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Introduction to Probabilistic Index Models (PIMs)

Class of (semiparametric) regression models.

Different than Generalized Linear Models (GLMs).

Connection with rank-tests.

Connection with Cox Proportional Hazards models.

Content largely based on 2 publications

Thas, O., De Neve, J., Clement, L. and Ottoy, J.P. (2012)
Probabilistic Index Models (with Discussion). JRSS-B, 74,
623–671.

De Neve, J. and Thas, O. (2015) A Regression Framework for
Rank Tests Based on the Probabilistic Index Model. JASA,
110, 1276–1283.
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PIMs can be used for a variety of applications.

Current status: focus mainly on applications in biostatistics.

Time-to-event data (survival analysis)

Gene expression studies.

See e.g.

De Neve, J., Thas, O., Ottoy, J.P. and Clement, L. (2013) An extension of the Wilcoxon-Mann-Whitney
test for analyzing RT-qPCR data. SAGMB, 12, 333–346.

De Neve, J., Meys, J., Ottoy, J..P., Clement, L. and Thas, O. (2014) unifiedWMWqPCR: the unified
Wilcoxon–Mann–Whitney test for analyzing RT-qPCR data in R. Bioinformatics, 30, 2494–2495.

Goal of this talk:

Illustrate that PIMs might be useful for analyzing behavioral
data
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Question: What is a Probabilistic Index Model?

Answer: A regression model for the Probabilistic Index (PI).

Question: What is the Probabilistic Index?

Answer: The probability P (Yi < Yj | X i ,X j) with (Yi ,XT
i ) and

(Yj ,X j) i.i.d.
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The Probabilistic Index
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We will use the BtheB-study (R package HSAUR) for motivation
and illustration.

Beat the Blues Study (BtheB):

Clinical trial of an interactive multimedia program called Beat
the Blues.

BtheB: designed to deliver cognitive behavioural therapy to
depressed patients via a computer terminal.

Patients with depression recruited in primary care.

Randomised to BtheB program or to ‘treatment as usual’
(TAU), i.e. face-to-face counselling.

Depression is quantified via Beck Depression Inventory II (21
questions, range 0-63)

100 subjects in dataset (original study: 167 subjects)

Longitudinal study, but we only consider a cross-sectional part.

Everitt and Hothorn (2015). HSAUR: A Handbook of Statistical Analyses Using R (1st Edition)
J. Proudfoot, D. Goldberg and A. Mann (2003). Computerised, interactive, multimedia CBT reduced anxiety and
depression in general practice: A RCT. Psychological Medicine, 33, 217227.
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Beat the Blues Study

Beck Depression Inventory II after 3 months (higher score =
more depressed).

Beck Depression II is also measured at baseline.

Treatment: BtheB versus TAU, randomized.

Drugs: did the patient take anti-depressant drugs? - not
randomized.

Complete case analysis: 37 (BtheB) and 36 (TAU).

Question 1

Is there a difference between the treatments in terms of depression?

Question 2

Does anti-depressant drug have an effect on depression?
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Both treatments seem to have a positive effect.
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BtheB does a slightly better job
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Modest deviation from normality
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Is there a difference between the treatments (X ) in terms of
depression (Y )?

H0 : E (Y | X = TAU) = E (Y | X = BtheB) , HA : not H0.

Two-sample t-test p-value:

Welch: 0.041

Permutation: 0.042.

95% CI for E (Y | X = TAU)− E (Y | X = BtheB):

[0.23, 11.05]
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The effect of the outlier
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Results when the outlier is removed

Two-sample t-test p-value:

Welch: 0.0083 (with outlier: 0.041)

Permutation: 0.0087 (with outlier: 0.042).

95% CI for E (Y | X = TAU)− E (Y | X = BtheB):

[1.8, 11.7] (with outlier: [0.23, 11.05])
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Since the outlier has some effect, we might want to consider a
more robust test.

We choose the Wilcoxon–Mann–Whitney (WMW) Rank test

p-value with outlier: 0.041

p-value without outlier: 0.022

What is the effect measure associated the WMW test?

13 / 37
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Test statistic associated with the WMW test:

T =
U − 0.5

SE0(U)

U =
1

nBnT

∑
i

∑
j

I
(
Y BtheB
i < Y TAU

j

)
, I (TRUE ) = 1, I (FALSE ) = 0,

and SE0(U) the standard error of U under H0 : FBtheB = FTAU .

Since
E (U) = P

(
Y BtheB < Y TAU

)
,

it follows that the WMW-test is associated with

H0 : FBtheB = FTAU HA : P
(
Y BtheB < Y TAU

)
6= 0.5.

