Estimating a Piecewise Growth Model with Longitudinal Data that Contains Individual Mobility across Clusters

Audrey J. Leroux Georgia State University

Piecewise Growth Model (PGM)

- PGMs are beneficial for potentially nonlinear data, because they break up curvilinear growth trajectories into separate linear components
- This modeling approach is useful when wanting to compare growth rates during two or more different time periods.
- For example:
 - Compare growth rates during two or more different time periods
 - Longitudinal data before treatment as well as during treatment
 - Longitudinal data during treatment as well as follow-up data after treatment
 - Etc.

Three-Level PGM

 Three-level PGMs are used to model the clustering of individuals, such as when students are nested within schools, classrooms, districts, etc. in educational research.

Baseline Three-Level PGM

can ir

pred

DEVELOPMENT

 $e_{tij} \sim N(0, \sigma_e^2)$ Level 1: $Y_{tij} = \pi_{0ij} + \pi_{1ij}Time_{1tij} + \pi_{2ij}Time_{2tij} + e_{tij}$,

where *Time*_{1 tij} and *Time*_{2 tij} are coded to represent piecewise growth

Level 2:
$$\begin{cases} \pi_{0ij} = \beta_{00j} + r_{0ij} \\ \pi_{1ij} = \beta_{10j} + r_{1ij}, \\ \pi_{2ij} = \beta_{20j} + r_{2ij} \end{cases} \sim MVN \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \tau_{r0}^2 \\ \tau_{r0,r1} \\ \tau_{r1,r2} \\ \tau_{r1,r2} \\ \tau_{r2}^2 \end{pmatrix} \end{bmatrix}$$

Of course,
can include
predictors
Level 3:
$$\begin{cases} \beta_{00j} = \gamma_{000} + u_{00j} \\ \beta_{10j} = \gamma_{100} + u_{10j}, \\ \beta_{20j} = \gamma_{200} + u_{20j} \end{cases} \begin{bmatrix} u_{00j} \\ u_{10j} \\ u_{20j} \end{bmatrix} \sim MVN \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \tau_{u00}^2 \\ \tau_{u00,u10} \\ \tau_{u10,u20} \\ \tau_{u10,u20} \\ \tau_{u10,u20} \\ \tau_{u10,u20} \\ \tau_{u10,u20} \\ \tau_{u20} \end{pmatrix} \end{bmatrix}$$

Three-Level PGM

- To estimate this particular model presented with initial status and <u>two</u> slopes varying across both individuals and clusters, a minimum of <u>four</u> time-points must be included for identification of the model.
 - One more time-point than the number of growth parameters (three).

 Otherwise, modeling the slopes as fixed or constraints on the level-1 residual variance can be placed if utilizing fewer time-points (see McCoach, O'Connell, Reis, & Levitt, 2006; Palardy, 2010).

Three-Level PGM

- Three-level PGMs utilized in previous research have assumed pure clustering of individuals across time or removed individuals from the analysis who changed clusters.
 - BUT...in reality, individual mobility across clusters is frequently encountered in longitudinal studies.

- Incorrect model specification in the presence of cluster mobility negatively impacts parameter estimates (Chung & Beretvas, 2012; Grady, 2010; Grady & Beretvas, 2010; Leroux, 2014; Leroux & Beretvas, 2017a, Leroux & Beretvas, 2017b; Luo & Kwok, 2009; Luo & Kwok, 2012; Meyers & Beretvas, 2006).
 - Generally, leads to inaccurate estimates of between-clusters variance components and standard errors of the fixed effects.

Longitudinal Data with Mobile Students

	Fall K	Spri	ng K	Spring 1 st			Spring 3 rd			Spring 5 th					
Student	Sch. 1	Sch. 1	Sch. 2	Sch. 1	Sch. 2	Sch. 3	Sch. 1	Sch. 2	Sch. 3	Sch. 4	Sch. 1	Sch. 2	Sch. 3	Sch. 4	Sch. 5
A	~	~		~			~				✓				
В	~	~			~			~				~			
С	~	~			~			~					~		
D	~		~			~				~	✓				
E	~		~			~				~					~

Multiple Membership Data

 <u>Some</u> units of a lower-level classification are members of more than one higherlevel classification.

