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Introduction
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Longitudinal Research

m Popularity of longitudinal research is growing

m More attention paid to longitudinal theory, methodology, and
research
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Longitudinal Research

m Used in all areas of psychology to study a diverse set of topics
(e.g., childhood abuse, mental illness, political violence)

m Popularity is not surprising, but longitudinal research is often
encumbered with methodological challenges

m One such challenge is that missing data frequently arise
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Missing Data

m Attrition rate - the percentage of participants from the initial
wave that are missing at one or more time points

m Permanent - a participant drops out of the study and does not

return

m Intermittent - a participant may not be available for one or
more measurement occasions, but then returns at later waves
of data collection
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Missing Data

m Missing data mechanisms refer to the process that causes
missing data (Little and Rubin, 2002)

m Missing completely at random (MCAR) - missingness on Y is
completely independent of other variables that influence Y

m e.g., a student happens to be sick on the day of the math test

m Missing at random (MAR) - missingness on Y is related to an
observed variable (auxiliary variable) that affects Y

m e.g., students with greater test anxiety tend to skip the test
more than less anxious students, test anxiety is measured

m Missing not at random (MNAR) - missingness on Y is related
to an unobserved variable that influences Y

B e.g., students with greater anxiety skip the test more,
test anxiety is not measured
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Missing Data

m 44% average attrition rate across 92 longitudinal studies in a
recent meta-analysis examining personality traits (Roberts et
al., 2006)

m 5% to 50% attrition rate across 25 population-based
longitudinal studies of the elderly (Chatfield et al., 2005)

m Attrition may be especially problematic in longitudinal studies
with at-risk populations

m Attrition rates can be as high as 85% (Goemans, van Geel, and
Vedder, 2015)
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Current Strategies

m Deletion of cases (e.g., listwise or pairwise deletion)

m Common approach to dealing with missing data (Jeli¢i¢ et al.,
2009)

m Modern missing data approaches

m Full information maximum likelihood (FIML) estimation)
m Multiple imputation (MI)
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Current Strategies

m Retention and tracking techniques (Ribisl et al., 1996)
m e.g., increased financial incentive over time, driver's records,
obtaining contact information of friends or family of
participants

m Planned missing designs

m Researchers intentionally collect incomplete data from
participants
m Missing items
m Missing measures
m Missing measurement occasions
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Supplemental Sample Definition

m A set of new participants added to the original sample (after
missing data appear) in the second or later measurement
occasion
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Supplemental Sample Approaches

m A set of new participants added to the original sample (after
missing data appear) in the second or later measurement
occasion

m Two approaches

m Refreshment approach - researchers select additional
participants using the same criteria as the initial participants
(i.e., random selection from population of interest)

m e.g., randomly select grade school children
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Supplemental Samples Approaches

m A set of new participants added to the original sample (after
missing data appear) in the second or later measurement
occasion

m Two approaches

m Refreshment approach - researchers select additional

participants using the same criteria as the initial participants
(i.e., random selection from population of interest)

B e.g., randomly select grade school children
m Replacement approach - researchers first identify auxiliary
variables that explain the pattern of missingness in the data
and then select new participants based on those attributes
m e.g., researchers may over-select for children with high tes
anxiety
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Supplemental Samples Use

m Supplemental samples are utilized to address attrition in many
studies
m Includes numerous large-scale studies

m International Tobacco Control Policy Evaluation Project
m Medicare Current Beneficiary Survey

m International Alcohol Control (IAC) Study

m Survey of Health, Ageing and Retirement in Europe

m English Longitudinal Study of Ageing

m Projects have generated over 2600 published articles

m Little research investigating supplemental samples -> little
guidance for researchers
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Previous Research

m Taylor, Tong, and Maxwell (under review) systematically
studied the effects of adding supplemental samples in growth
curve modeling

m Compared refreshment and replacement approaches with
MCAR and MAR data

m MCAR and MAR with refreshment approach

m Bias similar to complete data analysis
m Acceptable coverage rates

m MAR with replacement approach

m Greater bias, increased as replacement sample increased
m Unacceptable coverage rates
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Previous Research

m Limitations:
m Only focused on normally distributed data
m Supplemental samples added at only one measurement
occasion
m Permanent attrition only

m Limit the applicability of findings to real-world studies
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Current Study

m Extend previous findings by assessing effects of supplemental
samples across a wide variety conditions
m Nonnormal distributions
m Practical data are more likely to be nonnormal in social and
behavioral sciences (Micceri, 1989)
m Permanent and intermittent attrition
m Multiple measurement occasions
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m Growth curve model with time-invariant covariate

m A typical form of a linear growth curve models can be
expressed as

Yi =Ab; + ¢,
b; = By + B1x; +uy,

y; = Observations for individual i

A = Factor loading matrix determining the growth trajectories
b; = Random effects

e; = Intraindividual measurement errors

x; = Covariate ~ MVN(10, 1.5)

