of this type
of interdependence — where the thoughts, feelings, and behaviors of one partner influence
the thoughts, feelings, and behaviors of the other (Kelley et al., 1983). In a well-adjusted
marriage, the regulation of the experience of intimacy towards ones desired equilibrium level
should be facilitated so as to prevent each partner from experiencing long-term extremes in
levels of intimacy (i.e., too much or too little). This contention has been observed by Prager
and Roberts (2004) regarding intimacy regulation, noting that: “Well-functioning couples
make continuous dynamic adjustments in their behavior to avoid emphasizing one pole —
intimacy or autonomy — at the expense of the other (p.55).” Is there an empirical way to
capture and examine parameters that influence the dynamics of a putative dyadic intimacy
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process? Considering a marital dyad as the system, we attempt to model a self-regulating
process in each individual partner and a coupling between these dynamic processes.

Example Data

Analysis was conducted on a sample of 96 couples who were married for an average of
9.32 years (SD = 9.50, range = .17 - 52.5). Data were collected using a daily-diary sampling
method whereby each spouse independently completed a structured diary assessing day-to-
day variation in variables tapping intimacy in marriage each evening for 42 consecutive
days. Diaries of this type allow participants to give more accurate and focused accounts of
actual, everyday social activity and capture the dynamic nature of the process of intimacy
that appears static with the use of more conventional, cross-sectional designs.

Procedure

The married couple participants were recruited from a region of central Pennsylvania
to participate in a "study on daily experiences in marital relationships.” Advertisements
were placed in the local area newspaper and flyers were posted at various public locations.

One research assistant was assigned to each couple and visited their home three times
over the course of the study. At the first visit, the research assistant obtained informed con-
sent, collected demographic information, and administered cross-sectional measures. Next,
spouses were instructed to complete independently a daily diary questionnaire during the
evening on each of 42 consecutive days (6 weeks). The research assistant explained the pro-
cedure for completing the diary and defined various terms on the diary form. Each partner
was given a written set of diary study instructions and definitions for reference throughout
the study.

To help preserve confidentiality and ensure response integrity and honesty, each spouse
was given a set of 42 adhesive labels with which to seal closed each completed daily-diary
form. Spouses were instructed to fold each completed diary form in thirds and use the
adhesive label to seal it shut. At the end of the first visit, the members of each couple
were given a sufficient number of diaries to take them through the mid-point of the 42-
day recording period (i.e., 21-days) and a tentative appointment for the second visit was
made. The research assistant phoned couples the following evening and spoke to each
spouse individually in order to answer any questions that may have come up about the
diary procedures. Couples were also called on a weekly basis to help ensure they were
following the study procedure and completing diaries appropriately and to remind couples
of the importance of completing the diaries independently.

The second visit was conducted at approximately the mid-point of the 42-day record-
ing period. At this visit, the research assistant collected each spouse’s completed diaries for
the first half of the recording period and scheduled a tentative final visit. Upon completion
of the final week of diary recordings, the research assistant visited each couple a final time
at their home to collect the completed diaries for the second half of the recording period,
to provide couples with remuneration for their participation in the study.
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Measures

A daily diary measure was constructed to assess the variables theorized as per Reis
and Shaver’s (1988) interpersonal process model of intimacy and was modeled after the
diary form used by Laurenceau, Barrett, and Pietromonaco (1998). Responses to diary
items were all rated using 5-point Likert scales (e.g., 1 = very little, 5 = a great deal).
Being part of a larger diary form, only the diary variables relevant to the current study
were reported here:

Intimacy. Spouses rated the amount of closeness that they experienced across the
marital interactions with their spouse that day. We chose to use the term closeness rather
than intimacy to ensure that participants were rating the degree of psychological, rather
than physical or sexual proximity. Based on the identified strong link between intimacy
and perceptions of a partners responsiveness (Reis & Shaver, 1988), we also included items
assessing perceived partner responsiveness. Spouses rated the degree to which he/she felt
understood by their partner (one item), validated by their partner (one item), accepted
by their partner (one item), and cared for by their partner (one item) across daily marital
interactions. Based on factor analysis, it appeared that these 5 items hung well together
and were aggregated to create a single daily intimacy score.

