

Empirical Validation of the Critical Thinking Assessment Test: A Bayesian CFA Approach

CHI HANG AU

& ALLISON AMES, PH.D.

Acknowledgement

Allison Ames, PhD

Jeanne Horst, PhD

Overview

Features of the Critical Thinking Assessment Test (CAT)

Estimation Framework

- Frequentist
- Bayesian

Methods

- Data Collection
- MCMC in Mplus

Results

Implications and Future Research

Overview

Features of the Critical Thinking Assessment Test (CAT)

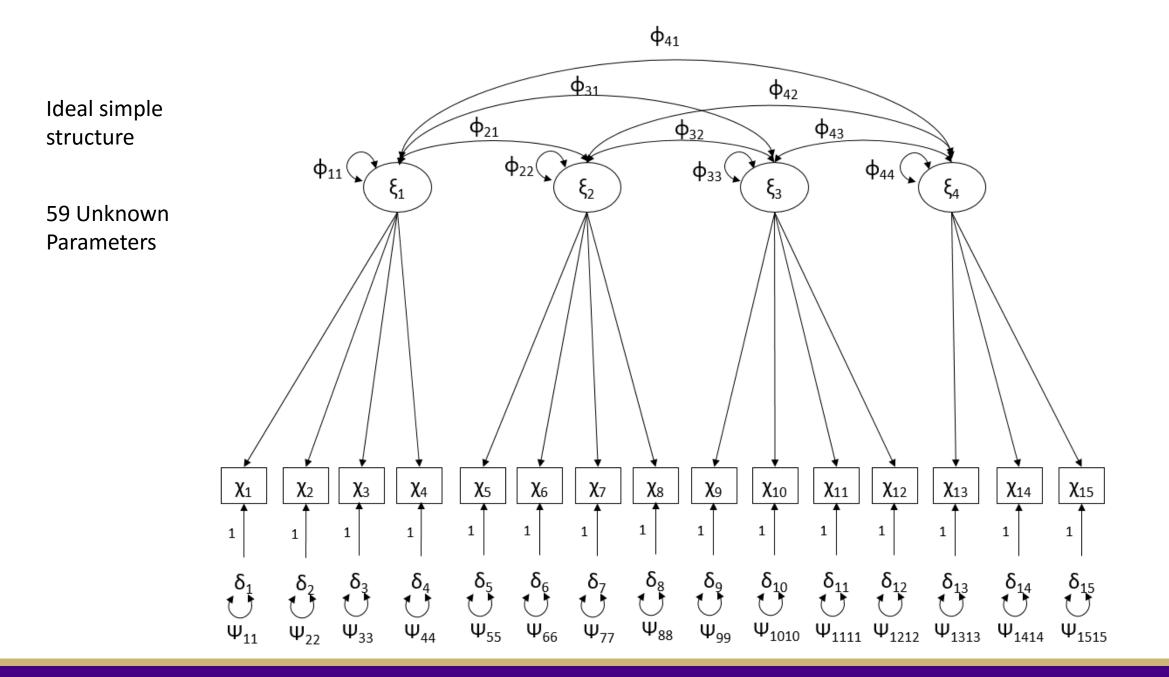
Estimation Framework

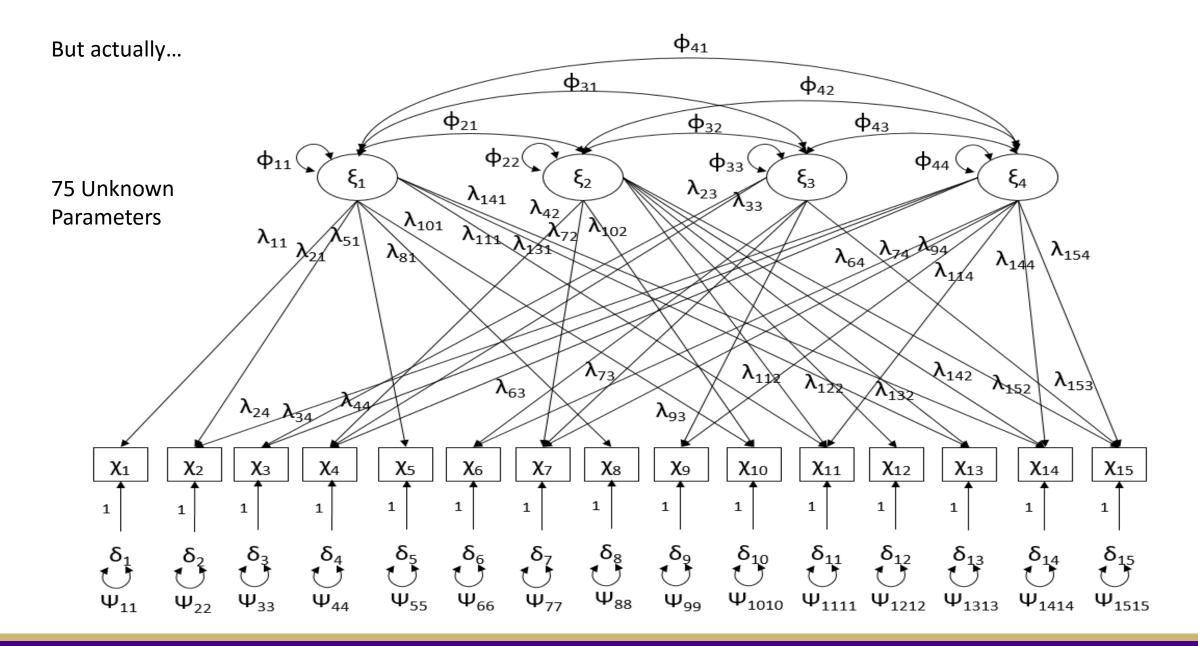
- Frequentist
- Bayesian

Methods

- Data Collection
- MCMC in Mplus

Results


Implications and Future Research


Features of the CAT

 Four domains (factors), 15 components/items (CAT; Tennessee Technological University)

- Evaluation of Information
- Problem Solving
- Creative Thinking
- Communication
- Issues:
 - Inconsistent rating scale (non-integer values)
 - Multidimensionality of items

Item	Evaluate and Interpret Information	Problem Solving	Creative Thinking	Effective Communication
Q1	X			
Q2	X			X
Q3			Х	X
Q4		Х	Х	X
Q5	X			
Q6			Х	X
Q7		Х	Х	X
Q8	X			
Q9			Х	X
Q10	Х	Х		
Q11	X	Х		X
Q12		X		
Q13	X	Х		
Q14	Х	Х		X
Q15		Х	Х	X

Overview

Features of the Critical Thinking Assessment Test (CAT)

Estimation Framework

- Frequentist
- Bayesian

Methods

- Data Collection
- MCMC in Mplus

Results

Implications and Future Research

Frequentist

- •WLSMV
 - Relies on large sample theory (Li, 2016)
 - Local independence
 - Continuous or Categorical indicators (>5 response categories)
- Problems encountered
 - Inconsistent scoring on the CAT
 - Multidimensionality of most components

Frequentist Software Packages

- R package: lavaan WLSMV estimation
