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Social Relations Model 

Dyadic data from round-robin design (Kenny, 1994) 
e.g., all students in a classroom rate each other 

Block design: heterosexual speed-daters rate opposite sex 

Originally used ANOVA to partition ratings into person- 
and dyad-level components:  xij = μ + Pi + Tj + Rij  

μ = average rating 

Pi = perceiver i's tendency to rate above/below μ 

Tj = target j's tendency to elicit ratings above/below μ 

Rij = residual, contains dyadic relationship effect and error 



SRM Data 

All participants rate their perceptions of one another 

Targets  
 Perceivers 

Alice Betty Cathy Daria Ellen 𝑋 𝑅𝑜𝑤 
Perceiver 
Effect 

Alice Self 11 6 9 7 8.25 3.25 

Betty 2 Self 2 5 4 3.25 −1.75 

Cathy 3 11 Self 8 4 6.50 1.50 

Daria 4 4 1 Self 2 2.75 −2.25 

Ellen 4 7 2 4 Self 4.25 −0.75 

𝑋 𝐶𝑜𝑙𝑢𝑚𝑛 3.25 8.25 2.75 6.50 4.25 𝑋 = 5 

Target Effect −1.75 3.25 −2.25 1.50 −0.75 



SRM Data 

μ is estimated from the average of all ratings (𝑋 ) 

Targets  
 Perceivers 

Alice Betty Cathy Daria Ellen 𝑋 𝑅𝑜𝑤 
Perceiver 
Effect 

Alice Self 11 6 9 7 8.25 3.25 

Betty 2 Self 2 5 4 3.25 −1.75 

Cathy 3 11 Self 8 4 6.50 1.50 

Daria 4 4 1 Self 2 2.75 −2.25 

Ellen 4 7 2 4 Self 4.25 −0.75 

𝑋 𝐶𝑜𝑙𝑢𝑚𝑛 3.25 8.25 2.75 6.50 4.25 𝑋 = 5 

Target Effect −1.75 3.25 −2.25 1.50 −0.75 



SRM Data 

Row means indicate each perceiver's average rating 

Targets  
 Perceivers 

Alice Betty Cathy Daria Ellen 𝑋 𝑅𝑜𝑤 
Perceiver 
Effect 

Alice Self 11 6 9 7 8.25 3.25 

Betty 2 Self 2 5 4 3.25 −1.75 

Cathy 3 11 Self 8 4 6.50 1.50 

Daria 4 4 1 Self 2 2.75 −2.25 

Ellen 4 7 2 4 Self 4.25 −0.75 

𝑋 𝐶𝑜𝑙𝑢𝑚𝑛 3.25 8.25 2.75 6.50 4.25 𝑋 = 5 

Target Effect −1.75 3.25 −2.25 1.50 −0.75 



SRM Data 

Perceiver effects (Pi) are their averages relative to the 
grand mean 

Targets  
 Perceivers 

Alice Betty Cathy Daria Ellen 𝑋 𝑅𝑜𝑤 
Perceiver 
Effect 

Alice Self 11 6 9 7 8.25 3.25 

Betty 2 Self 2 5 4 3.25 −1.75 

Cathy 3 11 Self 8 4 6.50 1.50 

Daria 4 4 1 Self 2 2.75 −2.25 

Ellen 4 7 2 4 Self 4.25 −0.75 

𝑋 𝐶𝑜𝑙𝑢𝑚𝑛 3.25 8.25 2.75 6.50 4.25 𝑋 = 5 

Target Effect −1.75 3.25 −2.25 1.50 −0.75 



SRM Data 

Column means indicate the average rating received by 
each target 

Targets  
 Perceivers 

Alice Betty Cathy Daria Ellen 𝑋 𝑅𝑜𝑤 
Perceiver 
Effect 

Alice Self 11 6 9 7 8.25 3.25 

Betty 2 Self 2 5 4 3.25 −1.75 

Cathy 3 11 Self 8 4 6.50 1.50 

Daria 4 4 1 Self 2 2.75 −2.25 

Ellen 4 7 2 4 Self 4.25 −0.75 

𝑋 𝐶𝑜𝑙𝑢𝑚𝑛 3.25 8.25 2.75 6.50 4.25 𝑋 = 5 

Target Effect −1.75 3.25 −2.25 1.50 −0.75 



SRM Data 

Target effects (Tj) are their averages relative to the grand 
mean 

Targets  
 Perceivers 

Alice Betty Cathy Daria Ellen 𝑋 𝑅𝑜𝑤 
Perceiver 
Effect 

Alice Self 11 6 9 7 8.25 3.25 

Betty 2 Self 2 5 4 3.25 −1.75 

Cathy 3 11 Self 8 4 6.50 1.50 

Daria 4 4 1 Self 2 2.75 −2.25 

Ellen 4 7 2 4 Self 4.25 −0.75 

𝑋 𝐶𝑜𝑙𝑢𝑚𝑛 3.25 8.25 2.75 6.50 4.25 𝑋 = 5 

Target Effect −1.75 3.25 −2.25 1.50 −0.75 



SRM Data 
Residuals (Rij) are the differences between observed 
and expected ratings, given μ, Pi, and Tj 

