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AIC and BIC for Simple Models of Severely Complex Data

Modeling	Error	for	Covariance	Structures	
	
For	comparing	non-nested	models,	psychologists	oMen	use	the	Akaike	
Informa:on	Criterion	(AIC)	and	Bayesian	Informa:on	Criterion	(BIC).	
	
When	modeling	covariance	structure,	a	discrepancy	func:on	
measures	the	distance	between	two	covariance	matrices,	with	a	
common	choice	being	the	Maximum	Likelihood	discrepancy:	
	

	
	
	

A	useful	framework	for	considering	modeling	errors:1-4	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

•  Σ0	=	true	popula:on	covariance	matrix	
•  S	=	covariance	matrix	of	a	random	sample	from	the	popula:on	
•  Σ(γ)	=	model	implied	covariance	matrix	(MICM)	calculated	from	

fiYng	the	model	to	Σ0	
•  Σ(γ)	=	MICM	es:mated	from	fiYng	the	model	to	S	

The Different Types of Modeling Errors 
 

•  φa =	discrepancy	between	the	best	possible	MICM	and	Σ0	
•  ƒ0	=	discrepancy	between	the	MICM	fit	to	S	and	full	reality	
•  ƒe	=	discrepancy	between	the	MICM	fit	to	S	and	the	MICM	fit	to	Σ0	
•  ƒs	=	discrepancy	between	the	MICM	fit	to	S	and	S	
	
	

Research	Ques:on	
	

	How	well	do	AIC	and	BIC		perform	at	selec:ng	their	respecitve	target	models	when	the	true	data	
	genera:ng	process	is	vastly	more	complex	than	any	of	the	candidate	models	under	considera:on?	

	
	

The	Complexity	of	Behavioral	Data
	

Most	previous	literature	comparing	AIC	and	BIC’s	model	selec:on	
performance	has	included	both	the	actual	data-genera:ng	process	
(DGP)	and	models	more	and/or	less	complex	than	the	true	DGP.5,6	
	

This	favors	BIC,6	but	does	not	reflect	common	psychological	seYngs,	
where	we	expect	human	behavior	to	be	the	result	of	many	different	
process	interac:ng	in	a	complicated	fashion.	

	
	

Simula:on	FiYng	5	Candidate	Models	to	Data	from	a	Complex	Process	

Candidate	
Model	 φa	

N = 50 
EBIC		|		EAIC	 

BIC & AIC Rate 

N = 100 
EBIC		|		EAIC	 

BIC & AIC Rate 

N =400 
EBIC		|		EAIC	 

BIC & AIC Rate 

N = 800 
EBIC		|		EAIC	 

BIC & AIC Rate 

N = 1200 
EBIC		|		EAIC	 

BIC & AIC Rate 

1	 .1512	 84.92  |  52.41 
.22  |  .19 

104.26  |  59.97 
  .19  |  .11 

173.20  |  105.34 
 .10  |  .03   

245.48  |  165.84 
.02  |  .01 

312.87  |  226.34 
.02  |  .01 

2	 .0842	 81.63  |  49.13 
.42  |  .40 

97.63  |  53.34 
.49  |  .39 

146.47  |  78.61 
  .45  |  .24 

191.95  |  112.31 
.35  |  .19 

232.54  |  146.01 
.29  |  .19 

3	 .1248 104.01  |  58.12 
.00  |  .05 

126.88 |  64.36 
 .00  |  .10 

197.61  |  101.81 
.10  |  .28 

264.18  |  151.74 
.20  |  .33 

323.84  |  201.68 
.27  |  .37 

4	 .5508 98.67  |  69.99 
.36 | .24 

136.61  |  97.53 
  .30  |  .19 

322.64  |  262.76 
.13  |  .06 

553.35  |  483.08 
.14  |  .07 

779.74  |  703.39 
.09  |  .04 

5	 .0284 96.37  |  52.39 
.01  |  .13 

113.73  |  53.81 
  .02  |  .21 

154.13  |  62.33 
  .22  |  .39 

181.44  |  73.69 
  .29  |  .40 

202.12  |  85.05 
  .33  |  .39 

	
	