Multiple Membership Random Effects Model (MMREM)

- Models the contribution to the outcome, Y, of <u>each level-2 unit</u> of which the level-1 unit is a member.
- <u>E.g.</u>, For student *i* who is a member of a set of ESs {*j*}, the unconditional model's L1 equation is:

$$Y_{i\{j\}} = \beta_{0\{j\}} + r_{i\{j\}}$$

• At L2:

$$\beta_{0\{j\}} = \gamma_{00} + \sum_{h \in \{j\}} w_{ih} u_{0h}$$

MMREM

• Single equation:

$$Y_{i\{j\}} = \gamma_{00} + \sum_{h \in \{j\}} w_{ih} u_{0h} + r_{i\{j\}}$$

$$r_{i\{j\}} \sim N(0, \sigma^2)$$
 and $u_{0h} \sim N(0, \tau_{u00})$

where the user specifies the weights to represent the hypothesized contribution of each L2 unit (here, elementary school)

• For each student *i*:

$$\sum_{h\in\{j\}} w_{ih} = 1$$

• For non-mobile student B (attending ES1):

 $Y_{B\{ES1\}} = \gamma_{00} + u_{0\{ES1\}} + r_{B\{ES1\}}$

• For mobile student A, attending ES1 and ES2:

 $Y_{A\{ES1,ES2\}} = \gamma_{00} + 0.5u_{0\{ES1\}} + 0.5u_{0\{ES2\}} + r_{A\{ES1,ES2\}}$

• For mobile student Q, attending ES6, ES7, and ES8:

 $Y_{Q\{ES6,ES7,ES8\}} = \gamma_{00} + (1/3)u_{0\{ES6\}} + (1/3)u_{0\{ES7\}} + (1/3)u_{0\{ES8\}} + r_{Q\{ES6,ES7,ES8\}}$

Conditional MMREM

- Can include L1 and L2 predictors.
- At L1:

$$Y_{i\{j\}} = \beta_{0\{j\}} + \beta_{1\{j\}} X_{i\{j\}} + r_{i\{j\}}$$

• And at L2:

$$\begin{cases} \beta_{0\{j\}} = \gamma_{00} + \sum_{h \in \{j\}} w_{ih}(\gamma_{01}Z_h + u_{0h}) \\ \\ \beta_{1\{j\}} = \gamma_{10} + \sum_{h \in \{j\}} w_{ih}(\gamma_{11}Z_h + u_{1h}) \end{cases}$$

Conditional MMREM

• The following multivariate normal distribution is assumed for the level-2 residuals:

$$\begin{bmatrix} u_{0\{j\}} \\ u_{1\{j\}} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_{u00} \\ \tau_{u10} & \tau_{u11} \end{bmatrix}\right)$$

 <u>Note</u>: Contribution of each ES's Z (for mobile students) is modeled and weighted in the same way as are schools' effects (the u's).

• For mobile student A, attending private ES1 and public ES2:

 $Y_{A\{ES1,ES2\}} = \gamma_{00} + \gamma_{01}[(0.5)(1) + (0.5)(0)] + 0.5u_{0\{ES1\}} + 0.5u_{0\{ES2\}} + r_{A\{ES1,ES2\}}$

Cross-Classified Multiple Membership Longitudinal Data

Cross-Classified Multiple Membership Longitudinal Data

Purpose of Current Study

 The current study proposes a three-level PGM to handle mobile students who change schools (clusters) during the period of data collection.

 The proposed cross-classified multiple membership PGM (CCMM-PGM) will be derived, justified, and explained using a real dataset.

Purpose of Current Study

- This extension is of particular importance when repeated measures over time are captured for students within schools because there is a high probability that at least some substantial proportion of students change schools during a study's time period.
 - 38.5% of people aged 5-17 years moved within 2005 to 2010 (Ihrke & Faber, 2012)
 - 25% of those between the ages 5-17 relocated within the same county
 - From 2012 to 2013, **12%** of people between the ages 5-17 years old moved
 - 69% of those moves occurred within the same county (U.S. Census Bureau, 2013)
 - 13% of students changed schools 4 or more times between kindergarten and 8th grade (U.S. Government accounting office, 2010)

