Marginal Structural Models for Estimating the Effects of Chronic Community Violence Exposure on Aggression & Depression

Traci M. Kennedy, PhD

The University of Pittsburgh, Department of Psychiatry

Edward H. Kennedy, PhD

Carnegie Mellon University, Department of Statistics

Modern Modeling Methods Conference May 23, 2017

Today's Talk

- 1. Community violence exposure
- 2. Causal inference & marginal structural models (MSM)
- 3. Application
- 4. Results
- 5. Discussion
- 6. Resources

- High prevalence of youth CVE in U.S. cities
- Range of outcomes
 - Internalizing symptoms
 - Depression, anxiety, PTSD
 - Externalizing symptoms
 - Aggression, delinquency

- Cumulative effects model
 - Dose-response
 - Linear
 - Supported in literature
 - But MOST studies test only linear effects

- Cumulative effects model
 - Dose-response
 - Linear
 - Supported in literature
 - But MOST studies test only linear effects

CVE

- Cumulative effects model
 - Dose-response
 - Linear
 - Supported in literature
 - But MOST studies test only linear effects
- Desensitization model: curvilinear
 - Isolated CVE \rightarrow internalizing
 - Chronic CVE \rightarrow externalizing

CVE

- Cumulative effects model
 - Dose-response
 - Linear
 - Supported in literature
 - But MOST studies test only linear effects
- Desensitization model: curvilinear
 Isolated CVE → internalizing
 Chronic CVE→ externalizing

- Cumulative effects model
 - Dose-response
 - Linear
 - Supported in literature
 - But MOST studies test only linear effects
- Desensitization model: curvilinear
 - Isolated CVE \rightarrow internalizing
 - Chronic CVE \rightarrow externalizing
 - "pathologic adaptation"

CVE

- Associations
 - CVE \rightarrow symptoms
 - Observational
 - Correlation ≠ Causation

• Possible explanations

- Possible explanations
 - Violence exposure causes increased aggression

- Possible explanations
 - Violence exposure causes increased aggression

$\mathsf{A} \not\rightarrow \mathsf{Y}$

- Possible explanations
 - Violence exposure causes increased aggression

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure

 $Y_1 \rightarrow A_1$

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure

 $Y_1 \rightarrow A_1 \rightarrow Y_2$

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure
 - Violence exposure causes aggression, which causes more violence exposure, etc.

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure
 - Violence exposure causes aggression, which causes more violence exposure, etc.

$$A_1 \rightarrow Y_1 \rightarrow A_2 \rightarrow Y_2$$

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure
 - Violence exposure causes aggression, which causes more violence exposure, etc.

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure
 - Violence exposure causes aggression, which causes more violence exposure, etc.
 - Something else (SES, neighborhood) causes both

- Possible explanations
 - Violence exposure causes increased aggression
 - Aggression causes increased violence exposure
 - Violence exposure causes aggression, which causes more violence exposure, etc.
 - Something else (SES, neighborhood) causes both

- Potential outcomes (Y^a)
 - We <u>want</u> to compare what would have happened under no exposure ("treatment") to what actually happened to someone who was exposed ("treated")

•
$$E(Y^1 - Y^0)$$

- Potential outcomes (Y^a)
 - We <u>want</u> to compare what would have happened under no exposure ("treatment") to what actually happened to someone who was exposed ("treated")

•
$$E(Y^1 - Y^0)$$

- Potential outcomes (Y^a)
 - We <u>want</u> to compare what would have happened under no exposure ("treatment") to what actually happened to someone who was exposed ("treated")
 - $E(Y^1 Y^0)$

What actually happened:

- Potential outcomes (Y^a)
 - We <u>want</u> to compare what would have happened under no exposure ("treatment") to what actually happened to someone who was exposed ("treated")
 - $E(Y^1 Y^0)$

- Potential outcomes (Y^a)
 - We <u>want</u> to compare what would have happened under no exposure ("treatment") to what actually happened to someone who was exposed ("treated")
 - $E(Y^1 Y^0)$
 - Violence exposure