Bo = Regression coefficients = (6, 0.3)

B = Regression coefficients = (1,0.1)

u; = Residuals ~ MVN(0,1)
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Conditions

m Original sample size
= N = 50, 200, 500, 1000
m Number of measurement occasions
mT =43
m Distribution of intraindividual measurement errors
m normal distribution N(0,02)
normal distribution N(0,02) with 2% outliers
normal distribution N(0,02) with 8% outliers
gamma distribution (1 1)(0,07)
log-normal distribution LN(q 1)(0,062)
t distribution t(5)(0,02)
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Conditions

m Variance of measurement errors
] 0'3 =13
m Missing data pattern
s MCAR, MAR
m Correlation between the auxiliary variable and latent slope
mr=.3.38
m Missing rate
m MR = 3%, 5%, 8%, and 15%
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Conditions

m Supplemental sample type

m refreshment (RF) samples
m replacement (RP) samples

m Size/timing of supplemental samples

m 1 x number of missing observations at 2nd measurement
occasion added at the 3rd measurement occasion (RF/RP (1))

m (T-2) x number of missing observations at 2nd measurement
occasion added at the 3rd measurement occasion
(RF/RP(T-2))

m 1 x number of missing observations at 2nd measurement
occasion added at the 3rd measurement occasion and every
subsequent measurement occasion (RF/RP(M))

m 7,152 conditions
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Analyses

m Two-stage robust procedure for structural equation modeling
with missing data (Yuan and Zhang, 2012)
m R package 'rsem’
m Robust procedures are advantageous when analyzing data with
missing values
m Difficult to determine the distributional properties of the

sample when missing values are present
m Produce less biased parameter estimates and more reliable test

statistics

m For comparison, we also applied listwise deletion and two-stage
NML to analyze the data
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Evaluation Criterion

m Estimate of interest: population mean slope parameter
m Outcomes evaluated:

m Absolute average bias - absolute value of bias (estimation
minus the true parameter value) averaged across all
replications

m Relative efficiency - ratio of squared empirical standard error of
complete data to incomplete data

m Power - proportion of replications of which the 95% confidence
interval does not contain zero

m Average confidence interval width - upper confidence interval
(CI) boundary minus lower Cl boundary averaged across all
replications
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Absolute Average Bias by Condition: Lognormal, N=1000, MR = 0.08
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Absolute Average Bias by Condition: Lognormal, N=1000, MR = 0.08
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Absolute Average Bias by Condition: Lognormal, N=1000, MR = 0.08
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Relative Efficiency

Relative Efficiency by Condition: Lognormal, N=1000, MR = 0.08
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Relative Efficiency

Relative Efficiency by Condition: Lognormal, N=1000, MR = 0.08
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Power by Condition: Lognormal, N=1000, MR = 0.08
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Power by Condition: Lognormal, N=1000, MR = 0.08
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Confidence Interval Width

Average Confidence Interval Width by Condition: Lognormal, N=1000, MR = 0.08
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Confidence Interval Width

Average Confidence Interval Width by Condition: Lognormal, N=1000, MR = 0.08
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General Discussion

m Bias

m RF samples/ML estimation resulted in bias similar to complete
data
m RP samples led to biased estimates
m Larger RP sample / higher missing rates equates to greater
bias
m Relative Efficiency
m Efficiency was greatest when supplemental samples were used
m Increasing the size of supplemental sample resulted in higher
efficiency
m Differences between methods increased as missing rate
increased
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General Discussion

m Power
m RP samples resulted in greater power than RF samples, and
supplemental samples produced greater power than the ML
estimation
m Average Confidence Interval Width

m Interval widths similar to complete data for all supplemental
sample/ ML methods

m Increasing supplemental sample decreased interval width
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Recommendations

m Replacement samples produce biased estimates and should not
be used
m Refreshment samples can improve power and efficiency
m Decision to use refreshment samples depends on many factors

m Expected effect size, missing rate, cost/difficulty of obtaining
supplemental sample
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Thank You!

jmb5ku®virginia.edu
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