University, DEVELOPMENT

Level 1: $Y_{ti(j_1,\{j_2\})} = \pi_{0i(j_1,\{j_2\})} + \pi_{1i(j_1,\{j_2\})}TIME_{1ti(j_1,\{j_2\})} + \pi_{2i(j_1,\{j_2\})}TIME_{2ti(j_1,\{j_2\})} + e_{ti(j_1,\{j_2\})}$ Level 2: $\begin{cases} \pi_{0i(j_1,\{j_2\})} = \beta_{00(j_1,\{j_2\})} + r_{0i(j_1,\{j_2\})} \\ \pi_{1i(j_1,\{j_2\})} = \beta_{10(j_1,\{j_2\})} + r_{1i(j_1,\{j_2\})} \\ \pi_{2i(j_1,\{j_2\})} = \beta_{20(j_1,\{j_2\})} + r_{2i(j_1,\{j_2\})} \end{cases}$ Subscripts j_1 and $\{j_2\}$ index the first and set of subsequent schools attended by a student. No subsequent school Intercept residual for initial status (initial status) $\beta_{00(j_1,\{j_2\})} = \gamma_{0000} + u_{00j_10}$ Level 3: $\begin{cases} \beta_{10(j_1,\{j_2\})} = \gamma_{1000} + u_{10j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{2000} + u_{20j_10} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} = \gamma_{20(j_1,\{j_2\})} + \sum_{h \in \{j_2\}} \\ \beta_{20(j_1,\{j_2\})} + \sum_{h \in \{j_2\}}$ Note two different weights because each $W_{2tih}u_{200h}$ slope is associated with 1st Slope different time-points Cross-classification of first 2nd Slope and subsequent schools

19

Data

- ECLS-K data were used with time nested within students nested within schools.
- <u>Multiple membership</u> structure due to some students' switching elementary schools across the course of data collection
- Time-points: Fall of kindergarten and springs of kindergarten, 1st, 3rd, and 5th grade
- Outcome: Math IRT-scaled scores
- Growth rates from $K 1^{st}$ grade appeared faster than those from $1^{st} 5^{th}$ grade
- Gender (1 = female; 0 = male) and school type (1 = private; 0 = public)
- 10,906 students (29.8% mobile) from 970 schools

Descriptive Statistics

	Variable Name	М	SD	N
Outcome				
Math achievement in Fall Kindergarten	Y _{1<i>ij</i>}	26.69	9.20	9,724
Math achievement in Spring Kindergarten	Y_{2ij}	37.17	11.95	10,664
Math achievement in Spring 1 st Grade	Y _{3ij}	62.26	17.96	10,803
Math achievement in Spring 3 rd Grade	Y_{4ij}	99.73	24.47	10,764
Math achievement in Spring 5th Grade	Y _{5ij}	124.05	24.66	10,801

		Variable Name	Percentage	Ν
	Level-2 variable Female student Male student	$FEMALE_{ij}$	49.78% 50.22%	5,429 5,477
	Level-3 variable			
((Private school		23.51%	228
GeorgaState	Public school	PRIVATE	76.49%	742

Coding of *Time* Variables

				_		
	Fall K	Spring K	Spring 1 st	Spring 3 rd	Spring 5 th	Interpretation of π s
						π_{0ii} status in Fall K
Time _{1 tij}	0	0.5	1.5	1.5	1.5	π_{1ij} growth rate period 1
<i>Time</i> _{2tij}	0	0	0	2	4	π_{2ij} growth rate period 2

 Exploratory analyses suggested a two-piece growth model because growth rates from kindergarten through 1st grade appeared faster than those from 1st through 5th grade

Analyses

- Baseline and conditional versions of the following models were estimated:
 - **<u>CCMM-PGM</u>**: appropriately took into account student mobility
 - *First school-PGM*: ignored mobility by only modeling effect of the first school attended
 - **Delete-PGM**: ignored mobility by deleting students who changed schools

 Weights are based on the proportion of time-points a student was associated with a school.

