A review of modern methods of estimating the size of health disparities

May 24, 2017

Emil Coman¹ Helen Wu²

¹ UConn Health Disparities Institute, ² UConn Health

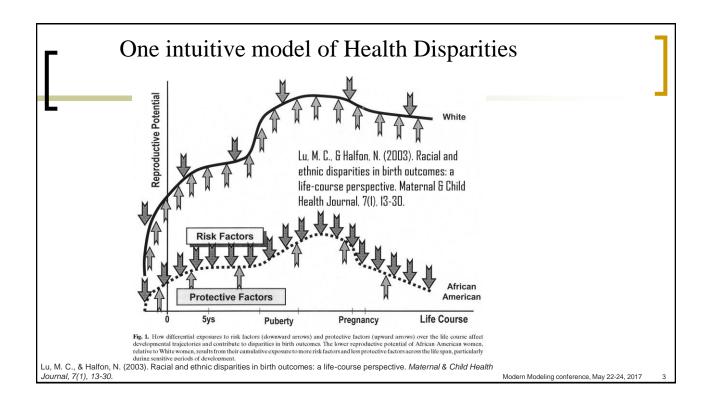
Modern Modeling conference, May 22-24, 2017

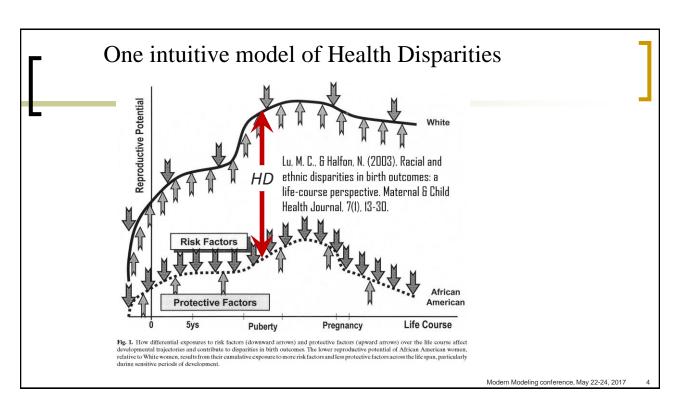
Health Disparities (HD): It's just about comparing two groups

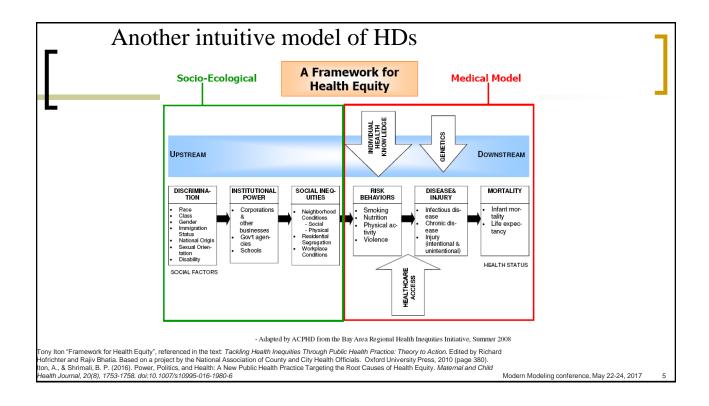
Goals

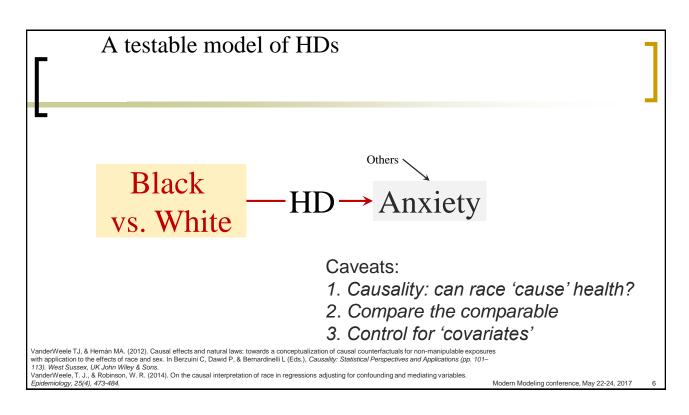
- 1. Simplify and reposition common analytic methods
- 2. Compare methods to estimate HDs
- 3. Suggest cross-pollinations
- 4. Encourage disparities investigations

