

Jessica A. M. Mazen¹ Xin Tong¹ Laura K. Taylor²

Department of Psychology University of Virginia¹

School of Psychology Queen's University Belfast²

Modern Modeling Methods conference May 2017

イロト イポト イヨト イヨト

Introduction ●000000	Supplemental Samples	Method 000000	Results 00000000	Discussion
Longitudi	nal Research			

- Popularity of longitudinal research is growing
- More attention paid to longitudinal theory, methodology, and research

Introduction 0●00000	Supplemental Samples	Method 000000	Results 000000000	Discussion 0000
Longitudi	nal Research			

- Used in all areas of psychology to study a diverse set of topics (e.g., childhood abuse, mental illness, political violence)
- Popularity is not surprising, but longitudinal research is often encumbered with methodological challenges
- One such challenge is that missing data frequently arise

Б

Introduction 00●0000	Supplemental Samples	Method 000000	Results 00000000	Discussion
Missing F)ata			

- Attrition rate the percentage of participants from the initial wave that are missing at one or more time points
 - Permanent a participant drops out of the study and does not return
 - Intermittent a participant may not be available for one or more measurement occasions, but then returns at later waves of data collection

ົ

Introduction 000●000	Supplemental Samples	Method ೦೦೦೦೦೦	Results 000000000	Discussion 0000
Missing Da	ata			

- Missing data mechanisms refer to the process that causes missing data (Little and Rubin, 2002)
 - Missing completely at random (MCAR) missingness on Y is completely independent of other variables that influence Y
 - e.g., a student happens to be sick on the day of the math test
 - Missing at random (MAR) missingness on Y is related to an observed variable (auxiliary variable) that affects Y
 - e.g., students with greater test anxiety tend to skip the test more than less anxious students, test anxiety is measured
 - Missing not at random (MNAR) missingness on Y is related to an unobserved variable that influences Y
 - e.g., students with greater anxiety skip the test more, test anxiety is not measured

Introduction 0000●00	Supplemental Samples	Method 000000	Results 00000000	Discussion
Missing D	Pata			

- 44% average attrition rate across 92 longitudinal studies in a recent meta-analysis examining personality traits (Roberts et al., 2006)
- 5% to 50% attrition rate across 25 population-based longitudinal studies of the elderly (Chatfield et al., 2005)
- Attrition may be especially problematic in longitudinal studies with at-risk populations
 - Attrition rates can be as high as 85% (Goemans, van Geel, and Vedder, 2015)

Introduction 00000●0	Supplemental Samples	Method 000000	Results 000000000	Discussion 0000
Current S	trategies			

- Deletion of cases (e.g., listwise or pairwise deletion)
 - Common approach to dealing with missing data (Jeličić et al., 2009)
- Modern missing data approaches
 - Full information maximum likelihood (FIML) estimation)
 - Multiple imputation (MI)

Introduction 000000●	Supplemental Samples	Method 000000	Results 00000000	Discussion
Current S	trategies			

- Retention and tracking techniques (Ribisl et al., 1996)
 - e.g., increased financial incentive over time, driver's records, obtaining contact information of friends or family of participants
- Planned missing designs
 - Researchers intentionally collect incomplete data from participants
 - Missing items
 - Missing measures
 - Missing measurement occasions

(日) (同) (日) (日) (日)

Introduction 0000000	Supplemental Samples	Method 000000	Results 00000000	Discussion

Supplemental Sample Definition

 A set of new participants added to the original sample (after missing data appear) in the second or later measurement occasion

Introduction	Supplemental Samples	Method	Results	Discussion
0000000	o●ooooo	000000	000000000	0000
Supplemen	ntal Sample Approx	aches		

- A set of new participants added to the original sample (after missing data appear) in the second or later measurement occasion
- Two approaches
 - Refreshment approach researchers select additional participants using the same criteria as the initial participants (i.e., random selection from population of interest)