- •Mplus WLSMV estimation

Non-convergence

lavaan

Mplus

There were 20 warnings (use warnings() to see them)

> warnings()

Warning messages:

- 1: In pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method = optim.method, ... :
 lavaan WARNING: empty cell(s) in bivariate table of q10f x q2f
- 2: In pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method = optim.method, ... :
 lavaan WARNING: empty cell(s) in bivariate table of q14f x q2f
- 3: In pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method = optim.method, ... :
 lavaan WARNING: empty cell(s) in bivariate table of q10f x q8f
- 4: In pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method = optim.method, ... :
 lavaan WARNING: empty cell(s) in bivariate table of q11f x q10f

> fitMeasures(fit)

Error in lav_fit_measures(object = object, fit.measures = fit.measures, :
 lavaan ERROR: fit measures not available if model did not converge

> summary(fit, fit.measures=TRUE)

- ** WARNING ** lavaan (0.5-22) did NOT converge after 767 iterations
- ** WARNING ** Estimates below are most likely unreliable

EstimatorWLSMVMaximum number of iterations200000Convergence criterion0.500D-04Maximum number of steepest descent iterations20ParameterizationDELTA

NO CONVERGENCE. NUMBER OF ITERATIONS EXCEEDED.

Bayesian

- •Markov Chain Monte Carlo (Levy & Mislevy, 2016)
 - Use prior knowledge to guide estimation
 - Flexible, can accommodate different data type and structure
 - Does not require large sample theory or local independence

Research Questions

- 1. Can the CAT's factor structure be confirmed empirically using BSEM?
- 2. Does the BSEM approach overcome the shortcomings of other estimation methods?

