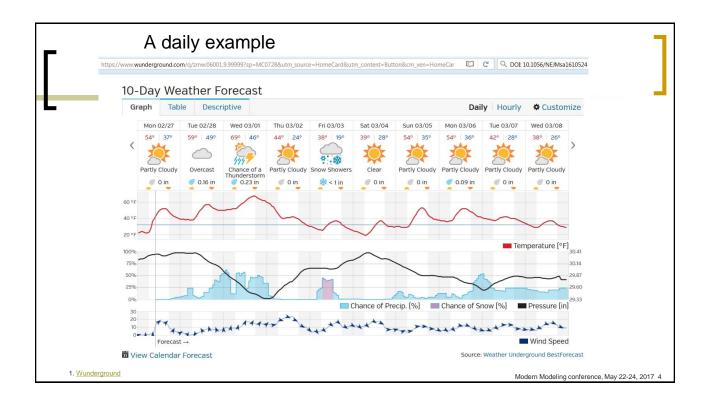
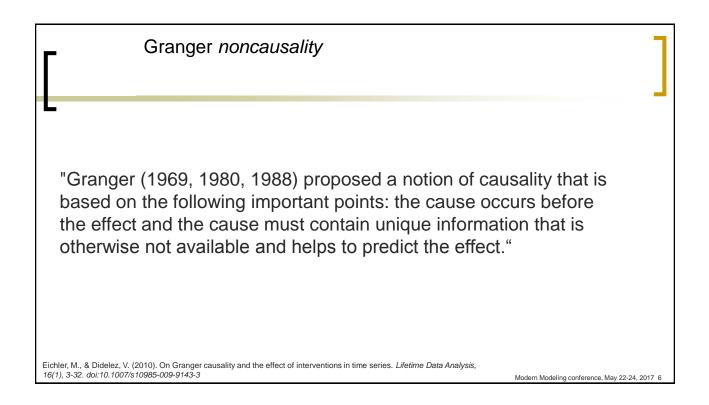

Assessing Health Disparities in Intensive Longitudinal Data: Gender Differences in Granger Causality Between Primary Care Provider and Emergency Room Usage, Assessed with Medicaid Insurance Claims


May 24, 2017

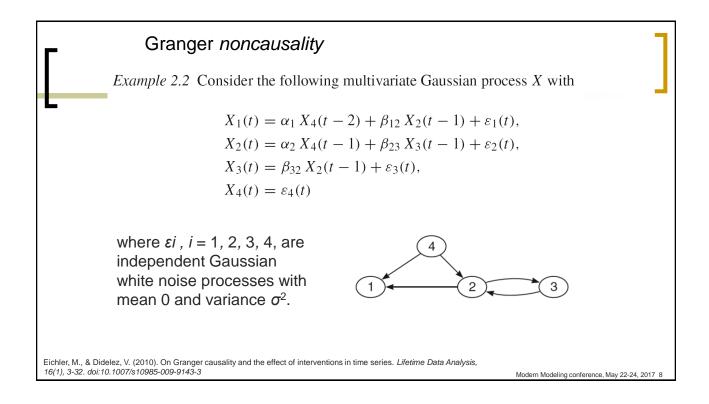
Emil Coman¹ Yinghui Duan² Daren Anderson³

¹ UConn Health Disparities Institute, ² UConn Health, ³ Weitzman Institute


Γ	Granger causality
L	Goals
	1. Introduce an analytical method to 'extract direction of causal effects' from time series/panel data/intensive longitudinal data
	2. Show software code and output
	3. Interpret results
	Modern Modeling conference, May 22-24, 2017 2

2

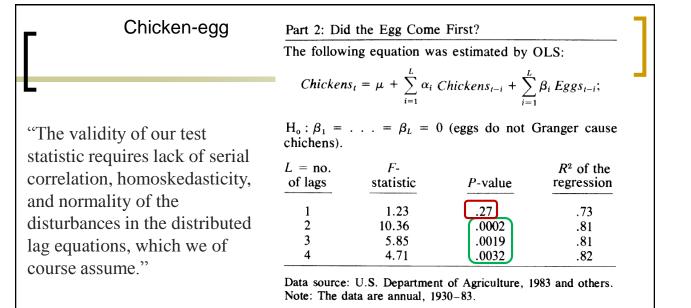
Chicken-egg "To conclude that one of the two "came first," we must find unidirectional causality from one to the other. In other words, we must reject the *noncausality* of the one to the other and at the same time fail to reject the *noncausality* of the other other to the one."


