Bayesian Structural Equation Models with Small Samples: A Systematic Review

Sanne Smid¹, Dan McNeish², Rens van de Schoot¹

¹ Department of Methodology and Statistics, Utrecht University ² University of North Carolina, Chapel Hill

M3 conference - May 24, 2017

Quotes

- Rupp et al., 2004: "Bayesian parameter estimation is more appropriate than ML estimation for smaller sample sizes (...)."
- Kruschke et al., 2012: "Bayesian methods can be used regardless of the overall sample size or relative sample sizes across conditions or groups."

Goal

Is it valid to use Bayesian instead of Maximum Likelihood estimation for SEM when the sample size is small?

• Systematic literature review

Methods – Inclusion Criteria

- Simulation study
- Bayesian parameter estimation vs Maximum Likelihood
- Small sample sizes
- Structural Equation Models
- Peer-reviewed articles
- Field: social sciences

Methods – Searches

Methods – Searches

Results

Results – Sample Size

Studies	Number of clusters	Cluster size
Baldwin & Fellingham, 2013	8, 16	5, 15
Browne & Draper, 2002	<u>12</u> , 48	(un)balanced, mean = 18
Browne & Draper, 2006	<u>6, 12,</u> 24, 48	(un)balanced, mean = 18
Depaoli & Clifton, 2015	40 , 50, 100, 200	5 , 10, 20
Farrell & Ludwig, 2008	(i) 20; (ii) 5; (iii) 80	(i) 20 , 80, 500; (ii) 500; (iii) 20
Hox, van de Schoot & Matthijsse, 2012	10, 15, 20	1755
McNeish, 2016	8, 10, 14	7-14
McNeish & Stapleton, 2016	4, 8, 10, 14	7-14, 17-34
Stegmueller, 2013	5, 10, 15, 20, 25, 30	500
Tsai & Hsiao, 2008	15	6

Bold = defined as a small sample size by the authors of the original paper. <u>Underlined</u> = not defined by the authors of original paper, defined by authors of current study.

Results – Priors

- Default prior = general prior, 'naive' use of Bayes
- Adapted prior = specific prior information included
- Data-dependent prior = partly based on Maximum Likelihood estimate

Results – Priors

Default Phot Adapted Phot Data

n = 3 studies investigated adapted priors

- n = 1: no clear difference between ML and Bayes
- n = 2: Bayes adapted > ML

and ML > Bayes default

- n = 3 studies investigated adapted priors
- n = 1: no clear difference between ML and Bayes
- n = 2: Bayes adapted > ML, and ML > Bayes default
- n = 1 study investigated default and data-dependent priorsn = 1: no clear difference between ML and Bayes
- n = 6 studies investigated only default priors
 n = 2: ML > Bayes default

n = 3 studies investigated adapted priors

n = 1: no clear difference between ML a

- n = 2: Bayes adapted > ML, and ML > Ba
- n = 1 study investigated default and d
- n = 1: no clear difference between M
- n = 6 studies investigated only defau
- n = 2: ML > Bayes default

Bayes with

10

adapted

n = 3 studies investigated adapted priors

- n = 1: no clear difference between ML a
- n = 2: Bayes adapted > ML, and ML > Ba
- n = 1 study investigated default and d
 n = 1: no clear difference between ML
- n = 6 studies investigated only defau
- n = 2: ML > Bayes default
- n = 4: Bayes default > ML

With a small sample size, performance of Bayes with default priors is worse than ML!

- High bias in variance components
- Default prior ≠ noninformative prior when the sample size is small!

McNeish (2016): "With small samples, the idea of noninformative priors is more myth than reality."

- Latent Growth Model: Variance of latent slope is highly biased (McNeish, 2016)
- **Mixture Model**: Prior on the class proportions seems to be really important! (Depaoli, 2012; Depaoli, 2013)
- **CFA:** Large differences in performance of 3 default priors, especially with small samples (Van Erp , Mulder, Obserski, submitted)

Conclusion

Is it valid to use Bayesian instead of Maximum Likelihood estimation for SEM when the sample size is small?

- Bayesian estimation can have advantages
- Never naively use default priors when the sample size is small!

Choose your priors carefully!

Conclusion

Is it valid to use Bayesian instead of Maximum Likelihood estimation for SEM when size is small?

- Bayesian estimation can have adva
- Never naively use default priors when the sample size is small!

Choose your priors carefully!

References

Rupp, A.A., Dey, D.K., & Zumbo, B.D. (2004). To Bayes or not to Bayes, From Whether to When: Applications of Bayesian Methodology to Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 11(3), 424-451.

Kruschke, J.K., Aguinis, H., & Joo, H. (2012). The time has come: Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15(4), 722-752.

Van de Schoot, R., Winter, S., Zondervan-Zwijnenburg, M., Ryan, O., & Depaoli, S. (2017). A systematic review of Bayesian papers in psychology: The last 25 years. Psychological Methods.

References Multilevel Studies

Baldwin, S. A., & Fellingham, G. W. (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. *Psychological methods*, 18(2), 151.

Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. *Bayesian analysis*, 1(3), 473-514.

Browne, W. J., & Draper, D. (2000). Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. *Computational statistics*, 15, 391-420.

Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. *Structural Equation Modeling: A Multidisciplinary Journal*, *22*(3), 327-351.

Farrell, S., & Ludwig, C. J. (2008). Bayesian and maximum likelihood estimation of hierarchical response time models. *Psychonomic bulletin & review*, *15*(6), 1209-1217.

References Multilevel Studies

Hox, J. J., van de Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. *Survey Research Methods*, 6(2), 87-93.

McNeish, D. (2016). On using Bayesian methods to address small sample problems. *Structural Equation Modeling: A Multidisciplinary Journal, 23*(5), 750-773.

McNeish, D., & Stapleton, L. M. (2016). Modeling clustered data with very few clusters. *Multivariate behavioral research*, *51*(4), 495-518.

Stegmueller, D. (2013). How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches. *American Journal of Political Science*, *57*(3), 748-761.

Tsai, M. Y., & Hsiao, C. K. (2008). Computation of reference Bayesian inference for variance components in longitudinal studies. *Computational Statistics*, 23(4), 587-604.

References Other Models

Latent Growth Model

McNeish, D. M. (2016). Using Data-Dependent Priors to Mitigate Small Sample Bias in Latent Growth Models: A Discussion and Illustration Using M plus. *Journal of Educational and Behavioral Statistics*, *41*(1), 27-56.

CFA

Van Erp, S., Mulder, J., & Oberski, D. L. (submitted). Prior Sensitivity Analysis in Default Bayesian Structural Equation Modeling.

Mixture Model

Depaoli, S. (2012). Measurement and structural model class separation in mixture CFA: ML/EM versus MCMC. *Structural Equation Modeling: A Multidisciplinary Journal*, *19*(2), 178-203.

Depaoli, S. (2013). Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation. *Psychological Methods*, *18*(2), 186.