RAliceBetty = 11 − (5 + 3.25 + 3.25) = 11 − 11.5 = −0.5 

Targets  
 Perceivers 

Alice Betty Cathy Daria Ellen 𝑋 𝑅𝑜𝑤 
Perceiver 
Effect 

Alice Self 11 6 9 7 8.25 3.25 

Betty 2 Self 2 5 4 3.25 −1.75 

Cathy 3 11 Self 8 4 6.50 1.50 

Daria 4 4 1 Self 2 2.75 −2.25 

Ellen 4 7 2 4 Self 4.25 −0.75 

𝑋 𝐶𝑜𝑙𝑢𝑚𝑛 3.25 8.25 2.75 6.50 4.25 𝑋 = 5 

Target Effect −1.75 3.25 −2.25 1.50 −0.75 



SRM Data 

Self-ratings (or expert observations) can also be recorded, 
to calculate self–other agreement (or accuracy) 

Targets  
 Perceivers 

Alice Betty Cathy Daria Ellen 𝑋 𝑅𝑜𝑤 
Perceiver 
Effect 

Alice Self 11 6 9 7 8.25 3.25 

Betty 2 Self 2 5 4 3.25 −1.75 

Cathy 3 11 Self 8 4 6.50 1.50 

Daria 4 4 1 Self 2 2.75 −2.25 

Ellen 4 7 2 4 Self 4.25 −0.75 

𝑋 𝐶𝑜𝑙𝑢𝑚𝑛 3.25 8.25 2.75 6.50 4.25 𝑋 = 5 

Target Effect −1.75 3.25 −2.25 1.50 −0.75 



Estimating SRM with ML 

More recently, maximum likelihood estimation is 
available by specifying SRM as a random-effects / 
multilevel model (Snijders & Kenny, 1999) 

Requires many dummy codes and tedious equality 
constraints in MLwiN (unavailable in most other 
multilevel software) 

Restrictive assumptions in SAS PROC MIXED 

Can also be specified as an "n-level SEM" (Brunson et 
al., 2016) in R package xxM (Mehta, 2013)  

Restricted ML recently proposed (Nestler, 2016) 



Estimating SRM with MCMC 

Bayesian estimation first proposed by Hoff (2005), 
more recently by Lüdtke et al. (2013) 

Using MCMC estimation, random effects of perceiver 
(Pi) and target (Tj) are estimated as parameters, along 
with variance-component hyperparameters 

Data augmentation 

Differs from marginalizing over random effects in ML 
estimation of random-effects / multilevel models 

Major advantage: posterior distribution of (functions 
of) all parameters 



Missing Data 

ANOVA calculations using all available data might 
work if data are missing completely at random (MCAR) 

Very restrictive assumption 

State-of-the-art missing-data methods are maximum 
likelihood and multiple imputation 

Only assumes data are missing at random (MAR), given 
the observed data in the model 

More defensible if the model includes variables that 
explain missingness or correlate with the missing values 

Auxiliary variables: not of theoretical interest, but 
useful to justify MAR assumption 



Missing Data 

Multiple imputation has a Bayesian foundation 

Can be done by augmenting observed data with missing 
data, just like estimating latent variables 

e.g., random effects, factor scores 

Usually an "unrestricted" imputation model (e.g., NORM) 
Freely estimated mean vector and covariance matrix 

Can easily incorporate into the SRM model 
More efficient than unrestricted imputation model 
(Merkle, 2011) 



Missing Data 

ML simply evaluates the likelihood function using all 
available data 

Advantage: no need to "do anything" with the missing data, 
but may need to incorporate auxiliaries 

Disadvantage: exogenous predictors must be complete 

Handling of missing data has been touted as an advantage 
of ML and MCMC estimation 

Brunson et al. (2016), Hoff (2005), Lüdtke et al. (2013), 
Nestler (2016), Snijders & Kenny (1999) 

No one yet described how to do so in MCMC, so I 
submitted an application to Social Networks (under review) 



Missing Data in SRM 

From the SRM equation 
𝑌𝑖𝑗 = μ + 𝑃𝑖 + 𝑇𝑗 + 𝐸𝑖𝑗 

The expected value of the vector of both observations 
within a dyad is 

𝐘 𝑖𝑗 =
𝑌 𝑖𝑗

𝑌 𝑗𝑖
=

μ + 𝑃𝑖 + 𝑇𝑗
μ + 𝑃𝑗 + 𝑇𝑖

 

Data might be missing for one or both observations 
within a dyad 



Missing Data in SRM 

The likelihood of a dyad's vector is bivariate normal 
with mean equal to the expected value of the vector, 
and covariance matrix of residuals: 