Modern Modeling conference, May 22-24, 2017

Granger noncausality

"We say that X Granger-causes Y if the current value of Y can be better predicted from the past values of all three series X, Y, and Z than from the past values of the two processes Y and Z alone. Here, "better predicted" means a smaller mean square prediction error.

We note that the definition depends on the set of variables Z included in the analysis."


Tschacher W, Ramseyer F: Modeling psychotherapy processes by time-series panel analysis (TSPA). Psychother Res 2009, 19:469-481

Granger noncausality (1) (2) (3) "It is immediately obvious that with respect to the set {X1, X2, X3, X4}, the component X1 is Granger noncausal for all other variables, and for instance X3 is Granger noncausal for X1. However, with respect to the reduced set {X1, X3, X4} it cannot be assumed anymore that X3 is Granger noncausal for X1. It is less intuitive, but also clear from the full model that X3(*t*) is also not Granger noncausal anymore for X1 with respect to {X1, X2, X3} due to the selection effect when conditioning on the past of X2 which induces an association between X3 and X4." Eichler, M. & Didelez, V. (2010). On Granger causality and the effect of interventions in time series. Lifetime Data Analysis. Teither, M. & Didelez, V. (2010). On Granger causality and the effect of interventions in time series. Lifetime Data Analysis. Teither, M. & Didelez, V. (2010). On Granger causality and the effect of interventions in time series. Lifetime Data Analysis. Teither, M. & Didelez, V. (2010). On Granger causality and the effect of interventions in time series. Lifetime Data Analysis.

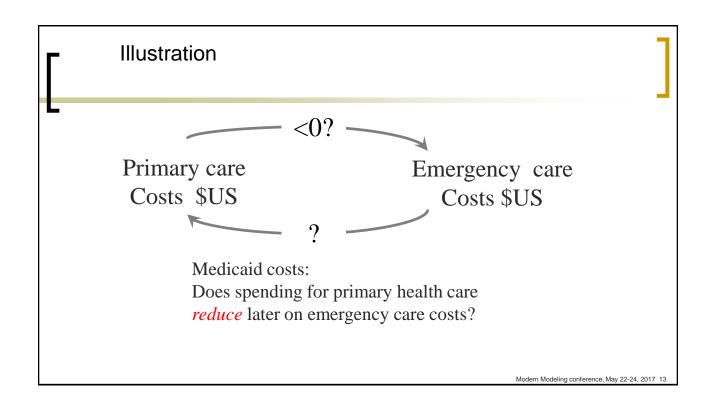
F	Chicken-	egg real exa	mple			7
	The follow	ing equation wa	s estimated by	OLS:		
L		$\mu = \sum_{i=1}^{L} \alpha_i \ Eggs_i$ $\dots \ \beta_L = 0 \ (ch$				
	L = no. of lags	F- statistic	<i>P</i> -value	R^2 of the regression		
	1	.04	.85	.96		
	2	1.71	.19	.97		
	3	1.10	.36	.97		
	4	.79	.54	.97		
the distributed	of our test statistic required age equations, which wh	ve of course assume."	,		of the disturbances in	
1. Thurman, W. N., & economics, 70(2), 23	& Fisher, M. E. (1988). Chicker 37-238.	ns, eggs, and causality, or wh	ich came first. American jour	÷	ern Modeling conference, May 22-24, 2017	10

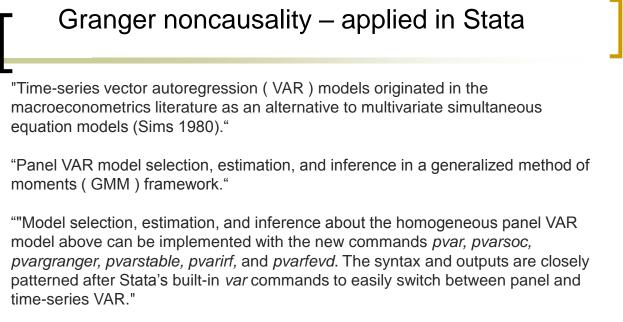
5

1. Thurman, W. N., & Fisher, M. E. (1988). Chickens, eggs, and causality, or which came first. American journal of agricultural economics, 70(2), 237-238.

Chicken-egg

"While our test is agnostic regarding this instantaneous causality, we suspect that eggs are endogenous in the sense that chickens cause eggs within the sampling period.