Disclosure. Spouses rated the amount that they disclosed facts and information (one
item), the amount that they disclosed their thoughts (one item), and the amount that they
disclosed their feelings (one item) across all the interactions that they had with their spouse
during the day. Spouses also rated the amount they perceived that their partner disclosed
facts and information (one item), the amount of perceived disclosure of their partner’s
thoughts (one item), and the amount of perceived disclosure of feelings (one item) across
all the interactions that they had with their spouse during the day. A disclosure summary
variable was created using the sum of these six items.

Dyadic Adjustment Scale (DAS). The DAS is a commonly administered, 32-item self-
report measure used to assess global marital satisfaction (Spanier, 1976). Scores range from
0 to 151 with higher scores indicating greater marital satisfaction, and this measure was
completed by spouse prior to beginning the 42—day diary recording period. The mean DAS
score for husbands in this sample was 112.64 (SD = 12.73), while the mean of the wives
was 113.92 (SD = 14.34). A matched pairs t-test indicated that husbands and wives did
not differ in their levels of global marital satisfaction (¢(95) = —1.06, p = .29). Cronbach’s
alphas for the husband and wife DAS scales were .90 and .91, respectively.

Modeling the Example Data

Daily diaries were completed by 96 couples for 42 consecutive days. Two couples were
exclude due to low response rates. Of the remaining 94 couples, the overall complete hus-
band and wife response rate was 97% for the disclosure measures and 96% for the intimacy
measures. Figure 7 plots the husband and wife scores for intimacy and disclosure from four
example couples. By inspection, it does not seem unreasonable that each individudal may
have a preferred equilibrium value or set point for each of these scores. In addition, we note
that there appear to be short term sychronization events in which the husbands’ and wives’
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scores seem to be displaced far from equilibrium on the same day. These events appear to
be relatively short term, in that the scores return to near equilibrium within an interval of a
few days. Given our inspection of the plotted data, we decided that it was not unreasonable
to test a model in which husbands’ and wives’ scores were coupled together such that they
regulated each other as well as themselves.
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Figure 7. Daily husband and wife intimacy and disclosure time series for four couples. Note that there
appear to be individual differences in equilibrium values as well as between—couple differences in the
variability around the equilibrium.

An intercept—only mixed effects model grouping by dyad was fit separately to hus-
bands and wives scores for intimacy and disclosure as

Tij = bi—f—eij (9)
b, = co+u

where x;; is the score (e.g., wives’ intimacy) for individual i at occasion j, b; is the intercept
for individual 4, g is the mean value for the intercepts, and u; is the unique within—individual
contribution to the intercept. Two values of interest in this equation are the standard de-
viation of u;, the between—persons variance in intercepts and the standard deviation of e;;,
a measure of the mean within—person variability. As shown in Table 1, the standard de-
viations of the between—person differences (e.g., wives’ intimacy between person SD=3.66)
were approximately the same as the within—person variability (e.g., wives’ intimacy residual



DYNAMICAL SYSTEMS MODELING OF COUPLES 16

SD=3.86) for each of the variables. This suggests that although there may be individual
differences in equilibrium values, the intraindividual variability is of approximately equiv-
alent magnitude in this sample and thus it is warranted to test whether the substantial
within—person component of variance is patterned as a self-regulatory system.

Table 1: Intercept only mixed effects models grouped by dyad and each predicting one variable.

Variable Intercept S.E. Between S.D. Within S.D.
Husband Intimacy 21.50 0.40 3.84 3.32
Wife Intimacy 21.62 0.38 3.66 3.87
Husband Disclosure 13.07 0.27 2.56 2.56
Wife Disclosure 12.83 0.28 2.64 2.94

In this study, there is no single event that we can use to align these intensively
measured variables in time. Thus, there is no way to meaningfully assign ¢ = 0, as this
may be different for each couple or could even change for a couple during the course of the
study. Outside events and daily stressors such as problems at work or sickness of a parent
might occur at unpredictable intervals and these stressors might influence the intimacy and
disclosure scores for a couple. For this reason, a state space model is a much better choice
for these data than would be a growth curve model. A state space model is relatively
insensitive to the timing of influences exogenous to the system whereas a growth curve
model will incorporate the unpredictable intervals of the external stressors as part of the
individual differences in trajectories.

We elected to use Local Linear Approximation (LLA) to explicitly estimate derivatives
and then to use random coefficients (i.e. mixed effects or HLM) modeling to estimate
parameters. First and second derivatives for a time series x = {x1,22,23,...,2p} can be
estimated using LLA by first removing the linear trend from each individual’s data and then
creating a three column time—delay embedded state space matrix X of order (p — 27) x 3
from these residuals as discussed above. The derivatives z;, and Zj for the kth row of the
matrix X can be calculated as

T = (.I‘kg — x‘kl)/27' (10)

and
iy = (zr3 + xR — 280) /77 (11)

where 7 is the lag offset used to create the embedded states space matrix X (Boker &
Nesselroade, 2002).

