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A conceptual model
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Representing unobservables

 Statistical methods work on data--must 

represent conceptual variables empirically

 Factor-based SEM uses common factors 

to represent conceptual variables

 Composite-based methods use weighted 

composites for the same purpose
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History

 Composite-based methods were first 

developed to approximate results from 

factor analysis, at lower cost

 Simulations show biased results when 

using composite methods to estimate 

factor model parameters*

 All such studies used data drawn from 

populations where a factor model, 

not a composite model, was correct
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Composite-Based Methods

 Partial least squares (PLS) path modeling

 Generalized structured component 

analysis (GSCA)

 Regularized generalized canonical 

correlation analysis (RGCCA)

 Principal components (PCA) + regression

 Unit weights

 Etc . . .
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 Each composite estimated alternately:

◦ Weighted sum of its indicators

◦ Weighted sum of other composites

 In the end, always the former

 End result is a super correlation matrix of 
indicators and composites, from which 
regression coefficients are estimated

PLS path modeling

6



Mode A vs Mode B

 B: Regress composite on all components 

simultaneously

 A: Regress each component on composite 

separately (long mistaken for “something 

like” factor analysis)

 Mode B implies regression weights while 

Mode A implies correlation weights

 In PLS, must choose 1 for each composite
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GSCA

 Can estimate just weights (“formative”) 

or weights and loadings (“reflective”) 

for each composite

 Subsets of model parameters estimated in 

turns, using alternating least squares

 But with each step minimizing the same 

overall criterion

 Enables constraints on model parameters
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RGCCA

 Springs from the “multi-block data 

analysis” literature

 Enables Mode B, a variant of Mode A, and 

an in-between “Mode Ridge”

9



Received view

 Composite based methods like PLS path 

modeling are inherently defective, yielding 

biased parameter estimates

 You might as well create composites with 

unit weights, or use regression following 

principal component analysis (PCA) 
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Questions

 Given a correct model and composite 

population, are structural estimates from 

PLS / GSCA / RGCCA consistent?

 Are they “any better” than estimates from 

simpler techniques like unit weights?

 Does Mode A yield an advantage in 

out-of-sample R2 (and if so, at what cost)?
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Procedure

 Generate 10,000 observations from a 

composite-based population defined by 

parameter values

 Select sample of size n (no replacement) 

and estimate model

 Fix parameters at estimated values and 

predict dependent variables

 Repeat
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Simulation model
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Defining composite populations

CX = WX, CY = VY
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Defining composite populations

CY = CX P + E
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Defining composite populations

Defined cross-covariances (X,Y) using path 

model equations:

though there are other ways to do this, 

since you are working with composites
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Design dimensions

 Sample size: 40, 100, 500

 Indicator correlations: .00 to .95 by .05

 Population R2 (.2, .3, .4, .5, .6, .7, .8)

Did NOT vary

 Unstandardized component weights

.7, .6, .3, ~.25 (so composite variance = 1)

 Number of components: 4
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Simulations

1,000 replications x 7 x 20 x 3 = 420,000 

for each method examined:

PLS Mode A, Mode B

GSCA “formative,” “reflective”

RGCCA Mode B, new Mode A, Mode Ridge

Unit weights

PCA + regression

19



Criteria

 RMSE

 Bias

 In-sample R2

 Out-of-sample R2
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Results
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RMSE p1, p2, p3, p4
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RMSE estimated weights
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RMSE for weights when n = 10,000
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Reminder: simulation model
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Path estimate bias: p1
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Bias in p1 including PCA
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Path estimate bias: p2

28

n = 40 n = 500

-.15

-.10

-.05

.00

.05

.10

.15

.20 .30 .40 .50 .60 .70 .80

Mean Bias

R² in the population

PLS Mode A PLS Mode B

Unit Weights RGCCA A

RGCCA B RGCCA Ridge

GSCA refl GSCA form

-.15

-.10

-.05

.00

.05

.10

.15

.20 .30 .40 .50 .60 .70 .80

Mean Bias

R² in the population

PLS Mode A PLS Mode B

Unit Weights RGCCA A

RGCCA B RGCCA Ridge

GSCA refl GSCA form



Path estimate bias at n = 10,000
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Reminder: simulation model
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In-sample R2 C1
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Out-of-sample R2 C1
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Conclusions / takeaways 1

 PCA + regression is a poor choice

 Simple unit weights may outperform 

weighted methods when n is small

 Mode B (PLS / RGCCA) yields consistent 

estimates within the context of correctly 

specified composite models

 Mode A results may be preferable at 

moderate n, with high item covariance, 

and if the goal is max out-of-sample R2
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Questions?
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