Overview

Features of the Critical Thinking Assessment Test (CAT)

Estimation Framework

- Frequentist
- Bayesian

Methods

- Data Collection
- MCMC in Mplus

Results

Implications and Future Research

Data

University-wide assessment day

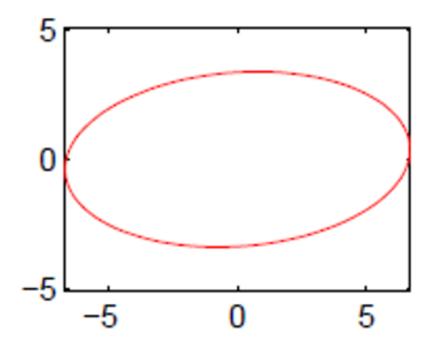
- •Collected from Spring 2012 to Spring 2016 (*n* = 727)
 - Missing data removed
 - Non-integer responses (disagreement among raters)
 - Final *n* = 671
- Sophomore or Junior status
 - After completing Gen Ed requirements


Bayesian Estimation

- •Mplus Version 7.4
- Two chains
- •200,000 total iterations
 - 100,000 burn-in iterations
- •~15-20 minutes

MCMC in Mplus

FACTOR LOADING


DEFAULT: N(0,5)

Default priors for parameter types (categorical indicators)

FACTOR COVARIANCE

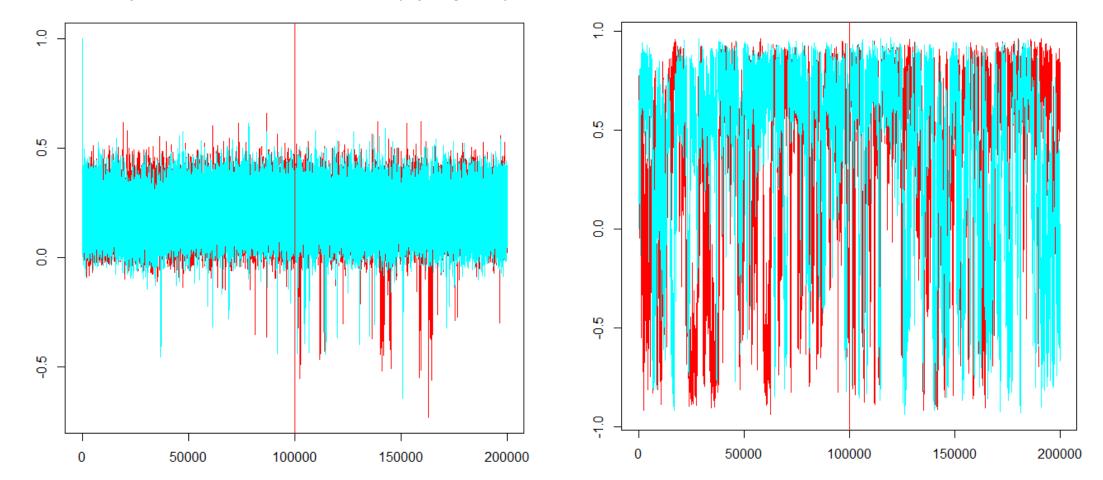
DEFAULT: IW(0,5)

*Scaled Inverse-Wishart Distribution

Overview

Features of the Critical Thinking Assessment Test (CAT)

Estimation Framework


- Frequentist
- Bayesian

Methods

- Data Collection
- MCMC in Mplus

Results

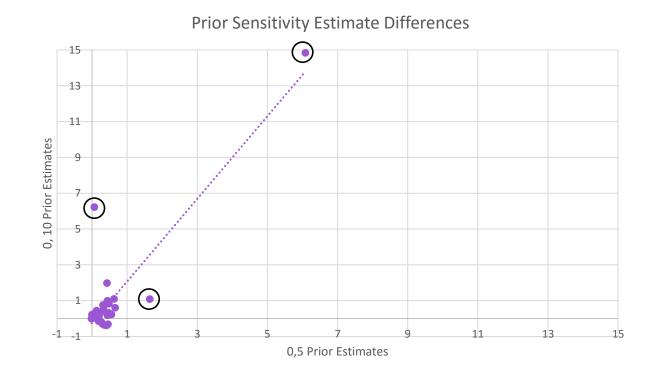
Implications and Future Research

Trace plot of: Parameter 1, EVAL BY Q1F (equality/label)