- Potential outcomes (Y^a)
 - We <u>want</u> to compare what would have happened under no exposure ("treatment") to what actually happened to someone who was exposed ("treated")
 - $E(Y^1 Y^0)$
 - Violence exposure

- Potential outcomes (Y^a)
 - We <u>want</u> to compare what would have happened under no exposure ("treatment") to what actually happened to someone who was exposed ("treated")
 - $E(Y^1 Y^0)$
 - Violence exposure

- Potential outcomes (Y^a)
 - We <u>want</u> to compare what would have happened under no exposure ("treatment") to what actually happened to someone who was exposed ("treated")
 - $E(Y^1 Y^0)$
 - Violence exposure

- Potential outcomes (Y^a)
 - We only <u>get</u> to observe what actually happened

- Potential outcomes (Y^a)
 - We only <u>get</u> to observe what actually happened
 - e.g., exposed to a specific level of violence

Exposed a lot

Potential outcomes (Y^a)

But

- We only <u>get</u> to observe what actually happened
 - e.g., exposed to a specific level of violence

may be different from

in many ways...

- Potential outcomes (Y^a)
 - We only <u>get</u> to observe what actually happened
 - e.g., exposed to a specific level of violence
 - ... which may instead/also explain why they differ on the outcome (e.g., mental health)

- Potential outcomes (Y^a)
 - We only <u>get</u> to observe what actually happened
 - e.g., exposed to a specific level of violence
 - We only know what an individual's mental health looks like under _____ which may be the same or different under _____

Randomization
- Randomization
 - Everyone is *assigned* a level of violence exposure randomly

- Randomization
 - Everyone is *assigned* a level of violence exposure randomly
 - Equal chance of exposure, regardless of all other characteristics (e.g., race, age, neighborhood)

- Randomization
 - Everyone is *assigned* a level of violence exposure randomly
 - Equal chance of exposure, regardless of all other characteristics (e.g., race, age, neighborhood)
 - On average, everyone identical <u>except</u> exposure

- Randomization
 - Not feasible/ethical

- How we usually try to approximate causal effects in observational studies
 - Longitudinal data
 - Measure "baseline" levels of outcomes
 - E.g., aggression
 - Adjust for covariates in regression
 - E.g., baseline aggression, SES, age, neighborhood
 - **Problem:** Exposure <u>and</u> outcome vary over time
 - Adjusting for baseline aggression may "adjust away" true effect of violence exposure along the causal pathway

• Simulate the actual *and* potential outcomes (counterfactural) using observational data

• Suppose:

• Suppose:

kids *always* **nonaggressive** (exposure irrelevant)

• Suppose:

kids *always* **nonaggressive** (exposure irrelevant)

kids have 25% chance of being nonaggressive if exposed to violence, & 50% if unexposed

Suppose:

kids *always* **nonaggressive** (exposure irrelevant)

kids have 25% chance of being nonaggressive if exposed to violence, & 50% if unexposed

(binary exposure for now, for simplicity)

• Suppose population looks like:

Exposed:

• Suppose population looks like:

Exposed:

• Exposure is clearly harmful

• Suppose population looks like:

Exposed:

- Exposure is clearly harmful
 - If <u>ALL</u> were exposed, (6/10)0.25 = 15% would be nonaggressive

• Suppose population looks like:

- Exposure is clearly harmful
 - If <u>ALL</u> were exposed, (6/10)0.25 = 15% would be nonaggressive
 - If <u>NONE</u> were exposed, (6/10)0.5 = 30% would be nonaggressive

• Population:

Exposed: Unexposed:

 However, in our observed data, 4/5(.25) = <u>20%</u> of exposed & 2/5(.5) = <u>20%</u> of unexposed become nonaggressive

• Population:

Exposed: Unexposed:

- However, in our observed data, 4/5(.25) = 20% of exposed
 & 2/5(.5) = 20% of unexposed become nonaggressive
 - Looks like exposure has <u>no effect</u> !

