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Today’s Talk
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. Causal inference & marginal structural
models (MSM)
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Community Violence Exposure &
Youth Mental Health

* High prevalence of youth CVE in U.S. cities
« Range of outcomes

 [nternalizing symptoms
« Depression, anxiety, PTSD

» Externalizing symptoms
« Aggression, delinquency |
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Community Violence Exposure &
Youth Mental Health

 Cumulative effects model
— Dose-response

— Linear
— Supported in literature

Well-being

* But MOST studies test only linear effects

* Desensitization model: curvilinear
— Isolated CVE - internalizing
— Chronic CVE-> externalizing
— “pathologic adaptation”

Well-being




Community Violence Exposure &
Causal Inference

* Associations
— CVE =2 symptoms
— Observational
— Correlation # Causation
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Community Violence Exposure &
Causal Inference

 Potential outcomes (Y?)
— We only get to observe what actually happened
« e.g., exposed to a specific level of violence

— We only know what an individual’s mental health looks like
under which may be the same or different under
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e Randomization

Everyone is assigned a level of violence exposure
randomly

Equal chance of exposure, regardless of all other
characteristics (e.g., race, age, neighborhood)

On average, everyone identical except exposure




Community Violence Exposure &
Causal Inference

e Randomization
— Not feasible/ethical




Community Violence Exposure &
Causal Inference

* How we usually try to approximate causal
effects in observational studies

— Longitudinal data
e Measure “baseline” levels of outcomes
— E.g., aggression
 Adjust for covariates in regression

— E.g., baseline aggression, SES, age, neighborhood

* Problem: Exposure and outcome vary over time

—  Adjusting for baseline aggression may “adjust away” true
effect of violence exposure along the causal pathway
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Marginal Structural Models (MSM)

 Simulate the actual and potential outcomes
(counterfactural) using observational data
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* Suppose:
— kids always nonaggressive (exposure irrelevant)

kids have 25% chance of being nonaggressive if
exposed to violence, & 50% if unexposed

— (binary exposure for now, for simplicity)
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* Suppose population looks like:

Exposed:

Unexposed:

 Exposure is clearly harmful

— If ALL were exposed, ( /10)0.25 = 15% would be nonaggressive
— If NONE were exposed, ( /10)0.5 = 30% would be nonaggressive
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* Population:

Exposed:

Unexposed:

 However, in our observed data, /5(.25) = 20% of exposed
& /5(.5) = 20% of unexposed become nonaggressive
— Looks like exposure has no effect !
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* Population:

pr(exposed | =4/6

EXpOSEd: pr(exposed | 1 =1/4

pr(unexposed | =2/6

Unexposed:
pr(unexposed | =3/4

Now we can create a pseudo-population by
weighting each kid by the inverse probability of
receiving their observed treatment (robins etal., 2000)
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 Pseudo-population:

Exposed™:

Unexposed™:

Down weight those who are over-represented in
population, & up weight the under-represented
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 Pseudo-population:

Exposed™:

Unexposed™:

In the pseudo-population:
—  /10(.25) = 15% of exposed were nonaggressive
— /10(.5) = 30% of unexposed were nonaggressive
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 Pseudo-population:

Exposed™:

Unexposed™:

e Matches the counterfactual numbers!
e Same as randomization
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Marginal Structural Models (MSM)

 Weighting = creating a pseudo-population where:

— The covariate distribution is the same as in the
population

— There is no association between treatment & covariates

— Thus, no confounding
. Causal effects can be estimated without additional adjustment

A, 2 Y,

Violence Aggression
Exposure




Marginal Structural Models (MSM)

 Time-varying extension of propensity score
weighting




How to Apply MSM

1. Fit propensity score model of probability of
exposure

2. Do a weighted regression (using the IPWs)




Assumptions

1. Consistency: Y =Y2when A=a

— We observe the outcome that a given level of exposure
causes when we observe that exposure

2. Positivity: pr(A=a | L=1)>0

— There must exist a positive probability of all exposure
levels for all strata of covariates

— No one may have 0 probability of exposure

3. Ignorability: No unmeasured confounding
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* Does community violence exposure
differentially affect youths’ mental health?

— Desensitization hypothesis:
 Quadratic effect on internalizing symptoms

 Linear effect on externalizing symptoms

Ext

Well-being




Results

 Data

— Project on Human Development in Chicago
Neighborhoods (PHDCN)

(Earls, Brooks-Gunn, Raudenbush, & Sampson, 1994-2002)
Longitudinal Cohort Study
Youth & primary caregiver
Stratified probability sample: N = 4,149
Waves 2 & 3
Cohort ages at Wave 2: 6, 9, 12, 15, 18
Representative sample




Results

* Measures
— Baseline demographic covariates

* Age, sex, race, income, SES
— Community violence exposure (CVE)
e My Exposure to Violence
e Past year CVE frequency on 20 items
* Witnessing & victimization
— Mental health

e CBCL Internalizing & Externalizing
—  Controlled for prior levels in GEE models




Results

GEE & MSM
CVE, = agg, & CVE, 2 agg,
Baseline covariates & prior aggression

Conditional densities instead of probabilities
for continuous exposure (CVE)
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Results: MSM

Internalizing Externalizing
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Conclusions

Desensitization effect of CVE
— Pathologic adaptation?