■ e.g., randomly select grade school children

10 of 34

Introduction	Supplemental Samples	Method	Results	Discussion
0000000	00●0000	000000	000000000	0000
C L				

Supplemental Samples Approaches

- A set of new participants added to the original sample (after missing data appear) in the second or later measurement occasion
- Two approaches
 - Refreshment approach researchers select additional participants using the same criteria as the initial participants (i.e., random selection from population of interest)
 - e.g., randomly select grade school children
 - Replacement approach researchers first identify auxiliary variables that explain the pattern of missingness in the data and then select new participants based on those attributes
 - e.g., researchers may over-select for children with high test anxiety

(日) (同) (日) (日)

- Supplemental samples are utilized to address attrition in many studies
 - Includes numerous large-scale studies
 - International Tobacco Control Policy Evaluation Project
 - Medicare Current Beneficiary Survey
 - International Alcohol Control (IAC) Study
 - Survey of Health, Ageing and Retirement in Europe
 - English Longitudinal Study of Ageing
 - Projects have generated over 2600 published articles
- Little research investigating supplemental samples -> little guidance for researchers

(日) (同) (日) (日) (日)

Introduction 0000000	Supplemental Samples	Method 000000	Results 000000000	Discussion
Previous	Research			

- Taylor, Tong, and Maxwell (under review) systematically studied the effects of adding supplemental samples in growth curve modeling
- Compared refreshment and replacement approaches with MCAR and MAR data
- MCAR and MAR with refreshment approach
 - Bias similar to complete data analysis
 - Acceptable coverage rates
- MAR with replacement approach
 - Greater bias, increased as replacement sample increased
 - Unacceptable coverage rates

Introduction 0000000	Supplemental Samples	Method 000000	Results 000000000	Discussion 0000

Previous Research

- Limitations:
 - Only focused on normally distributed data
 - Supplemental samples added at only one measurement occasion
 - Permanent attrition only
- Limit the applicability of findings to real-world studies

Introduction 0000000	Supplemental Samples	Method 000000	Results 000000000	Discussion 0000
Current S	tudv			

- Extend previous findings by assessing effects of supplemental samples across a wide variety conditions
 - Nonnormal distributions
 - Practical data are more likely to be nonnormal in social and behavioral sciences (Micceri, 1989)
 - Permanent and intermittent attrition
 - Multiple measurement occasions

(日) (同) (日) (日) (日)

Introduction	Supplemental Samples	Method	Results	Discussion
0000000	0000000	●೦೦೦೦೦	000000000	0000
Model				

- Growth curve model with time-invariant covariate
- A typical form of a linear growth curve models can be expressed as

$$y_i = \Lambda b_i + e_i,$$

$$b_i = \beta_0 + \beta_1 x_i + u_i,$$

 $y_i = \text{Observations for individual i}$

- $\Lambda =$ Factor loading matrix determining the growth trajectories
- $b_i = Random effects$
- $e_i =$ Intraindividual measurement errors

$$x_i = \text{Covariate} \sim MVN(10, 1.5)$$

$$\beta_0 = \text{Regression coefficients} = (6, 0.3)$$

$$\beta_1 = \text{Regression coefficients} = (1, 0.1)$$

$$u_i = \text{Residuals} \sim MVN(0, 1)$$

白い くさい く

Introduction 0000000	Supplemental Samples	Method o●oooo	Results 000000000	Discussion 0000
Condition	c			

Original sample size

■ N = 50, 200, 500, 1000

Number of measurement occasions

■ T = 4, 8

Distribution of intraindividual measurement errors

- normal distribution $N(0, \sigma_e^2)$
- normal distribution $N(0, \sigma_e^2)$ with 2% outliers
- normal distribution $N(0, \sigma_e^2)$ with 8% outliers
- gamma distribution $\Gamma_{(1,1)}(0,\sigma_e^2)$
- log-normal distribution $LN_{(0,1)}(0,\sigma_e^2)$
- t distribution $t_{(5)}(0, \sigma_e^2)$