• Population:

Exposed:

pr(exposed | = 4/6pr(exposed | = 1/4

• Population:

• Population:

Now we can create a <u>pseudo-population</u> by <u>weighting</u> each kid by the *inverse probability* of receiving their observed treatment (Robins et al., 2000)

• <u>Pseudo</u>-population:

Exposed*:

<u>Pseudo</u>-population:

Exposed*:

Down weight those who are *over*-represented in population, & *up* weight the *under*-represented

<u>Pseudo</u>-population:

Exposed*:

In the pseudo-population:

- 6/10(.25) = 15% of exposed were nonaggressive
- 6/10(.5) = 30% of unexposed were nonaggressive

• <u>Pseudo</u>-population:

Exposed*:

• Matches the counterfactual numbers!

• <u>Pseudo</u>-population:

Exposed*:

- Matches the counterfactual numbers!
- Same as randomization

• Weighting = creating a pseudo-population where:

- Weighting = creating a pseudo-population where:
 - The covariate distribution is the same as in the population

- Weighting = creating a pseudo-population where:
 - The covariate distribution is the same as in the population
 - There is no association between treatment & covariates

- Weighting = creating a pseudo-population where:
 - The covariate distribution is the same as in the population
 - There is no association between treatment & covariates

- Weighting = creating a pseudo-population where:
 - The covariate distribution is the same as in the population
 - There is no association between treatment & covariates

Violence Exposure Aggression

- Weighting = creating a pseudo-population where:
 - The covariate distribution is the same as in the population
 - There is no association between treatment & covariates
 - Thus, no confounding
 - <u>**Causal</u>** effects can be estimated without additional adjustment</u>

Aggression

Violence Exposure

 Time-varying extension of propensity score weighting

How to Apply MSM

- 1. Fit propensity score model of probability of exposure
- 2. Do a weighted regression (using the IPWs)

Assumptions

- 1. Consistency: $Y = Y^a$ when A = a
 - We observe the outcome that a given level of exposure causes when we observe that exposure
- 2. Positivity: pr(A = a | L = I) > 0
 - There must exist a positive probability of all exposure levels for all strata of covariates
 - No one may have 0 probability of exposure
- 3. Ignorability: No unmeasured confounding
Does community violence exposure differentially affect youths' mental health?

- Does community violence exposure differentially affect youths' mental health?
 - Desensitization hypothesis:
 - Quadratic effect on *internalizing* symptoms
 - Linear effect on *externalizing* symptoms

• Data

 Project on Human Development in Chicago Neighborhoods (PHDCN)

(Earls, Brooks-Gunn, Raudenbush, & Sampson, 1994-2002)

- Longitudinal Cohort Study
- Youth & primary caregiver
- Stratified probability sample: N = 4,149
- Waves 2 & 3
- Cohort ages at Wave 2: 6, 9, 12, 15, 18
- Representative sample

Measures

- Baseline demographic covariates
 - Age, sex, race, income, SES
- Community violence exposure (CVE)
 - My Exposure to Violence
 - Past year CVE frequency on 20 items
 - Witnessing & victimization
- Mental health
 - CBCL Internalizing & Externalizing
 - Controlled for prior levels in GEE models

- GEE & MSM
- $CVE_2 \rightarrow agg_2 \& CVE_3 \rightarrow agg_3$
- Baseline covariates & prior aggression
- Conditional *densities* instead of probabilities for continuous exposure (CVE)

Violence Exposure

Violence Exposure

Results: MSM

Results: MSM

Internalizing

Externalizing

Conclusions

- Desensitization effect of CVE
 - Pathologic adaptation?
- Similar, but slightly *weaker* effects using MSM
 - Sometimes effect disappears, or reverses direction
- More accurate causal effect of CVE
- Intervention implications
 - Everyone exposed vs everyone unexposed
- (Interactions were ns)

Limitations

- Model specification
 - More flexibility (splines) probably needed
- CVE measurement
 - Retrospective report
 - Ordinal coding
 - Time between assessments

Limitations

- MSM assumptions
 - Likely unmeasured confounding
 - E.g., parenting, school attendance, etc.
 - Positivity
 - May be youth with zero probability of CVE

MSM Tips

- Specify question precisely to operationalize & isolate causal effect of interest
 - RCT framework
 - E.g.:
 - Who *exactly* are the subjects?
 - What *exactly* is the treatment?
 - For *exactly* how long are they treated?