Once these derivatives are calculated, a second order linear differential equation mixed
effects model can be fit as

Tij = MNiaTij + Gadij + €4 (12)
Niz = Coo + Uo;
Gz = c10+uy;

(13)
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where x is one of the four variables: Husband’s Disclosure, Husband’s Intimacy, Wive’s
Disclosure or Wive’s Intimacy. In order to choose a value of 7 that is appropriate for
these data, we fit the model in Equation 12 to each of the four variables using values
for 7 = {1,2,...,8}. The resulting mean explained variance (r2) over 93 individuals’
data and the lower 95% confidence interval for the mean explained variance is plotted for
each value of 7 in Figure 8. The horizontal line at 72 = 0.656 is the expected value of
r2 for uncorrelated measurement error. Thus, we reject the hypothesis that the residual
intraindividual variability from a linear trend is measurement error when 7 > 4.
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Figure 8. Mean explained variance (7?) within—individual for univariate damped linear oscillator models
for husbands’ and wives’ disclosure and intimacy. Dotted lines lower 95% confidence interval for (12) for
each variable. Horizontal line is expected value for uncorrelated measurement error.

However, note that the largest gain in mean 72 occurs between 7 = 1 and 7 = 2.

The mean r2 for all measures are near their peak value by 7 = 2. Previous simulations
have suggested that minimum bias estimates for frequency (7) parameters are achieved at
the minimum 7 when the 2 first nears its maximum value. Combining this observation
with the previous observation that high displacement co—occurring “events” happened over
a period of just 3 to 5 days suggests that 7 = 2 may be the best choice. Larger values of 7
would tend to obscure these short—term episodes.

This analysis provides evidence that these data are unlikely to be measurement error
when modeled with an uncoupled linear oscillator. However, we might suspect that an un-
coupled model is incomplete since it ignores the possibility of husbands and wives regulating
each other’s behavior. A better model would include coupling parameters. We next present
the results of a coupled model for each of the four variables.

Husbands’ intimacy regulation was modeled using a mixed effects model. After time
delay embedding using a delay of tau = 2, we calculated derivatives using LLA predicted
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the second derivative of husbands’ intimacy, & as

Zij = MiaTij + GaTij + NiyYis + CiyYij + €45 (14)
Niz = Coo 1 C01%; + Uo;
Gz = c10+c112 +uy;
TNy = C20 1 C21W; + U2;
Gy = €30+ c31w; + ug;

where z;; is the intimacy score for husband ¢ on day j, v;; is the intimacy score for wife ¢
on day j, and @;; and g;; are their respective first derivatives. The variable z; is the marital
satisfaction score for husband 7 and the variable w; is the marital satisfaction score for wife .
The constant coefficients cgp, c10, c20, and c3p are the intercept values (fixed effects) for the
random coefficients 7;:, iz, Niy, and (;, respectively. The constant coefficients co1, 11, 21,
and c37 represent the effects of husbands’ and wives’ marital satisfaction on their respective
random coefficients. And finally, ug;, w14, u9;, and ug; are the unique contributions of each
husband or wife on his or her random coefficient.

Once the data have been time delay embedded into a three dimensional state space,
the rows are reduced by three for every missing observation. Thus in our example, the total
observations across the 93 individuals is 3006 rather than the 3722 complete observations
in the data set. This reduction of the state space matrix by incompleteness in the data is a
problem that must be considered prior to using a dynamical systems method: one missing
observation creates two missing first derivatives and three missing second derivatives.

In the hope of clarifying the discussion, we have adopted the following notation for
the parameters of subsequent models. Frequency parameters (i.e., n parameters) are de-
noted Husband Intimacy (HI), Husband Disclosure (HD), Wife Intimacy (WI), and Wife
Disclosure (WD). Damping parameters (i.e., ( parameters) are similarly denoted dHI, dHD,
dWI, and dWD for the husbands’ and wives’ intimacy and disclosure scores respectively.
Finally, interactions with the DAS scale are denoted HIXHDAS, dHIxHDAS, HDxHDAS,
dHDxHDAS, WIXxWDAS, dWIxWDAS, WDxWDAS, and dWDxWDAS for the hus-
bands’ and wives’ DAS scores interacting with their respective intimacy and disclosure
scores.