Trace plot of: Parameter 33, CREA WITH EVAL

Convergence

 Potential Scale Reduction (PSR) – Between chain variability by within chain variability


- Mplus returns highest PSR value of a parameter in an iteration
- PSR should be around 1
- N(0,5): Highest PSR = 2.035 at the 200kth iteration
- N(0,10): Highest PSR = 1.979 at the 200kth iteration

Model Fit – Three Methods (Gelman et al., 2003)

- Prior Sensitivity: Sensitivity to different prior distributions
 Will changing the prior substantially change the posterior?
- 2. Posterior Predictive Checking: Discrepancy measures
 - Are simulated data from the posterior data similar to the observed data?
- Conceptual: Posterior inferences to substantive knowledge
 Are the estimates or patterns consistent with theory?

Model Fit: Priors Sensitivity

- •Default: N(0,5)
- •Diffuse: N(0,10)
- •Range of % differences
 - Q14 loads on to three factors
 - "Identify and explain the best solution for a real-world problem using relevant information"
 - Largest estimate on Problem Solving

Model Fit: Posterior Predictive Checks

- •Discrepancy value for Mplus: Chi-square Statistics
- •Posterior Predictive *p* value (PPP)
 - Acceptable range: .05< PPP < .95
 - Obtained PPP
 - N(0,5) ~ .213
 - N(0,10) ~ .062

						Problem Solving	C T
					Q1		
Mag	IDI Fi	$+ \cdot c$	nnce	eptua	Q2		
1000		I. CC		piùa	Q3		
Close to	o zero a	and nega	ative int	terfactor	Q4	х	
correlat					Q5		
					Q6		
Estimated Latent	Factor Corre	lation Matrix			Q7	х	
	1.	2. Problem	3. Creative	4.	Q8		
	Evaluation	Solving	thinking	Communication	Q9		
1. Evaluation	1				Q10	х	
2. Problem Solving	-0.226	1			Q11	х	
3. Creative Thinking	0.593	0.052	1		Q12	х	
4. Communication	0.291	-0.036	-0.125	1	012	V	

	Problem Solving	Creative Thinking	Communication
Q1			
Q2			Х
Q3		Х	Х
Q4	х	Х	Х
Q5			
Q6		Х	Х
Q7	х	Х	Х
Q8			
Q9		Х	х
Q10	х		
Q11	х		Х
Q12	х		
Q13	Х		
Q14	х		Х
Q15	Х	Х	Х