A Wu-Hausman test of the predeterminedness of eggs could address the issue and would require a valid instrumental variable (correlated with eggs and uncorrelated with the chicken forecast error), perhaps bacon."


"Suggestions for Future Research

The structural implications of our results are not yet clear. To draw them out fully will require collaboration between economists and poultry scientists. The potential here is great."

1. Thurman, W. N., & Fisher, M. E. (1988). Chickens, eggs, and causality, or which came first. American journal of agricultural economics, 70(2), 237-238.

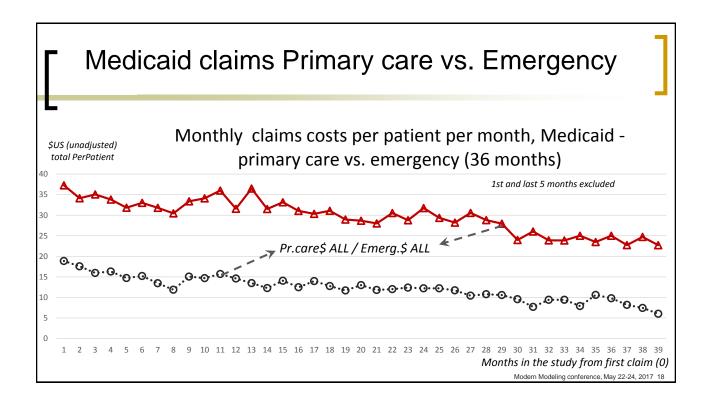
Modern Modeling conference, May 22-24, 2017 12

1. Abrigo, M. R., & Love, I. (2016). Estimation of panel vector autoregression in Stata. Stata Journal, 16(3), 778-804.

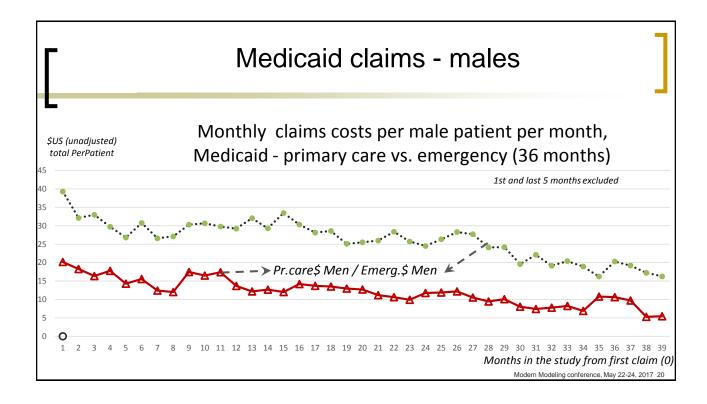
Granger noncausality – applied in Stata

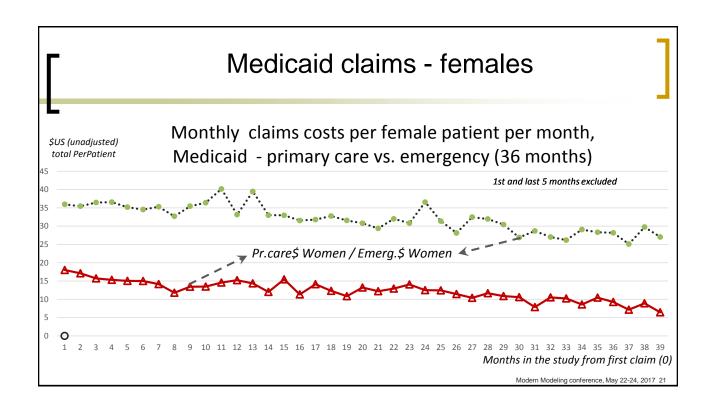
"*pvar* fits homogeneous panel VAR models by fitting a multivariate panel regression of each dependent variable on lags of itself, lags of all other dependent variables, and lags of exogenous variables, if any. The estimation is by GMM. The command is implemented using the interactive version of Stata's gmm command with analytic derivatives."

"*pvarsoc* provides various summary measures to aid the process of panel VAR model selection." "The postestimation command *pvargranger* performs Granger causality Wald tests for each equation of the underlying panel VAR model. It provides a convenient alternative to Stata's built-in


test command." "The postestimation command *pvarstable* checks the stability condition of panel VAR estimates by calculating the modulus of each eigenvalue of the fitted model."