The results of fitting the mixed effects model from Equation 14 (to derivatives cal-
culated with LLA using a lag of 7 = 2 on the Husband intimacy residuals after removing
a linear trend) are presented in Table 2. The Husband n parameter (HI) value is different
from zero suggesting a lawful patterning of oscillation in Husband intimacy from day—to—
day. The Husband 7 effect is consistent with the intimacy trajectory showing the greatest
curvature when the displacement is farthest from equilibrium. There is no evidence of in-
trinsic damping as reflected in a nonsignificant Husband { parameter (dHI). Examining
the coupled effects of wives intimacy regulation on husband intimacy curvature, higher lev-
els of Wives intimacy (WI) is associated with less Husband intimacy curvature, indicating
the Husbands intimacy would turn around and move back towards equilibrium less quickly
than usual. Interestingly, this effect is moderated by marital satisfaction, where greater
Wife marital satisfaction has a negative effect on Wife n (WIxWDAS). Thus, the effect of
greater wife displacement on husband curvature for wives reporting higher satisfaction is
diminished, allowing husbands intimacy to turn around back towards equilibrium as per his
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intrinsic 7 parameter. The damping parameters reflected no significant effects on Husband
curvature.

Table 2: Mixed effects model predicting second derivative of husbands’ intimacy score using intrinsic
intimacy self-regulation, wives' intimacy regulation and marital satisfaction scores. (AIC= 9129, BIC=
9243, N= 3006, Groups= 94, mean 72=0.693, 7 = 2, n72=-1.614)

Value SE DF t P
dHI -0.0012 0.1440 2905 -0.01  0.993
HI -0.4034 0.0789 2905 -5.11 < 0.001
dWI 0.0490 0.1330 2905 0.37 0.713
WI 0.1216  0.0482 2905 2.52  0.012

HIxHDAS -0.0008 0.0006 2905 -1.22  0.224
dHIxHDAS 0.0000 0.0012 2905 0.02 0.984
WIxWDAS  -0.0011 0.0004 2905 -2.64 0.008
dWIxWDAS -0.0007 0.0011 2905 -0.63  0.526

Examining the model for Husbands disclosure contained in Table 3, husband n (HD)
reflects a significant oscillation parameter. However, unlike the results for Husband inti-
macy, Wife disclosure regulation parameters are not coupled to Husband disclosure curva-
ture. Moreover, marital satisfaction is not a moderator of 17 or ( effects.

Table 3: Mixed effects model predicting second derivative of husbands’ disclosure score using intrinsic
disclosure self-regulation, wives' disclosure regulation and marital satisfaction scores. (AlC= 7385, BIC=
7500, N= 3006, Groups= 94, mean r2=0.683, 7 = 2, n72=-1.738)

Value SE DF t p
dHD 0.0982 0.1388 2905 0.707 0.4793
HD -0.4346  0.0750 2905 -5.789 0.0000
dWD 0.0081 0.1174 2905 0.069 0.9446
WD 0.0352 0.0423 2905 0.831 0.4057

HDxHDAS -0.0004 0.0006 2905 -0.647 0.5173
dHDxHDAS  -0.0009 0.0012 2905 -0.780 0.4351
WDxWDAS  -0.0004 0.0003 2905 -1.238 0.2156
dWDxWDAS -0.0002 0.0010 2905 -0.220 0.8254

The model for Wife intimacy contained in Table 4 reflects the same pattern of results
as for Husband intimacy. This model demonstrated a significant Eta parameter, indicating
patterned oscillations around an equilibrium. Husband intimacy showed a coupled effect
on Wife curvature, where higher levels of Husbands intimacy (HI) is associated with less
Wife intimacy curvature, keeping Wife intimacy higher than she would want it to be. The
strength of this coupled effect was moderated by Husband satisfaction, with greater levels of
Husband satisfaction (HIXHDAS) being associated with greater Wife intimacy curvature.
Damping was not a significant parameter in this model.
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Table 4: Mixed effects model predicting second derivative of wives' intimacy score using intrinsic intimacy
self-regulation, husbands’ intimacy regulation and marital satisfaction scores. (AIC= 9812, BIC= 9926,
N= 3006, Groups= 94, mean r2=0.690, 7 = 2, n72=-1.955)