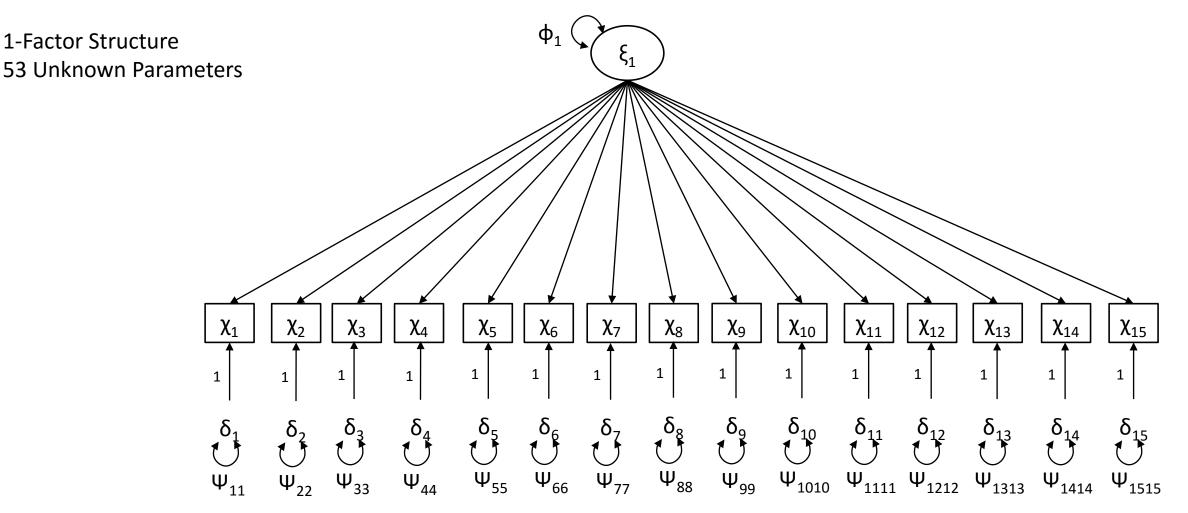
Model Fit: Conceptual

•Close to zero and negative interfactor correlations

Estimated Latent Factor Correlation Matrix									
	1. Evaluation	2. Problem Solving	3. Creative thinking	4. Communication					
1. Evaluation	1								
2. Problem Solving	-0.226	1							
3. Creative Thinking	0.593	0.052	1						
4. Communication	0.291	-0.036	-0.125	1					

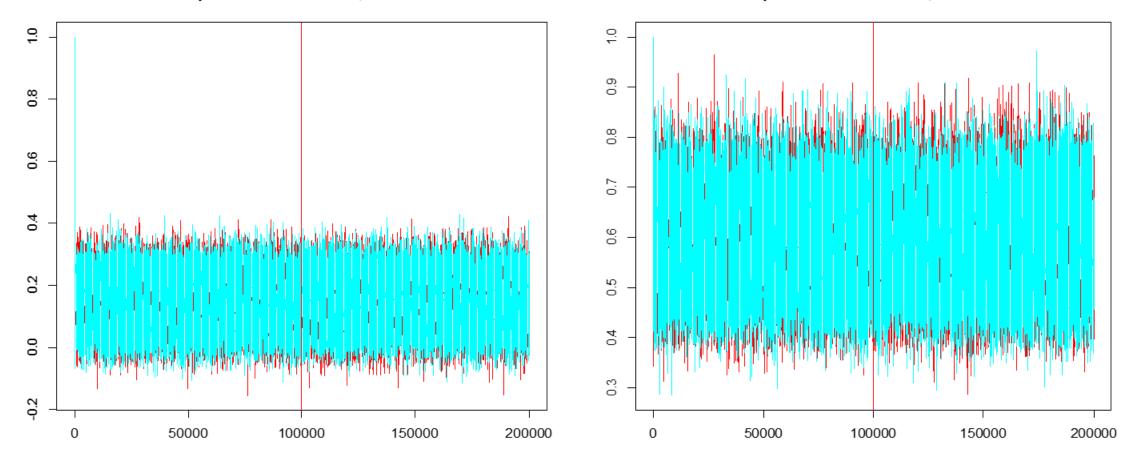
	Problem Solving	Creative Thinking	Communication
Q1			
Q2			Х
Q3		Х	х
Q4	х	Х	х
Q5			
Q6		Х	х
Q7	х	Х	х
Q8			
Q9		Х	х
Q10	х		
Q11	х		х
Q12	х		
Q13	х		
Q14	х		Х
Q15	Х	х	х

•Close to zero and negative interfactor correlations


Estimated Latent Factor Correlation Matrix									
	1. Evaluation	2. Problem Solving	3. Creative thinking	4. Communication					
1. Evaluation	1								
2. Problem Solving	-0.226	1							
3. Creative Thinking	0.593	0.052	1						
4. Communication	0.291	-0.036	-0.125	1					

	Problem Solving	Creative Thinking	Communication
Q1			
Q2			х
Q3		Х	х
Q4	Х	Х	х
Q5			
Q6		Х	х
Q7	Х	Х	Х
Q8			
Q9		Х	х
Q10	Х		
Q11	х		х
Q12	х		
Q13	Х		
Q14	х		Х
Q15	Х	Х	Х

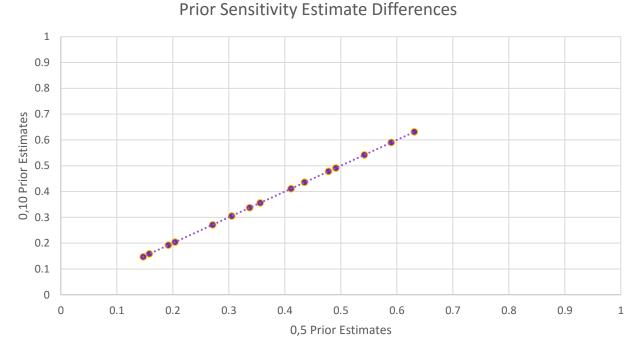
4-Factor Structure


- •Prior Sensitivity: Sensitivity to different prior distributions
 - % difference in parameters: -201.42% to 22,000%
 - Indicates poor model-data fit
- Posterior predictive checking
 - PPP value: ~.2
 - Indicates good model-data fit
- •Conceptual: Posterior inferences to substantive knowledge
 - Close to zero and negative interfactor correlations
 - Indicates poor model-data fit