"The postestimation command *pvarin* calculates and plots IRF s(impulse–response functions)." "The postestimation command ichecks the stability condition of panel VAR estimates by calculating the modulus of each eigenvalue of the fitted model."


"The postestimation command *pvarfevd* computes FEVD based on a Cholesky decomposition of the residual covariance matrix of the underlying panel VAR model. Standarderrors and confidence intervals based on Monte Carlo simulation may be optionally computed." 1. Abrigo, M. R., & Love, I. (2016). Estimation of panel vector autoregression in Stata. *Stata Journal*, *16*(3), *778-804*.


Medica	aid clair	ns data	à			
4,358 patients in	CT (238404	4=63.79% fe	emale)			
86,613 claims, u	p to 45 mon	ths.				
Average age 44 y	ears old					
. xtsum age						
Variable	Mean	Std. Dev.	Min	Max	Obser	rvations
	44.12122	17.60198	0	100	N =	373725
age overall					n =	14358
ige overall between within	1	18.80543 0	0	100 44.12122		

Medica	d claims Primary care (1) vs. E	mergency (2)
-	92 Family Nurse Practitioner	1	
	99 Community Health Nurse Practitioner	1	
	124 Primary Care Nurse Practitioner	1	
	306 Preventative Medicine	1	
	318 General Practice Medicine	1	
	345 General Pediatrics	1	
	521 Medical FQHC & Tribal Svs Medical FQHC	1	
	997 Primary Care Physician Assistant	1	
	100 Critical Care Nurse Practitioner	2	
	102 Neonatal Critical Care Nurse Practitioner	2	
	104 Pediatric Critical Care Nurse Practitioner	2	
	260 Ambulance	2	
	261 Air Ambulance	2	
	262 Critical Care Helicopter	2	
	315 Emergency Medicine	2	
	611 Pediatric Emergency Department Medicine	2	
	612 Pediatric Emergency Medicine	2	
	621 Pediatric Critical Care Medicine	2	Modern Modeling conference, May 22-24, 2017 1

Emerge		Panel R -[018/	0		imary ca	are \$s
<pre>xtreg dolprim</pre>	Primary ca	re \$s] dolem	nerg [Eme	rgency \$s	1	
Random-effects	GLS regress	ion		Number	of obs =	373,725
Group variable	a: id			Number	of groups =	14,358
R-sq:				Obs per	group:	
within =	= 0.0004				min =	1
between =	• 0.0007				avg =	26.0
overall =	= 0.0004				max =	45
				Wald ch	i2(1) =	146.57
corr(u_i, X)	= 0 (assume	d)		Prob >	chi2 =	0.0000
dolprimc	Coef.		z		[95% Conf.	Interval]
dolemerg	0181991				0211454	0152528
					23.17387	

Panel Regression Primary care \$s -[-.021/.002*]->Emergency \$s

	[Emergency S				-		
ndom-effects	GLS regress:	ion		Number o	of obs	=	373,725
oup variable	: id			Number o	Number of groups =		
sq:				Obs per	group:		
within =	0.0004				min	=	1
between =	0.0007				avg	=	26.0
overall =	0.0004				max	=	45
overall =	0.0004			Wald chi	max i2(1)		
orr(u_i, X)	= 0 (assumed			Prob > d	i2(1) chi2	=	146.31 0.0000
orr(u_i, X) dolemerg	= 0 (assumed Coef.	Std. Err.	z	Prob > o P> z	i2(1) chi2 [95% Co	= = 	146.31 0.0000 Interval]
orr(u_i, X) dolemerg +	= 0 (assumed	Std. Err.	Z	Prob > 0	i2(1) chi2 [95% Co	= = nf.	146.31 0.0000 Interval]

- <i>pvar</i> En	nergena	cy \$s ->	Prim	ary ca	are \$s	
. pvar dolprim	nc dolemerg	, lags(6)	No. of ob	os =	168681	
No. of panels	= 964			no. of T	= 17.491	
- 1	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
dolprimc						
dolprimc						
L1.	.2746698	.1290072	2.13	0.033	.0218204	.5275192
L2.	0485268	.0453748	-1.07	0.285	1374597	.0404062
L3.	.0190768	.0153223	1.25	0.213	0109544	.049108
L4.	0008771	.0096073	-0.09	0.927	0197071	.0179529
L5.	0072563	.0102543	-0.71	0.479	0273544	.0128418
L6.	.0043254	.0049237	0.88	0.380	005325	.0139757
dolemerg						
L1.	.0052949	.0023697	2.23	0.025	.0006504	.0099395
L2.	.001567	.0016548	0.95	0.344	0016764	.0048104
L3.	.0003862	.0009709	0.40	0.691	0015167	.0022891
L4.	.0017168	.0009404	1.83	0.068	0001262	.0035599
L5.	.001087	.0010514	1.03	0.301	0009737	.0031477
L6.	.0012177	.0009675	1.26	0.208	0006785	.0031139
					Modern Mo	odeling conference, May 22-24, 2017 2