・ロト ・四ト ・ヨト ・ヨト

Introduction 0000000	Supplemental Samples	Method 00●000	Results 000000000	Discussion
Condition	e			

Variance of measurement errors

• $\sigma_e^2 = 1, 3$

Missing data pattern

MCAR, MAR

• Correlation between the auxiliary variable and latent slope

■ *r* = .3, .8

Missing rate

■ MR = 3%, 5%, 8%, and 15%

Introduction	Supplemental Samples	Method	Results	Discussion
0000000		०००●००	000000000	0000
Conditions				

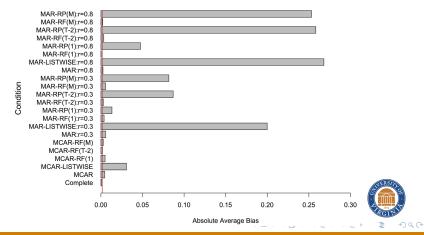
- Supplemental sample type
 - refreshment (RF) samples
 - replacement (RP) samples
- Size/timing of supplemental samples
 - 1 x number of missing observations at 2nd measurement occasion added at the 3rd measurement occasion (RF/RP (1))
 - (T-2) x number of missing observations at 2nd measurement occasion added at the 3rd measurement occasion (RF/RP(T-2))
 - 1 x number of missing observations at 2nd measurement occasion added at the 3rd measurement occasion and every subsequent measurement occasion (RF/RP(M))
- 7,152 conditions

・ロト ・四ト ・ヨト ・ヨト

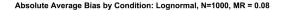
Introduction 0000000	Supplemental Samples	Method ००००●०	Results 00000000	Discussion
Analyses				

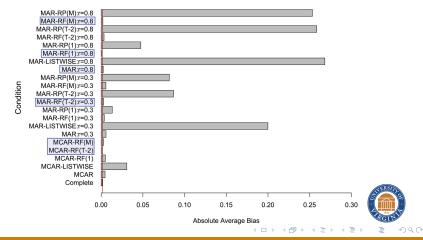
- Two-stage robust procedure for structural equation modeling with missing data (Yuan and Zhang, 2012)
 - R package 'rsem'
 - Robust procedures are advantageous when analyzing data with missing values
 - Difficult to determine the distributional properties of the sample when missing values are present
 - Produce less biased parameter estimates and more reliable test statistics

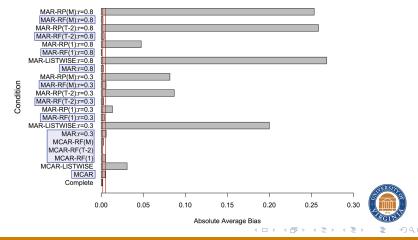
 For comparison, we also applied listwise deletion and two-stage NML to analyze the data


Introduction 0000000	Supplemental Samples	Method ०००००●	Results 000000000	Discussion 0000
Evaluatio	n Critarian			

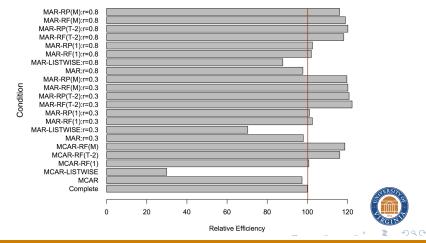
- Estimate of interest: population mean slope parameter
- Outcomes evaluated:
 - Absolute average bias absolute value of bias (estimation minus the true parameter value) averaged across all replications
 - Relative efficiency ratio of squared empirical standard error of complete data to incomplete data
 - Power proportion of replications of which the 95% confidence interval does not contain zero
 - Average confidence interval width upper confidence interval (CI) boundary minus lower CI boundary averaged across all replications




Introduction 0000000	Supplemental Samples	Method 000000	Results ●00000000	Discussion 0000
Bias				