Alternative Model

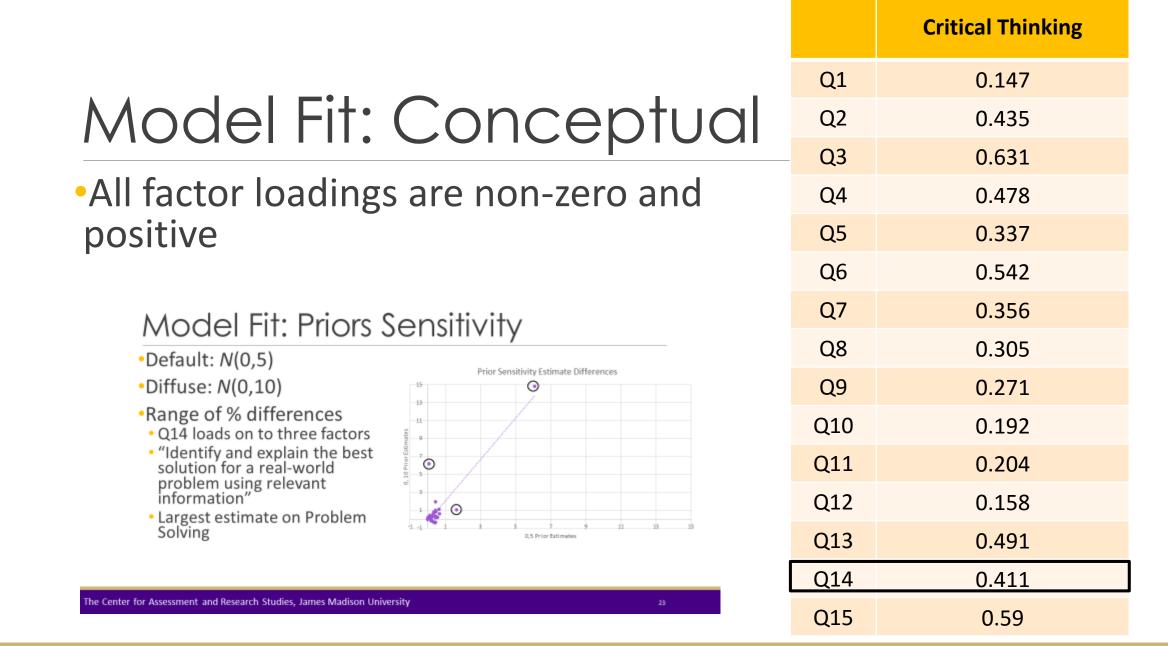
Trace plot of: Parameter 1, CT BY Q1F

Trace plot of: Parameter 15, CT BY Q15F



Convergence: 1-Factor Structure

- 2 chains, 200,000 iterations
 ~12 minutes
- •N(0,5): Highest PSR = 1.001 at the 200kth iteration
- •*N*(0,10): Highest PSR = 1.001 at the 200kth iteration


Model Fit: Priors Sensitivity

- •Default: N(0,5)
- •Diffuse: *N*(0,10)
- •Range of % differences < 1%

Model Fit: Posterior Predictive Checks

- •Posterior Predictive *p* value (PPP)
 - Acceptable range: .05< PPP < .95
 - Obtained PPP
 - N(0,5) < .001
 - N(0,10) < .001

1-Factor Structure

- •Prior Sensitivity: Sensitivity to different prior distributions
 - % difference in parameters: 0% to 0.633%
 - Indicates good model-data fit
- Posterior predictive checking
 - PPP value: <.001
 - Indicates poor model-data fit
- •Conceptual: Posterior inferences to substantive knowledge
 - All factor loadings are positive (.147 to .631)
 - Indicates decent model-data fit

Overview

Features of the Critical Thinking Assessment Test (CAT)