MSM Tips

- Avoid unmeasured confounding
 - Measure all possible confounders
 - Fancy statistics cannot fix bad designs
 - Sensitivity analysis
 - VanderWeele (2010) Bias formulas for sensitivity analysis for direct and indirect effects, *Epidemiology*, *21*, 540-551
 - Brumback et al (2004) Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures, *Statistics in Medicine*, 23(5), 749-767

MSM Tips

- Use stabilized weights
 - Inverse probabilities become unwieldy
 - Incorporate baseline covariates to stabilize
 - Robins et al (2000) Marginal structural models and causal inference in epidemiology, Epidemiology, 11, 550-560

MSM Extensions

- Although MSMs often use IPW, other approaches to estimate MSM parameters:
 - Regression-based g-computation
 - Doubly robust estimating equations
 - Targeted maximum likelihood (TMLE)

MSM Extensions

- MLM, growth curve modeling, SEM, etc.
 - Simply apply IPW weights
- Mediation (e.g., Coffman & Zhong, 2012; VanderWeele)
- Additional time points
- Compounded effects over time
 - E.g., effects of $CVE_2 \& CVE_3$ on agg3
- Effect of *removing* vs adding exposure
- Incremental interventions (Kennedy, under review)
 - More realistic intervention implications

Applications

- Typically medicine & epidemiology
 - E.g., HIV treatment
- Expand to psychology & social sciences
 - Time-dependent confounding & reciprocal effects
 - E.g.:
 - Mental health treatment
 - Bullying
 - ADHD stimulant medications
 - RCTs with noncompliance

Concluding Thoughts

- Use MSMs!
- R, SAS, & Stata

References & Resources

Conceptual

- Robins & Hernán book draft: <u>https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/</u>
- Robins et al (2000) *Epidemiology*
- Robins & Hernán (2009) Chapter 1 in *Longitudinal Data Analysis*
- Faries & Kadziola chapter: Analysis of longitudinal observational data using marginal structural models
- VanderWeele (2009) *Epidemiology*
 - Mediation
- Kennedy (under review) Nonparametric causal effects based on incremental propensity score interventions

https://arxiv.org/abs/1704.00211

References & Resources

Applied

- Bacak & Kennedy (2015) J. of Marriage and Family
 - Marriage & recidivism
- Hernán et al (2002) Statistics in Medicine
 - HIV treatment effectiveness
- Patel et al (2008) *Clinical Infectious Diseases*
 - Pediatric HIV treatment effectiveness
- VanderWeele et al (2011) *JCCP*
 - Loneliness & depression
- VanderWeele et al (2016) Soc Psychiatry & Psychiatr Epidem
 - Religion & mental health

References & Resources

Software

- R
 - Bacak & Kennedy (2015) *J. of Marriage and Family*
 - Coffman & Zhong (2012) *Psychological Methods*
 - Moerkerke et al (2015) *Psychological Methods*
 - Mediation

– SAS

- Faries & Kadziola chapter: Analysis of longitudinal observational data using marginal structural models
- Crowson et al (2013) The basics of propensity scoring and marginal structural models
- SAS, Stata, & R
 - Robins & Hernán book draft

Conferences & Workshops

 Penn Causal Inference & Big Data Summer Institute July 24-27, 2017 – Edward Kennedy

 Causal Inference Methods for PCOR using Observational Data (CIMPOD) – NIH http://cimpod2017.org/

 Atlantic Causal Inference Conference May 2018 – Carnegie Mellon University

http://causal.unc.edu/acic2017/

 Statistical Horizons – Causal Mediation Analysis October 13-14, 2017 – Tyler Vanderweele https://statisticalhorizons.com/seminars/public-seminars

Acknowledgments

MICHIGAN

Penn Medicine

- Rosario Ceballo & Jim Cranford
- Marshall Joffe & Dylan Small
- Brooke Molina

Carleton

- Andrea Howard
- Kunjal Patel

Current research support: DA039881; AA011873; HD083404 (PI: Brooke S. G. Molina)

Contact

kennedytm2@upmc.edu