Discussion	
	

Answering	the	Research	QuesGon:	
	

1.  At	small	sample	sizes,	BIC	fails	to	target	the	model	with	the	lowest	
error	of	approxima:on.	

2.  Eventually,	when	N	is	large	enough,	BIC	correctly	targets	the	model	
with	the	lowest	error	of	approxima:on.	

3.  AIC	incorporates	sample	size	to	target	the	model	with	the	lowest	
overall	error.	
•  This	target	model	will	change	as	sample	size	increases	and	

es:ma:on	error	decreases	
•  Overall	error	combines	approxima:on	and	es:ma:on	error2,4	

4.  Even	when	AIC	and	BIC	are	targe:ng	their	correct	models,	large	
model	selec:on	uncertainty	exists.	
•  The	selec:on	rate	for	the	correct	model	never	exceeded	50%	
•  Very	large	samples	are	needed	to	ensure	AIC	and	BIC	not	only	

target	their	correct	models	but	also	reliably	select	then	in	any	
given	sample	

	
The	Behavior	of	AIC	and	BIC	as	N	Increases	

	
In	a	finite	sample	AIC	targets	the	model	with	lowest	overall	error,6	while	
BIC	consistently	targets	the	model	with	lowest	approxima:on	error.8	
	

However,	“sufficiently	large”	N	is	required	for	BIC’s	sta:s:cal	consistency.4	
In	sample	sizes	seen	in	psychology,	Expected	BIC	(EBIC)	does	not	always	
target	the	model	with	the	lowest	error	of	approxima:on.	
	
As	N	increases,	the	difference	between	overall	error	and	approxima:on	
error	decreases	because	es:ma:on	error	shrinks.2	Thus,	in	this	simula:on	
AIC	began	to	target	the	model	with	the	lowest	approxima:on	error	as	this	
became	the	model	with	the	lowest	overall	error,	too.	
	
In	this	simula:on,	AIC	began	to	target	the	model	with	the	lowest	
approxima:on	error	more	quickly	than	BIC.	

	

The	Significance	of	the	Problem	
	

Model	selec:on	is	an	important	part	of	data	analysis.	Previous	simula:ons	
have	recommended	BIC	over	AIC	due	to	BIC’s	consistency.5,8	However,	the	
N	required	for	BIC	to	reach	its	consistency	can	be	very	large,	especially	
when	the	true	DGP	is	much	more	complex	than	any	considered	model.		
	
AIC	may	be	a	be?er	choice	due	to	its	ability	to	incorporate	sample	size	and	
how	quickly	es:ma:on	error	shrinks	with	increasing	N	rela:ve	to	the	large	
sample	sizes	needed	for	BIC	to	reach	consistency.	

Gene:cs	and	Sta:s:cal	Learning	Lab,	Department	of	Psychology,	University	of	Notre	Dame	

Data	was	simulated	from	the	displayed	
complex	path	diagram.7	
	

•  Exogenous	variables	are	in	red	
•  Manifest	variables	are	in	green	
•  Endogenous	factors	are	in	white	
	
	

Five	candidate	models	were	fit	to	a	subset	
of	manifest	vars	(y1,	y3,	y8,	y9,	y10,	y11,	y14)	
1.  A	2-factor	media:on	model	(p	=	17)	
2.  A	correlated	2-factor	model	(p	=	17)	
3.  A	bi-factor	model	(p	=	24)	
4.  A	one	factor	model	(	p	=	15)	
5.  A	2-factor	model	with	cross-loadings		

(p	=	23)	

All	of	these	candidate	models	are	vastly	
less	complex	than	the	true	DGP	
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Results below show each model’s Error of Approximation (φa)	and	Expected BIC (EBIC) and AIC 
(EAIC) at each sample size, as well as the selection rate from 1,000 samples at each N.