Estimation Framework

- Frequentist
- Bayesian

Methods

- Data Collection
- MCMC in Mplus

Results

Implications and Future Research

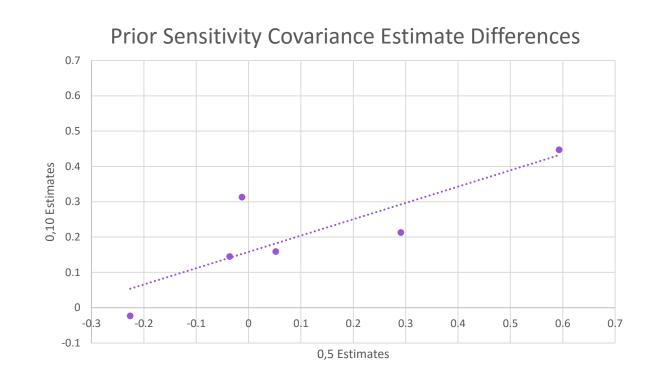
Coming back to the Research Questions...

- 1. Can the CAT's factor structure be confirmed empirically using BSEM?
- 2. Does the BSEM approach overcome the shortcomings of other estimation methods?

Implications and Future Research

- Inconsistent evidence
- •Application of BSEM approach for instrument development
- Encourage growing body of validity evidence
- Compare different factor models for the CAT
- Informative priors from content experts
- •Use different discrepancy measures to assess model fit

Thank you. Questions?


aucb@dukes.jmu.edu ames2aj@jmu.edu

Selected References

- Au, C. B. & Ames, A. J. (2016, October). A Multitrait–Multimethod Analysis of the Construct Validity of Ethical Reasoning. Paper presented at the annual conference of the Northeastern Educational Research Association, Trumbull, CT.
- Center for Assessment and Improvement of Learning, Tennessee Technological University. https://www.tntech.edu/cat/about/
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., Rubin, D. B. (2004). *Bayesian data analysis*. Boca Raton : CRC Press, 2004.
- Levy, R. & Mislevy, R. J. (2016). Confirmatory Factor Analysis. In (Eds.)., *Bayesian Psychometric Modeling* (pp.187-230). Chapman and Hall/CRC.Center for Assessment and Improvement of Learning, Tennessee Technological University. https://www.tntech.edu/cat/about/
- Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. *Psychological Methods*, *17*(3), 313-335.

Model Fit: Priors Sensitivity (Covariance)

- •Default: N(0,5)
- •Diffuse: *N*(0,10)
- Range of % differences
- •-500% to 205%

1-Factor Results

Fit Indices			
χ^2	p	RMSEA	CFI
262.654	<.001	.054	.826

	Factor pattern Coefficients	Standard Error	Significance
Q1	.143	.059	.015
Q2	.386	.049	<.001
 Q3	.518	.042	<.001
Q4	.415	.044	<.001
Q5	.318	.062	<.001
Q6	.466	.044	<.001
Q7	.323	.052	<.001
Q8	.296	.056	<.001
Q9	.260	.051	<.001
Q10	.186	.051	<.001
Q11	.198	.053	<.001
Q12	.164	.072	.023
Q13	.490	.044	<.001
Q14	.430	.043	<.001
Q15	.508	.043	<.001

Rating Method

Rater effect cannot be examined

 Rater interpretation may influence multidimensionality of item-level scores

CAT Observed Correlation Matrix															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	-														
2	.181	-													
3	.045	.244	-												
4	.018	.145	.310	-											
5	.075	.181	.231	.094	-										
6	.012	.187	.281	.209	.318	-									
7	.111	.177	.186	.167	.182	.165	-								
8	.120	.152	.166	.061	.179	.210	.129	-							
9	.072	.092	.164	.115	.088	.112	.164	.304	-						
10	094	.084	.177	.073	.032	.112	.042	.013	032	-					
11	001	.044	.089	.069	.089	.090	.148	.076	.081	.088	-				
12	.083	.020	.036	.073	010	.089	.029	.213	.115	.037	.100	-			
13	.093	.158	.130	.153	.101	.184	.054	.050	.059	.070	.014	032	-		
14	.014	.072	.110	.117	007	.050	.062	.013	.051	.118	.018	.030	.492	-	
15	.062	.188	.244	.218	007	.225	.105	.053	.053	.048	.171	.146	.303	.345	-