Note: under location-shift it also tests for HA : ∆ 6= 0 with ∆ a
location parameter (e.g. difference in means or medians).
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The effect measure

P
(
Y BtheB < Y TAU

)
has many names:

Mann–Whitney functional

The nonparametric treatment effect

The probability of superiority.

...

The probabilistic index.

It is the probability that a randomly selected patient receiving
BtheB will have a better (here lower) depression score than a

randomly selected patient receiving TAU.

Example: P̂(Y BtheB < Y TAU) = 64% (95%CI : [51%, 75%])
15 / 37
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The WMW test and the PI have some attractive properties

T =
U − 0.5

SE0(U)
and P

(
Y BtheB < Y TAU

)
The PI

Applies to ordinal outcomes (discrete or continuous).

Scale-free.

Invariant under monotone transformations of the outcome.

‘Easy’ to understand.

The WMW test

Robust to outliers.

Applies to ordinal outcomes (discrete or continuous).

Good power properties: ARE.

max(1− x2, 0) Normal Uniform Logistic t3 Laplace t5 Exp Cauchy
0.86 0.95 1 1.1 1.24 1.5 1.9 3 ∞
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Return to the Beat the Blues Study

Beck Depression Inventory II after 3 months (higher score =
more depressed).

Beck Depression II is also measured at baseline.

Treatment (BtheB versus TAU, randomized).

Drugs: did the patient take anti-depressant drugs? - not
randomized.

Complete case analysis: 37 (BtheB) and 36 (TAU).

Question 1

Is there a difference between the treatments in terms of depression?

Question 2

Does anti-depressant drug have an effect on depression?
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Does anti-depressant drug have an effect on depression?

The drugs were not randomized.
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Assessing the effect of drugs on depression

Ordinary t-test: p-value 0.51, 95% CI: [-3.9, 7.6]

→ ignores the baseline score (confounder)

Solution: write t-test as a regression model and included baseline
score as a predictor

lm(score.3M ∼ drugs + score.0M)

→ p-value 0.009, 95% CI: [-7.6, -1.1]
(better (lower) score for those receiving drugs)
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What if we are interested in the PI:

P
(
Y Drugs < Y No Drugs

)
?

Problem: Due to the confounder, we cannot trust the WMW test.

Question: Can we embed the WMW test in a regression context?

Answers: Yes, via a Probabilistic Index Model:

P (Yi < Yj | X i ,X j) = m(X i ,X j ;β), (Yi ,XT
i ) i.i.d.

(Yi ,XT
i ) i = 1, . . . , n i.i.d. sample

X i covariate, p-dimensional, e.g. XT
i = (drugs, score.0M)

m(·) a known function

β the regression coefficient.
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Probabilistic Index Models
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P (Yi < Yj | X i ,X j) = m(X i ,X j ;β),

Question: how should m(X i ,X j ;β) look like?

Let’s have a look at the linear regression model for inspiration

E (Yi | X i ) = XT
i β,

which implies, exploiting E (Yi )− E (Yj) = E (Yi − Yj),

E (Yi − Yj | X i ,X j) = (X i − X j)
Tβ.

So maybe the following makes sense

P (Yi < Yj | X i ,X j) = g−1[(X i − X j)
Tβ],

with g(·) a link-function (e.g. probit or logit) to ensure PI ∈ [0, 1].
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PIMs: connection with other
models
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Connection with other models.

Model 1: the parametric normal linear model:

Yi = XT
i α + εi , εi ∼ N(0, σ2),

implies

P (Yi < Yj | X i ,X j)

= P
(
XT

i α + εi < XT
j α + εj | X i ,X j

)
= P

(
εi − εj < (X j − X i )

Tα | X i ,X j

)
εi − εj ∼ N(0, 2σ2)

= P

(
Z < (X j − X i )

T α√
2σ2

)
Z ∼ N(0, 1)

= g−1[(X j − X i )
Tβ] with β =

α√
2σ2

, g(·) = probit(·).
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Connection with other models.

Model 2: semiparametric linear transformation model (part 1)

h(Yi ) = XT
i α + εi , εi ∼ N(0, σ2),

with h(·) strict monotone and unknown function.

Since

P (Yi < Yj | X i ,X j) = P (h(Yi ) < h(Yj) | X i ,X j) ,

if follows that

P (Yi < Yj | X i ,X j) = g−1[(X j − X i )
Tβ],

with β = α√
2σ2

and g(·) = probit(·).
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Connection with other models.