Modern Modeling conference, May 22-24, 2017









- Independent samples t-test
- 2. Anova
- 3. Regression
- 4. Instrumental Variable regression
- 5. SEM
- 6. Matching methods
- 7. +

Modern Modeling conference, May 22-24, 2017

Modeling options for HDs

1. Independent samples Ttest is a 2-group model

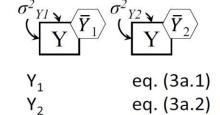


Figure 3a: The t-test model

Note: The independent samples t-test is testing the hypothesis: $\overline{Y_1} = \overline{Y_2}$; this two-group setup allows for inclusion of group specific covariates; the two equations are simply one variable for each group, but across-group constraints are possible, like $\sigma^2_{\gamma_1} = \sigma^2_{\gamma_2}$.

Coman, E. N., Suggs, L. S., Iordache, E., Coman, M. A., & Fifield, J. (2015). A Review of Graphical Approaches to Common Statistical Analyses. The Omnipresence of Latent Variables in Statistics International Journal of Clinical Biostatistics and Biometrics, 1(1), 1-9.

1. Independent samples T-test is a 2-group model

ttest y, by(binary)
pwmean y , over(binary) effects

2. Anova — similar for 2 groups anova y binary

> Allows for covariates though anova y binary c.x1 c.x2

$$\begin{array}{ccc}
\sigma_{YI}^2 & \sigma_{Y2}^2 & \overline{Y}_2 \\
Y & Y & \overline{Y}_2
\end{array}$$

$$\begin{array}{ccc}
Y_1 & \text{eq. (3a.1)} \\
Y_2 & \text{eq. (3a.2)}
\end{array}$$

Figure 3a: The t-test model

Note: The independent samples t-test is testing the hypothesis: $\overline{Y_1} = \overline{Y_2}$; this two-group setup allows for inclusion of group specific covariates; the two equations are simply one variable for each group, but across-group constraints are possible, like $\sigma^2_{Y_1} = \sigma^2_{Y_2}$.

Coman, E. N., Suggs, L. S., Iordache, E., Coman, M. A., & Fifield, J. (2015). A Review of Graphical Approaches to Common Statistical Analyses. The Omnipresence of Latent Variables in Statistics International Journal of Clinical Biostatistics and Biometrics, 1(1), 1-9.

Modern Modeling conference, May 22-24, 2017

Modeling options for HDs

3. Regression

reg y binary x1 x2

Binary X_1 X_2

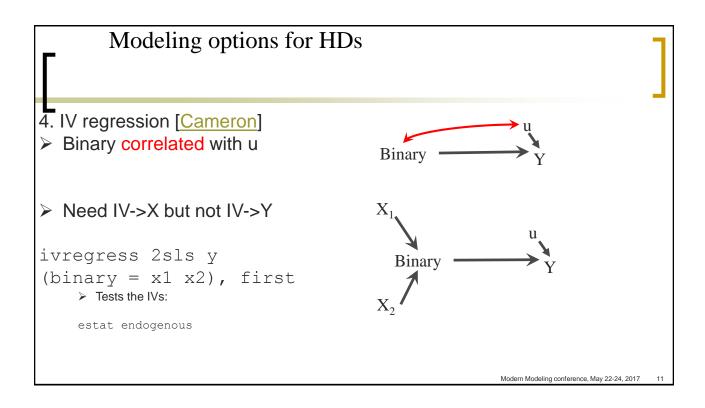
But: ? Can race cause health?