Similar, but slightly weaker effects using MSM

— Sometimes effect disappears, or reverses direction

More accurate causal effect of CVE

Intervention implications
— Everyone exposed vs everyone unexposed

(Interactions were ns)




Limitations

* Model specification
— More flexibility (splines) probably needed

* CVE measurement
— Retrospective report
— Ordinal coding
— Time between assessments




Limitations

* MSM assumptions
— Likely unmeasured confounding
« E.g., parenting, school attendance, etc.
— Positivity
 May be youth with zero probability of CVE




MSM Tips

* Specify question precisely to operationalize &
isolate causal effect of interest

— RCT framework
 E.g.:
—  Who exactly are the subjects?

—  What exactly is the treatment?
—  For exactly how long are they treated?




MSM Tips

* Avoid unmeasured confounding

— Measure all possible confounders
 Fancy statistics cannot fix bad designs

— Sensitivity analysis

VanderWeele (2010) Bias formulas for sensitivity analysis for direct and
indirect effects, Epidemiology, 21, 540-551

Brumback et al (2004) Sensitivity analyses for unmeasured confounding

assuming a marginal structural model for repeated measures, Statistics
in Medicine, 23(5), 749-767




MSM Tips

* Use stabilized weights
Inverse probabilities become unwieldy

Incorporate baseline covariates to stabilize

Robins et al (2000) Marginal structural models and causal inference in epidemiology,
Epidemiology, 11, 550-560




MSM Extensions

* Although MSMs often use IPW, other
approaches to estimate MSM parameters:

— Regression-based g-computation
— Doubly robust estimating equations
— Targeted maximum likelihood (TMLE)




MSM Extensions

MLM, growth curve modeling, SEM, etc.
— Simply apply IPW weights

Mediation (e.g., Coffman & Zhong, 2012; VanderWeele)
Additional time points

Compounded effects over time
— E.g., effects of CVE, & CVE; on agg3

Effect of removing vs adding exposure

Incremental intervenﬁons (Kennedy, under review)
— More realistic intervention implications




Applications

* Typically medicine & epidemiology
— E.g., HIV treatment

 Expand to psychology & social sciences
— Time-dependent confounding & reciprocal effects
— E.g.:
Mental health treatment
Bullying
ADHD stimulant medications
RCTs with noncompliance




Concluding Thoughts

e Use MSMs!
e R, SAS, & Stata




References & Resources

 Conceptual
Robins & Hernan book draft:

Robins et al (2000) — Epidemiology
Robins & Hernan (2009) — Chapter 1 in Longitudinal Data Analysis

Faries & Kadziola chapter: Analysis of longitudinal
observational data using marginal structural models

VanderWeele (2009) — Epidemiology
. Mediation

Kennedy (under review) Nonparametric causal effects based on
incremental propensity score interventions
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* Applied
— Bacak & Kennedy (2015) — J. of Marriage and Family
e Marriage & recidivism
Hernan et al (2002) — Statistics in Medicine
e HIV treatment effectiveness
Patel et al (2008) — Clinical Infectious Diseases
 Pediatric HIV treatment effectiveness
VanderWeele et al (2011) — JCCP
* Loneliness & depression

VanderWeele et al (2016) — Soc Psychiatry & Psychiatr
Epidem
« Religion & mental health




References & Resources

* Software
— R
 Bacak & Kennedy (2015) — J. of Marriage and Family
e Coffman & Zhong (2012) — Psychological Methods
« Moerkerke et al (2015) — Psychological Methods
—  Mediation

— SAS

* Faries & Kadziola chapter: Analysis of longitudinal
observational data using marginal structural models

 Crowson et al (2013) The basics of propensity scoring and
marginal structural models

— SAS, Stata, & R
e Robins & Herndn book draft




Conferences & Workshops

Penn Causal Inference & Big Data Summer Institute
July 24-27, 2017 — Edward Kennedy

Causal Inference Methods for PCOR using
Observational Data (CIMPOD) — NIH

Atlantic Causal Inference Conference
May 2018 — Carnegie Mellon University

Statistical Horizons — Causal Mediation Analysis
October 13-14, 2017 — Tyler Vanderweele
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