Model 2: semiparametric linear transformation model (part 2)

Since the difference between two extreme value variables follows a
logistic distribution, one can show that

h(Yi ) = XT
i α + εi , εi ∼ F (e) = 1− exp[− exp(e)],

implies the PIM

P (Yi < Yj | X i ,X j) = g−1[(X j − X i )
Tβ],

with β = α and g(·) = logit(·).

Note: this is related to the Cox proportional hazards model.

26 / 37
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PIMs: estimation theory
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P (Yi < Yj | X i ,X j) = g−1[(X j − X i )
Tβ],

How can we semiparametrically estimate β only assuming the PIM
(no further distributional assumptions)?

Trick:

P (Yi < Yj | X i ,X j) = E (Iij | X i ,X j), Iij = I (Yi < Yj)

⇒ E (Iij | X i ,X j) = g−1(XT
ij β), X ij = X j − X i .

Use glm() on transformed outcomes Iij and predictors X ij to
estimate β!

28 / 37
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Challenges in the estimation

cross-correlation:

Iij = I (Yi < Yj) → I (Yi < Yl)

→ I (Yj < Yl)

→ I (Yk < Yi )

→ I (Yk < Yj)

Consequences:

you have to prove that glm() gives consistent estimators.

provide consistent sandwich estimator for Var
(
β̂
)

that takes the cross-correlation into account.

Both are solved by writing out the influence function upon using Hajek-projections.

Nice side result: glm() does not give the efficient estimator in theory, but in practice it is very close.
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PIMs: connection with
rank tests
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Two-sample design

Yi : depression score at 3 months.
Xi : anti-depressant drugs (no = 0, yes = 1).

Consider the PIM

P (Yi < Yj | Xi ,Xj) = expit[(Xj − Xi )β].

→ expit(β) = P (Yi < Yj | Xi = 0,Xj = 1) = P (Y no < Y yes)

→ expit(β̂) =
1

nnonyes

∑
i

∑
j

I
(
Y no
i < Y yes

j

)
= U.

Wilcoxon–Mann–Whitney test is a special case of a PIM.

PIM sandwich estimator for Var
(
β̂
)

allows for Wald-type

tests and the construction of confidence intervals.
Similar results hold for the Kruskal-Wallis, Friedman,
Jonckheere-Terpstra, ... rank tests.
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Return to the BtheB study
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Yi : depression score at 3 months.

Xi : anti-depressant drugs (no = 0, yes = 1).

Zi : depression score at baseline.

Consider the PIM

P (Yi < Yj | X i ,X j) = expit[(Xj−Xi )βX+(Zj−Zi )βZ ], XT = (X ,Z ).

In R via library(’pim’)

> m <- pim(bdi.3m ˜ drug + bdi.pre, data = Data)
> summary(m)
pim.summary of following model :
bdi.3m ˜ drug + bdi.pre
Type: difference
Link: logit

Estimate Std. Error z value Pr(>|z|)
drugYes -0.87679 0.31925 -2.746 0.00602 **
bdi.pre 0.08240 0.01775 4.641 3.47e-06 ***
---
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bdi.3m ˜ drug + bdi.pre
Type: difference
Link: logit

Estimate Std. Error z value Pr(>|z|)
drugYes -0.87679 0.31925 -2.746 0.00602 **
bdi.pre 0.08240 0.01775 4.641 3.47e-06 ***
---
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P (Yi < Yj | X i ,X j) = expit[(Xj−Xi )βX+(Zj−Zi )βZ ], XT = (X ,Z ).

From pim(): β̂X = −0.88 and β̂Z = 0.082

P̂(Yi < Yj | Xi = 0,Xj = 1,Zi = Zj) = expit(−0.88) = 0.29.

The estimated probability that a patient receiving anti-depressant
drugs will have a worse score (i.e. higher) as compared to a patient
not receiving anti-depressant drugs is 29% (95% CI: [0.18, 0.44]).

→ more likely that patients receiving anti-depressant drugs will be
better off.

P̂(Yi < Yj | Xi = Xj ,Zi = z ,Zj = z+10) = expit(10×0.082) = 0.70.

→ more likely that patients with a higher score at baseline will
have a higher scare after 3 months.
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Conclusions and
ongoing/future research
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Conclusions:

PIMs: regression model for the Probabilistic Index
P (Yi < Yj | X i ,X j).

Extends the Wilcoxon–Mann–Whitney test in a similar fashion
as that the linear model extends the two-sample t-test.

Estimation theory is semiparametric.

Can be used for a variety of applications.

Ongoing/future research:

Extend PIMs to deal with latent variables (like SEM extends
linear models).

Study what type of PIMs make sense for discrete ordinal
outcomes.

Assessing goodness-of-fit.
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