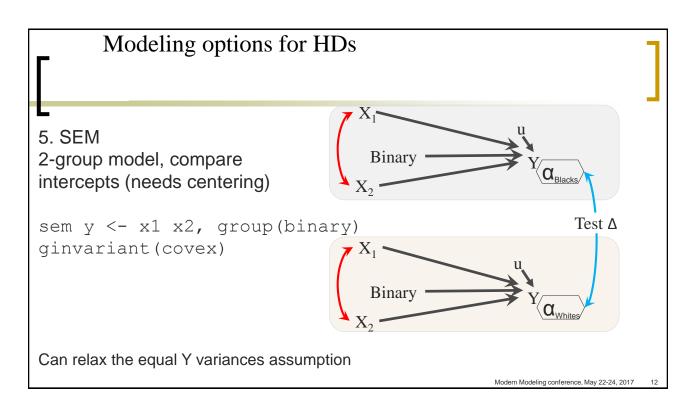
VanderWeele TJ, & Hernán MA. (2012). Causal effects and natural laws: towards a conceptualization of causal counterfactuals for non-manipulable exposures with application to the effects of race and sex. In Berzuini C, Dawid P, & Bernardinelli L (Eds.), Causality: Statistical Perspectives and Applications (pp. 101–141). Most Species (Life Military & Species).

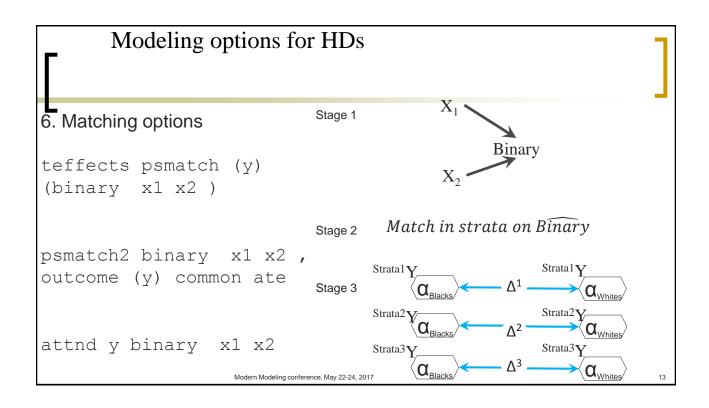
113). West Sussex, UK John Wiley & Sons.
VanderWeele, T. J., & Robinson, W. R. (2014). On the causal interpretation of race in regressions adjusting for confounding and mediating variables.

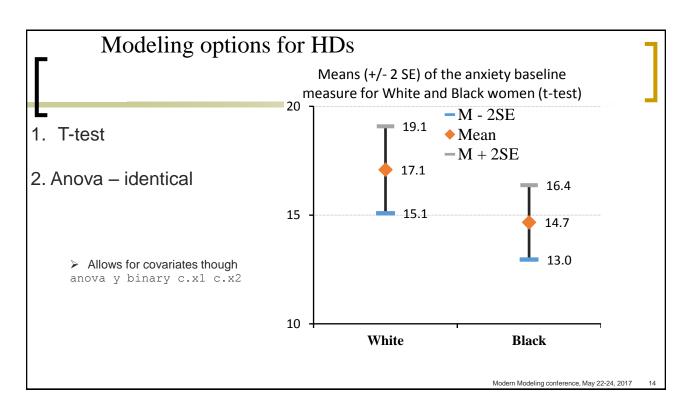
Epidemiology, 25(4), 473-484.

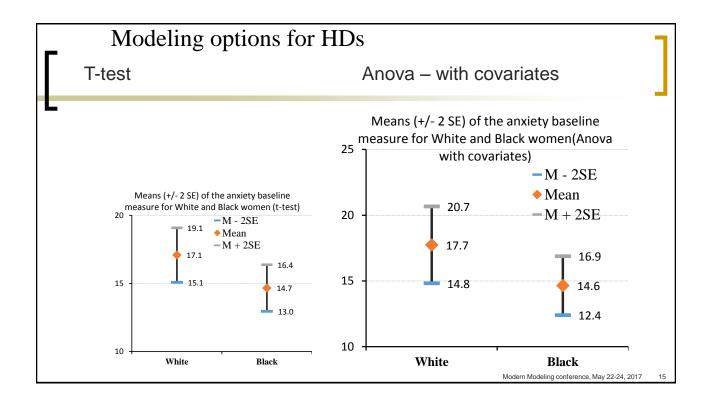
Modern Modeling conference, May 22-24, 2017