Value SE DF t p
dWI 0.0607 0.1481 2905 0.410 0.6818
WI -0.4887 0.0769 2905 -6.354 0.0000
dHI 0.1273 0.1620 2905 0.785 0.4321
HI 0.1230 0.0604 2905 2.035 0.0418

WIXWDAS  -0.0001 0.0006 2905 -0.213 0.8312
dWIXxWDAS -0.0007 0.0012 2905 -0.546 0.5851
HIxHDAS -0.0011  0.0005 2905 -2.191 0.0285
dHIxHDAS  -0.0008 0.0014 2905 -0.600 0.5479

In contrast to the results predicting Husbands Disclosure curvature, Table 5 shows
that Wives disclosure was coupled to Husbands disclosure (HD) and the strength of this
coupling was predicted by Husband satisfaction (HDxHDAS).

Table 5: Mixed effects model predicting second derivative of wives' disclosure score using intrinsic
disclosure self-regulation, husbands’ disclosure regulation and marital satisfaction scores. (AlC= 8264,
BIC= 8378, N= 3006, Groups= 94, mean r>=0.701, 7 = 2, n72=-2.55)

Value SE DF t p
dWD 0.0623 0.1343 2905 0.463 0.6431
WD -0.6381 0.0747 2905 -8.539 0.0000
dHD -0.0233 0.1627 2905 -0.143 0.8862
HD 0.1320 0.0652 2905 2.022 0.0432

WDxWDAS 0.0011  0.0006 2905 1.672 0.0946
dWDxWDAS -0.0006 0.0011 2905 -0.543 0.5866
HD xHDAS -0.0013 0.0005 2905 -2.218 0.0266
dHD xHDAS 0.0002 0.0014 2905 0.150 0.8802

Discussion

An undamped linear oscillator performed well as a dynamic process model of Hus-
bands and Wives intimacy and disclosure trajectories. Some degree of mutual dependence
between husband and wife scores might be expected, but may not be equal. We discovered
symmetric coupling between husband and wife intimacy, whereby the strength of the cou-
pling was moderated by marital satisfaction. Findings also revealed asymmetric coupling
between spouse disclosure scores, such that Husbands disclosure was not coupled to Wives
disclosure, but Wives disclosure was coupled to Husband disclosure. Damping was not a
significant parameter in any of these models.
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In some ways, it may not be surprising that an undamped linear oscillator would
be a reasonable model for the trajectory of intimacy, rather than a model with damping
to an equilibrium range. Intimacy is the outcome of an interpersonal process where the
experience of intimacy for one partner (A) is dependent upon self-revealing acts by Partner
A supportive responses by the other partner (B), the perception of responsiveness by A from
B, the timing of the exchanges between A and B, and influences outside of A and B (e.g.,
intimacy—facilitating vs. non—facilitating situation). The number of potential inputs to the
process may lead to a situation where intimacy is unlikely to remain at an equilibrium level
long, but rather is constantly oscillating around it. If an individual shoots upward past
equilibrium until she is feeling too intimate, then she may actively engage in intimacy—
distancing tactics (e.g., reductions in self-disclosure, inattention to partner attempts at
responsiveness) to allow the regulation process to come down toward equilibrium. Our
findings suggest that individuals with spouses who are highly satisfied with their marriages
also have spouses who perhaps facilitate intimacy regulation towards equilibrium.

Based on theory in the close relationships literature (Reis & Shaver, 1988), intimacy
is a construct that shows both qualities of constancy and change. Constancy is reflected
in from an assumed desired level of intimacy that can be considered an equilibrium range
that may be different across individuals. Change is reflected in the day-to—day variabil-
ity in the experience of intimacy that fluctuates around an individuals equilibrium range.
Moreover, as a likely consequence of the inherent interdependence that exists in close rela-
tionships, such as marriage, we found mutual influence (symmetric coupling) between the
self-regulating dynamics of both spouses intimacy trajectories. We believe that the current
application of coupled differential equations models of dynamic systems to intimacy in mar-
ried couples is a way to parameterize the argument that intimacy is best conceptualized as
a process reflecting variability, change, and fluctuation over time.

A bottom line conclusion from this work is that in couples reporting greater marital
adjustment, intimacy regulation is facilitated. If the goal of an intimacy regulation system
is to stay within an equilibrium range, then our findings suggest that this regulation is more
apparent in satisfied couples. This type of dynamic mutual influence may be exemplified in
no better context than that of close relationships, such as marriage.
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