Primary care \$s ->Emergency \$s									
. pvar dolprim	c dolemerg	, lags(6)	No. of ob	os =	168681				
No. of panels	= 9644		Ave. r	no. of T	= 17.491				
1	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]			
dolemerg									
dolprimc									
L1.	.0047209	.0031455	1.50	0.133	0014441	.0108859			
<u>L2.</u>	.006232	.003401	1.83	0.067	0004337	.0128978			
L3.	.0032212	.0028914	1.11	0.265	0024459	.0088882			
<u>L4</u> .	.0098327	.004332	2.27	0.023	.0013422	.0183233			
L5.	0036448	.0039193	-0.93	0.352	0113265	.0040368			
L6.	.0245599	.0061225	4.01	0.000	.0125601	.0365598			
dolemerg									
L1.	.1230638	.0233041	5.28	0.000	.0773886	.1687391			
L2.	.0796443	.0134472	5.92	0.000	.0532882	.1060004			
L3.	.0649163	.010089	6.43	0.000	.0451422	.0846904			
L4.	.0522287	.0124232	4.20	0.000	.0278798	.0765777			
L5.	.0411237	.0113239	3.63	0.000	.0189292	.0633181			
L6.	.0303653	.0088422	3.43	0.001	.0130349	.0476957			
					Modern Mo	odeling conference, May 22-24, 2017 2			

pvargranger Primary care \$s -!*->Emergency \$s

. pvargranger

panel VAR-Granger causality Wald test Ho: Excluded variable does not Granger-cause Equation variable Ha: Excluded variable Granger-causes Equation variable

Equation \ Excluded		chi2	df	Prob > chi2
dolprimc	1			
dolemerg	1	9.425	6	0.151
ALL	I.	9.425	6	0.151
	-+			
dolemerg	1			
dolprimc	1	19.265	6	0.004
ALL	1	19.265	6	0.004

	Males <i>neither</i> vs. Females PrC-!*->Em.								
+					+ MALES				
Equation \setminus	Excluded	chi2	df	Prob > chi2	1				
dolprimc	l I				1				
I	dolemerg	6.326	6	0.388	1				
l	ALL	6.326	6	0.388	1				
dolemerg	l I				1				
I	dolprimc	4.375	6	0.626	1				
I	ALL	4.375	6	0.626	1				
+					+ FEMALES				
Equation \setminus	Excluded	chi2	df	Prob > chi2	1				
dolprimc					I				
	dolemerg	7.462	6	0.280	1				
	ALL	7.462	6	0.280	1				
dolemerg	l I				1				
l	dolprimc	113.310	6	0.000	1				
	ALL	113.310	6	0.000	1				

 Primary care \$s <->Emergency \$s by gender 									
. pvar dol	primc	dolemerg	lags(6)						
2	-	sig. shown)							
MALES	-	-							
Coef	. St	d. Err.	z P> z	[95 ⁹	Conf. I	interval]			
PrimC\$s = D Emerg	\$s								
	L1.	.01222	.007332	1.67	0.096	0021505	.0265905		
FEMALES PrimC\$s = D	v								
Emerg\$s	L3.	.0018045	.0009995	1.81	0.071	0001545	.0037635		
	L4.	.0017593	.0010084	1.74	0.081	0002171	.0037357		
Emerg\$s =Dv									
PrimC\$s	L2.	.0169106	.0061186	2.76	0.006	.0049184	.0289028		
	L6.	<mark>.0295</mark> 973	.0028833	10.27	0.000	.0239461	.0352485		

Conclusions – email for >: comanus@gmail.com

- 1. Causal dynamic processes captured by costs of care may differ by gender
- 2. The pattern of differences merits further investigations
- 3. Causality with such intensive data offers some opportunities

"As a limitation, we have to emphasize that Granger causality is not true causality."

Tschacher W, Ramseyer F: Modeling psychotherapy processes by time-series panel analysis (TSPA). Psychother Res 2009, 19:469-481