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A conceptual model



Representing unobservables

e Statistical methods work on data--must
represent conceptual variables empirically

» Factor-based SEM uses common factors
to represent conceptual variables

* Composite-based methods use weighted
composites for the same purpose




History

 Composite-based methods were first
developed to approximate results from
factor analysis, at lower cost

 Simulations show biased results when
using composite methods to estimate
factor model parameters™

 All such studies used data drawn from
populations where a factor model,
not a composite model, was correct



Composite-Based Methods

e Partial least squares (PLS) path modeling

* Generalized structured component
analysis (GSCA)

* Regularized generalized canonical
correlation analysis (RGCCA)

¢ Principal components (PCA) + regression

e Unit weights
* Etc...



PLS path modeling

* Each composite estimated alternately:
> Weighted sum of its indicators
> Weighted sum of other comnosites

o ()
o () o
* In the end, always the former

* End result is a super correlation matrix of
indicators and composites, from which
regression coefficients are estimated




Mode A vs Mode B

©

* B: Regress composite on all components
simultaneously

* A: Regress each component on composite
separately (long mistaken for “something
like” factor analysis)

* Mode B implies regression weights while
Mode A implies correlation weights

* In PLS, must choose | for each composite



GSCA

» Can estimate just weights (“formative”)
or weights and loadings ("‘reflective”)
for each composite

» Subsets of model parameters estimated in
turns, using alternating least squares

* But with each step minimizing the same
overall criterion

» Enables constraints on model parameters



RGCCA

* Springs from the “multi-block data
analysis” literature

e Enables Mode B, a variant of Mode A, and
an in-between “Mode Ridge”



Received view

* Composite based methods like PLS path
modeling are inherently defective, yielding
biased parameter estimates

* You might as well create composites with
unit weights, or use regression following
principal component analysis (PCA)



Questions

* Given a correct model and composite

population, are structural estimates from
PLS / GSCA / RGCCA consistent!?

* Are they “any better” than estimates from
simpler techniques like unit weights?

* Does Mode A yield an advantage in
out-of-sample R2 (and if so, at what cost)?



Procedure

» Generate 10,000 observations from a
composite-based population defined by
parameter values

* Select sample of size n (no replacement)
and estimate model

* Fix parameters at estimated values and
predict dependent variables

* Repeat



Simulation model
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Defining composite populations
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Defining composite populations
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Defining composite populations

Defined cross-covariances (X,Y) using path
model equations:

Yo =2V TPWE,

though there are other ways to do this,
since you are working with composites



Design dimensions

* Sample size: 40, 100, 500
* Indicator correlations: .00 to .95 by .05
* Population R?% (.2, .3, 4,.5, .6,.7,.8)

Did NOT vary

* Unstandardized component weights
7,.6,.3,~.25 (so composite variance = |)

* Number of components: 4



Simulations

1,000 replications x 7 x 20 x 3 = 420,000
for each method examined:

PLS Mode A, Mode B

GSCA “formative,’ “reflective”

RGCCA Mode B, new Mode A, Mode Ridge
Unit weights

PCA + regression



Criteria

« RMSE

* Bias

* In-sample R?

» Out-of-sample R?



Results
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RMSE estimated weights
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RMSE for weights when n = 10,000
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Reminder: simulation model
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Path estimate bias: p,
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Bias in p, including PCA
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Path estimate bias: p,
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Path estimate bias at n = 10,000
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Reminder: simulation model
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In-sample R? C,
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Out-of-sample R? C,
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Conclusions / takeaways |

* PCA + regression is a poor choice

* Simple unit weights may outperform
weighted methods when n is small

* Mode B (PLS / RGCCA) yields consistent
estimates within the context of correctly
specified composite models

e Mode A results may be preferable at
moderate n, with high item covariance,
and if the goal is max out-of-sample R?



Questions?
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