𝑌𝑖𝑗
𝑌𝑗𝑖

~𝒩
𝑌 𝑖𝑗

𝑌 𝑗𝑖
,

σ𝐸
2

ρ𝐸σ𝐸 σ𝐸
2  

Observed data can be augmented with estimates of 
missing values by using this likelihood of observed data 
as the prior for missing-data estimates 

Assumes MAR, conditional on expected values 



Missing Data in SRM 

Even complete data are augmented with estimates of 
random effects, distributed bivariate normally: 

𝑃𝑖

𝑇𝑖
~𝒩

0
0
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2
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This can be extended to include 1 or more auxiliary 
covariates (Xi): 
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Missing Data in SRM 

Covariates might also be substantively interesting as 
predictors of the random effects: 

𝑃𝑖 = β1
𝑃𝑋𝑖 + ε𝑖 , 𝑇𝑗 = β1

𝑇𝑋𝑗 + δ𝑗 

In which case the covariate(s) would be independent of 
the residual perceiver and target effects: 
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0
0
μ𝑋

,

σε
2
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2
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Missing Data in SRM 

The MAR assumption is more defensible if explanatory 
or auxiliary covariates can be included that either: 

Explain missingness  

Correlate with missing values 

Dyad-level covariates can also be incorporated in the 
model, can could be either: 

Constant within dyad (Vij = Vji; e.g., "How long have 
you known each other?") 

Vary within dyad (Wij ≠ Wji; e.g., "How well does [this 
friend] know you?") 



Missing Data in SRM 

Dyad-level covariates can be merely auxiliary: 
𝑌𝑖𝑗
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2

 

So including them would make the MAR assumption 
more tenable 

Note that the equality constraints are unnecessary if 
persons i and j have roles (e.g., men rating women) 



Missing Data in SRM 

Dyad-level covariates can also be explanatory: 

𝐘 𝑖𝑗 =
𝑌 𝑖𝑗

𝑌 𝑗𝑖
=

μ + γ1𝑉 𝑖𝑗 + γ2𝑊𝑖𝑗 + 𝑃𝑖 + 𝑇𝑗
μ + γ1𝑉 𝑖𝑗 + γ2𝑊𝑗𝑖 + 𝑃𝑗 + 𝑇𝑖

 

In which case they should not correlate with residuals: 
𝑌𝑖𝑗
𝑌𝑗𝑖
𝑉 𝑖𝑗
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2

 

Again, equality constraints on slopes and (co)variances 
unnecessary if i and j have roles 



Evaluation in MCMC and ML 

I implemented the methods described above, 
mimicking a real-data analysis of sorority data 

Described in APS slides, which can be downloaded 
from my Open Science Framework account, along with 
sorority data and syntax for xxM and RStan 
https://osf.io/fmhg6/ 

To evaluate the frequency properties of the method, I 
used parameter estimates as population values to 
simulate 200 samples of the same size, and imposed the 
same missing-data pattern (MCAR) 

Also compared Bayes to (FI)ML using xxM package, 
specifying the SRM as a multilevel SEM 

https://osf.io/fmhg6/
https://osf.io/fmhg6/


P 

yij 

T 

yji 

Rij Rji 

wij xji 
Self 

Perceiver Target 

A  B B  A 

Person 
Level 

Dyad 
Level 



Parameter True θ θ  Bias RMSE Coverage Power / α 

μ (intercept) 2.00 1.99 −0.01 0.07 95% 100% 

Perceiver σ2 0.25 0.24 −0.01 0.05 95% 100% 

β1 0.30 0.30 0.00 0.07 95% 98% 

β2 0 0.00 0.00 0.07 94% 6% 

Target σ2 0.12 0.16 0.04 0.05 75% 100% 

β1 0 0.00 0.00 0.06 96% 4% 

β2 0.30 0.30 0.00 0.06 98% 100% 

Generalized ρ −0.02 −0.01 0.01 0.04 95% 7% 

Residual σ2 0.49 0.49 0.00 0.03 95% 100% 

Dyadic ρ 0.15 0.00 −0.15 0.15 3% 5% 

Full-Information ML (in xxM) 



Parameter True θ θ  Bias RMSE Coverage Power / α 

μ (intercept) 2.00 1.93 −0.07 0.07 0% 100% 

Perceiver σ2 0.25 0.27 0.02 0.06 94% 100% 

β1 0.30 0.29 −0.01 0.07 95% 95% 

β2 0 0.00 0.00 0.06 94% 7% 

Target σ2 0.12 0.13 0.01 0.03 94% 100% 

β1 0 0.00 0.00 0.07 96% 4% 

β2 0.30 0.29 −0.01 0.05 97% 100% 

Generalized ρ −0.02 −0.02 0.00 0.03 96% 6% 

Residual σ2 0.49 0.50 0.01 0.03 95% 100% 

Dyadic ρ 0.15 0.14 −0.01 0.05 96% 75% 

Impute/Augment Data (in RStan) 
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