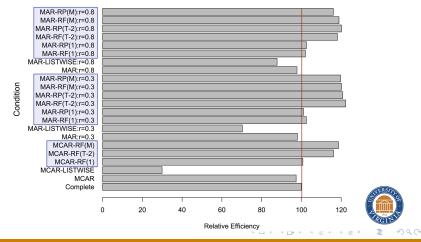

Introduction 0000000	Supplemental Samples	Method 000000	Results 0●0000000	Discussion
Bias				
2140				

Introduction 0000000	Supplemental Samples	Method 000000	Results ००●००००००	Discussion 0000
Bias				
Dias				

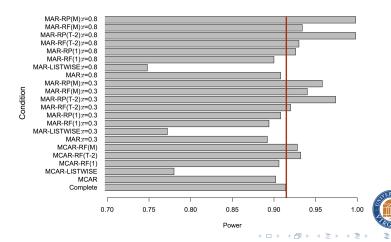


Relative Efficiency

Relative Efficiency by Condition: Lognormal, N=1000, MR = 0.08

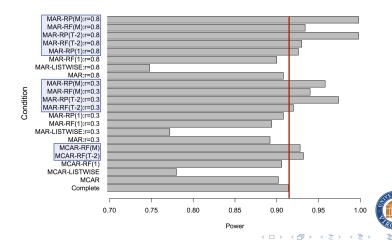


25 of 34



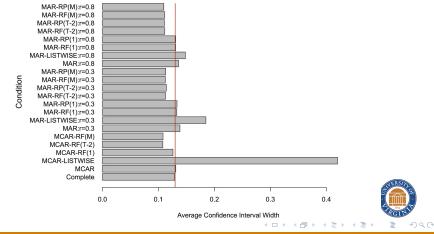
Relative Efficiency

Relative Efficiency by Condition: Lognormal, N=1000, MR = 0.08



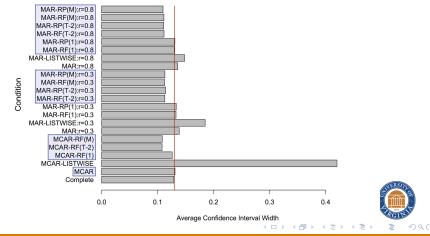
Power by Condition: Lognormal, N=1000, MR = 0.08

Jessica A. M. Mazen


Power by Condition: Lognormal, N=1000, MR = 0.08

Jessica A. M. Mazen

Confidence Interval Width


Average Confidence Interval Width by Condition: Lognormal, N=1000, MR = 0.08

Confidence Interval Width

Average Confidence Interval Width by Condition: Lognormal, N=1000, MR = 0.08

Introduction 0000000	Supplemental Samples	Method 000000	Results 00000000	Discussion ●000
General D)iscussion			

Bias

- RF samples/ML estimation resulted in bias similar to complete data
- RP samples led to biased estimates
 - Larger RP sample / higher missing rates equates to greater bias
- Relative Efficiency
 - Efficiency was greatest when supplemental samples were used
 - Increasing the size of supplemental sample resulted in higher efficiency

→ 3 → < 3</p>

Differences between methods increased as missing rate increased

Introduction 0000000	Supplemental Samples	Method 000000	Results 000000000	Discussion ○●○○
Constal	Viceuccion			

Jeneral Discussion

- Power
 - RP samples resulted in greater power than RF samples, and supplemental samples produced greater power than the ML estimation
- Average Confidence Interval Width
 - Interval widths similar to complete data for all supplemental sample/ ML methods
 - Increasing supplemental sample decreased interval width

< 17 ▶

• = • •

Introduction 0000000	Supplemental Samples	Method 000000	Results 000000000	Discussion 00●0	
Recommendations					

- Replacement samples produce biased estimates and should not be used
- Refreshment samples can improve power and efficiency
 - Decision to use refreshment samples depends on many factors
 - Expected effect size, missing rate, cost/difficulty of obtaining supplemental sample

Introduction	Supplemental Samples	Method	Results	Discussion
0000000		000000	000000000	000●

Thank You!

jm5ku@virginia.edu

Jessica A. M. Mazen