Coding Schemes for Weights

			School	S		Weights	(K – 1 st)		Weights (1 st – 5 th)				
	Fall	Spring	Spring	Spring	Spring	1 st	2 nd	1 st	2 nd	3 rd	4 th		
Student	K	K	1 st	3 rd	5 th	School	School	School	School	School	School		
А	S1	S1	S1	S1	S1	1	0	1	0	0	0		
В	S1	S1	S1	S1	S2	1	0	3/4	1/4	0	0		
С	S1	S1	S1	S2	S2	1	0	1/2	1/2	0	0		
D	S1	S1	S2	S2	S2	1/2	1/2	1/4	3/4	0	0		
Е	S1	S2	S2	S2	S2	1	0	1	0	0	0		
F	S1	S2	S2	S2	S3	1	0	3/4	1/4	0	0		
G	S1	S2	S2	S3	S3	1	0	1/2	1/2	0	0		
Н	S1	S2	S3	S3	S3	1/2	1/2	1/4	3/4	0	0		
I	S1	S2	S3	S3	S4	1/2	1/2	1/4	1/2	1/4	0		
J	S1	S2	S3	S4	S4	1/2	1/2	1/4	1/4	1/2	0		
K	S1	S2	S3	S4	S 5	1/2	1/2	1/4	1/4	1/4	1/4		

Estimation

- Models were fit using R with MCMC estimation using R2jags to interface with Just Another Gibbs Sampler (JAGS).
 - Non-informative normal priors were used for fixed effects parameters and inverse-Wishart distributions for the covariance matrices.
 - Burn-in period of 5,000 iterations and an additional 50,000 iterations

 Parameter and SE estimates were compared, as well as model fit using the deviance information criterion value (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002).

Baseline Fixed Effects

		Estimating Model											
	(CCMM-PG	M ¹	Firs	st School-I	^P GM ¹	D	Delete-PGM ²					
Parameter	Coeff	. Est.	(<i>SE</i>)	Coeff	Est.	(<i>SE</i>)	Coeff.	Est.	(SE)				
Model for initial status Intercept	Y0000	25.313	(0.171)	Y000	25.307	(0.171)	Y000	25.441	(0.194)				
Model for 1 st slope Intercept	Y1000	25.480	(0.150)	Y100	25.488	(0.146)	Y100	25.442	(0.171)				
Model for 2 nd slope Intercept	Y2000	15.499	(0.066)	γ ₂₀₀	15.500	(0.066)	γ ₂₀₀	15.544	(0.078)				
DIC		451,380.3	3		453,361.	6		305,458.	7				

Baseline Random Effects

	С	CMM-PG	6 M	Firs	t School-	PGM	Ľ	Delete-PGM		
Parameter	Coeff.	Est.	(SE)	Coeff.	Est.	(SE)	Coeff.	Est.	(SE)	
Level-1 variance between	_			_			_			
Measures	σ^2	62.453	(0.631)	σ^2	62.479	(0.626)	σ^2	63.345	(0.706)	
Initial status variance between										
Students	τ_{r0}^2	32.443	(1.057)	τ_{r0}^2	32.376	(1.020)	τ_{r0}^2	32.911	(1.273)	
1 st schools	$\tau^2_{u0_{j1}}$	19.386	(1.269)	$ au_{u0}^2$	19.356	(1.288)	τ_{u0}^2	19.844	(1.495)	
1 st slope variance between										
Students	τ_{r1}^2	39.281	(1.132)	τ_{r1}^2	39.339	(1.113)	τ_{r1}^2	37.989	(1.279)	
1 st schools	$\tau^2_{u1_{j1}}$	8.663	(1.139)	τ_{u1}^2	11.626	(0.927)	τ_{u1}^2	12.457	(1.132)	
Subsequent schools	$\mathfrak{r}^2_{u1_{\{j2\}}}$	3.567	(0.990)	—	—	—	—	—	—	
2 nd slope variance between	2									
Students	τ_{r2}^2	7.761	(0.214)	τ_{r2}^2	7.826	(0.224)	τ_{r2}^2	7.043	(0.254)	
1 st schools	$\tau_{u2_{j1}}^2$	1.861	(0.349)	$ au_{u2}^2$	2.585	(0.184)	τ^2_{u2}	2.870	(0.249)	
Subsequent schools	$\mathfrak{\tau}^2_{u2_{\{j2\}}}$	0.935	(0.414)	—		—		—	_	