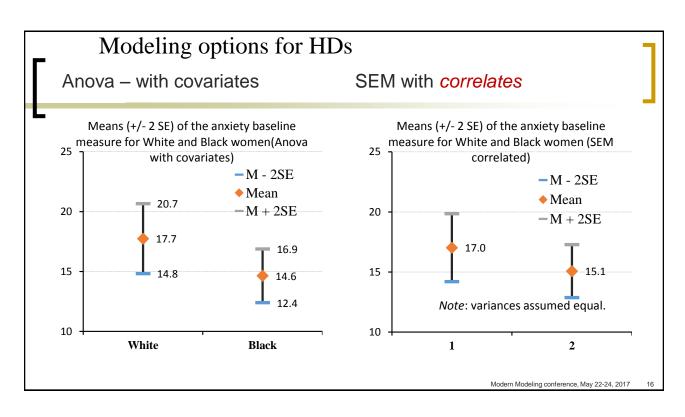












SEM with covariates [0=White; 1=Black]; variances freed

```
sem y <- x1 x2, group(binary) ginvariant(covex)</pre>
                                                              [95% Conf. Interval]
                    Coef. Std. Err. z P>|z|
              Structural
 y <-
          x1 |
                .0199704 2.16228 0.01 0.993 -4.21802 4.257961
2.61248 1.673379 1.56 0.118 -.6672832 5.892244
          0 |
          1 |
          x2 |
                                         0.44 0.662
1.63 0.100
          0 |
1 |
                   .164855 .3766247
                                                              -.5733159
                                                                             .9030258
                  .4905938 .3001652
                                                              -.0977191 1.078907
       _cons |
          0 | 13.43964 8.259071 1.63 0.104 -2.747845
1 | 3.422483 6.895766 0.50 0.620 -10.09297
                                                              -2.747845 29.62712
-10.09297 16.93794
                                                                             29.62712
     var(e.v)|
          0 | 60.78133 13.59112
                                                                39.21351
                                                                             94.21166
                             14.74046
          1 |
                84.67747
                                                                60.19947
                                                                             119.1086
-----means centered at .050 (X1 neighborhood disorder) and 22.91y (X2=age)------
                                                                               Modern Modeling conference, May 22-24, 2017
```

Modeling options for HDs

teffects psmatch

psmatch2

```
psmatch2 binary x1 x2 , outcome (y) common ate Probit regression
Number of obs
                                                        Prob > chi2 = Pseudo R2
                                                                                     12.08
                                                                                    0.0024
                                                        Pseudo R2
Log likelihood = -64.210562
                                                                                     0.0860
     binary | Coef. Std. Err. z P>|z| [95% Conf. Interval]

    x1 | .6428318
    .2054421
    3.13
    0.002
    .2401726
    1.045491

    x2 | .0468275
    .0366658
    1.28
    0.202
    -.0250361
    .1186911

    _cons | -.7222502
    .8205248
    -0.88
    0.379
    -2.330449
    .8859489

psmatch2: | psmatch2: Common
Treatment |
                     support
assignment | Off suppo On suppor | Total
   ntreated | 0 40 |
Treated | 11 55 |
 Untreated |
-----
     Total | 11 95 | 106
                                                                                 Modern Modeling conference, May 22-24, 2017
```

Modeling options for HDs

psmatch2

psmatch2 binary $\times 1$ $\times 2$, outcome (y) common ate Probit regression Number of obs = 106

T-stat	S.E.		Controls			Variable
-1.08		-1.94924242				У
-2.34	2.19360704	-5.12727273	18.9272727	13.8	ATT	
		-4.525	12.5	17.025	ATU	
		-4.87368421			ATE	