Conditional Fixed Effects

		Estimating Model										
	C	CMM-PG	M ¹	Fi	rst School-F	PGM ¹	Ľ	Delete-PG	M ²			
Parameter	Coeff.	Est.	(SE)	Coeff	. Est.	(SE)	Coeff.	Est.	(SE)			
Model for initial status												
Intercept	Y0000	24.255	(0.182)	Y000	24.259	(0.168)	Y000	24.281	(0.204)			
FEMALE	Y0100	-0.207	(0.176)	γ_{010}	-0.208	(0.187)	γ_{010}	-0.340	(0.216)			
Sch1_PRIVATE	γ_{0010}	5.057	(0.385)	γ_{001}	5.082	(0.374)	γ_{001}	5.459	(0.423)			
Model for 1 st slope												
Intercept	Y ₁₀₀₀	25.237	(0.163)	γ ₁₀₀	25.246	(0.156)	γ_{100}	25.140	(0.197)			
FEMALE	γ_{1100}	-1.556	(0.186)	γ_{110}	-1.562	(0.185)	γ_{110}	-1.651	(0.227)			
Sch1_PRIVATE	Y1010	1.743	(1.529)	γ_{101}	0.955	(0.340)	γ_{101}	1.285	(0.403)			
SubSch_PRIVATE	γ_{1001}	-0.800	(1.569)		—	—	—		—			
Model for 2 nd slope												
Intercept	Y2000	15.446	(0.072)	Y200	15.447	(0.073)	Y ₂₀₀	15.511	(0.086)			
FEMALE	Υ ₂₁₀₀	-0.699	(0.078)	γ ₂₁₀	-0.707	(0.077)	Υ ₂₁₀	-0.635	(0.096)			
Sch1_PRIVATE	Y ₂₀₁₀	1.601	(0.407)	γ ₂₀₁	0.284	(0.168)	Y ₂₀₁	0.116	(0.180)			
SubSch_PRIVATE	Y ₂₀₀₁	-1.466	(0.425)				_					
DIC		454,180.8	3		456,478.6	6		306,754.3	3			

Conditional Random Effects

	C	CMM-PG	M	Firs	t School-	PGM	Ĺ	Delete-PGM		
Parameter	Coeff.	Est.	(SE)	Coeff.	Est.	(SE)	Coeff.	Est.	(<i>SE</i>)	
Level-1 variance between Measures	σ^2	62.407	(0.657)	σ^2	62.413	(0.657)	σ^2	63.287	(0.711)	
Initial status variance between Students 1 st schools	$\tau^2_{r0} \\ \tau^2_{u0_{j1}}$	32.443 15.222	(0.972) (1.041)	$ au_{r0}^2 \ au_{u0}^2$	32.482 15.165	(1.043) (1.082)	$ au_{r0}^2 \ au_{u0}^2$	33.049 14.809	(1.295) (1.215)	
1 st slope variance between Students 1 st schools Subsequent schools	$ au_{r1}^2 au_{r1}^2 au_{j1}^2 au_{1\{j2\}}^2$	38.769 8.958 2.974	(1.107) (1.089) (0.932)	$ au_{r1}^2 au_{u1}^2$	38.861 11.388 —	(1.082) (0.908) —	$ au_{r1}^2 au_{u1}^2$	37.232 12.205	(1.337) (1.111)	
2 nd slope variance between Students 1 st schools Subsequent schools	$ au_{r2}^2 \ au_{u2_{j1}}^2 \ au_{u2_{\{j2\}}}^2$	7.638 1.826 0.927	(0.217) (0.353) (0.395)	$\begin{array}{c} \tau_{r2}^2 \\ \tau_{u2}^2 \\ - \end{array}$	7.699 2.562	(0.220) (0.190) —	$ au_{r2}^2 \ au_{u2}^2 \ au_{u2}$	6.960 2.851	(0.255) (0.240) 	

Implications

- Ignoring mobility could lead to inaccurate conclusions about:
 - The intercept and slope estimates in a three-level PGM if one were to delete mobile cases
 - The impact of cluster-level predictors (regardless if you delete or ignore mobile individuals)
 - The impact of both level-2 and level-3 predictors if one were to delete mobile cases.

Implications

- Researchers using a PGM ignoring multiple membership data should be careful when making inferences about the nature of variability in growth rates.
 - For the *delete*-PGM, the *SE* estimates of the other variances were larger, which could then lead to erroneous conclusions about random effects if mobile individuals were removed from analysis.
- The CCMM-PGM fit to the data better than the *first school*-PGM.

 Because of these findings, a simulation study will be conducted this summer, so stay tuned...

Thank you!

aleroux@gsu.edu