Modern Modeling conference, May 22-24, 2017

attnd

```
attnd y binary x1 x2 , comsup boot reps(100) dots logit detail
Note: the common support option has been selected
```

The region of common support is [.30252502, .89642859]

The distribution of the pscore is Pr(binary)

	Percentiles	Smallest					
1%	.3173758	.302525					
5%	.3990624	.3173758					
10%	.4397769	.3197376	Obs	141			
25%	.4943597	.3332007	Sum of Wgt.	141			
50%	.6010811		Mean	. 6028369			
		Largest	Std. Dev.	.1374292			
75%	.7131706	.854728					
90%	.7813184	.8586264	Variance	.0188868			
95%	.8165104	.8644204	Skewness	0160976			
99%	.8644204	.8964286	Kurtosis	2.2178			
The	nrogram is sear	ching the nearest	neighbor of	each treated unit			

The program is searching the nearest neighbor of each treated unit.

This operation may take a while.

Modern Modeling conference, May 22-24, 2017

Modeling options for HDs

attnd

attnd y binary x1 x2 , comsup boot reps(100) dots logit detail

ATT estimation with Nearest Neighbor Matching method (random draw version)

Analytical standard errors

n. treat. n. contr. ATT Std. Err. 85 23 -0.524 2.008

ivregress

ivregress 2sls y (binary = x1 x2), first

First-stage regressions

Number of obs = 106 F(2, 103) = 6.05 Prob > F = 0.0033 R-squared = 0.1051 Adj R-squared = 0.0878 Root MSE = 0.4652

binary	•		Std. Err.		P> t	•	Interval]
ж1 ж2	 	.2176514 .0148822		3.24 1.19	0.002 0.235 0.322	.0842259 0098403 2785883	.3510769 .0396046 .8397305

Modern Modeling conference, May 22-24, 2017

Modeling options for HDs

ivregress

ivregress 2sls y (binary = x1 x2), first

Instrumental variables (2SLS) regression

Number of obs = 106
Wald chi2(1) = 1.57
Prob > chi2 = 0.2098
R-squared = .
Root MSE = 10.126

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
binary | 7.847662 6.257221 1.25 0.210 -4.416267 20.11159
cons | 10.92504 4.018222 2.72 0.007 3.04947 18.80061

Instrumented: binary
Instruments: x1 x2

ivregress

```
estat endogenous
```

```
Tests of endogeneity
```

Ho: variables are exogenous

```
Durbin (score) chi2(1) = 3.51188 (p = 0.0609)
Wu-Hausman F(1,103) = 3.52942 (p = 0.0631)
```

"If the test statistic is significant, the variables must be treated as endogenous " URL

estat overid

Tests of overidentifying restrictions:

```
Sargan (score) chi2(1) = .872447 (p = 0.3503)
Basmann chi2(1) = .854791 (p = 0.3552)
```

"A statistically significant test statistic indicates that the instruments may not be valid" URL

Modern Modeling conference, May 22-24, 2017

Modeling options for HDs

Comparisons

Some methods are 'better' than others in

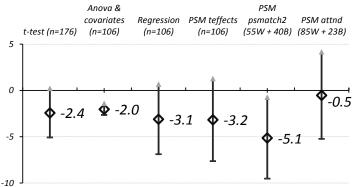
SEM is not shown.

Identifying health disparities.

the test of HD is a Wald (or chi-squared test).

Comparison of racial/ethnic (R/E) differences (92 White- 145 Black) in Anxiety baseline scores, by estimation method

All models used age and neighborhood stress as: covariates (regression); propensity predictors (PSM); instruments for R/E (IV).



- Mean(-2*SE) ♦ Difference ▲ Mean(+2*SE)

Modern Modeling conference, May 22-24, 2017

J17 .

Conclusions – email for >: comanus@gmail.com

- Some methods are 'better' than others in identifying health disparities.
- ➤ Comparisons encourage analysts to think about 'the place' of the variables in the analytical model.
- One general insight: we can trust estimates when that are somewhat consistent across methods.

Modern Modeling conference, May 22-24, 2017