
Bayesian Structural Equation Models 
with Small Samples: A Systematic Review

Sanne Smid1, Dan McNeish2, Rens van de Schoot1

1 Department of Methodology and Statistics, Utrecht University

2 University of North Carolina, Chapel Hill

M3 conference - May 24, 2017



Quotes

• Rupp et al., 2004: “Bayesian parameter estimation is 
more appropriate than ML estimation for smaller 
sample sizes (...).”

• Kruschke et al., 2012: “Bayesian methods can be used 
regardless of the overall sample size or relative sample 
sizes across conditions or groups.”
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Goal

Is it valid to use Bayesian instead of 

Maximum Likelihood estimation for SEM 

when the sample size is small?

• Systematic literature review
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Methods – Inclusion Criteria

• Simulation study

• Bayesian parameter estimation vs Maximum Likelihood

• Small sample sizes

• Structural Equation Models

• Peer-reviewed articles

• Field: social sciences
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Methods – Searches 
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Results

Sanne Smid - Utrecht University - s.c.smid@uu.nl 6

2

2

1

10

4

6

3

1

0 2 4 6 8 10 12

Mixture Latent Growth

Mixture CFA

Mediation Multilevel

Multilevel

Mediation

Latent Growth

CFA

Autoregressive Time Series

Number of Included Simulation Studies per Model



Sanne Smid - Utrecht University - s.c.smid@uu.nl 7

Results – Sample Size

Bold = defined as a small sample size by the authors of the original paper. 
Underlined = not defined by the authors of original paper, defined by authors of current study.  

Studies Number of clusters Cluster size

Baldwin & Fellingham, 2013 8, 16 5, 15

Browne & Draper, 2002 12, 48 (un)balanced, mean = 18

Browne & Draper, 2006 6, 12, 24, 48 (un)balanced, mean = 18

Depaoli & Clifton, 2015 40, 50, 100, 200 5, 10, 20

Farrell & Ludwig, 2008 (i) 20; (ii) 5; (iii) 80 (i) 20, 80, 500; (ii) 500; (iii) 20

Hox, van de Schoot & Matthijsse, 
2012

10, 15, 20 1755

McNeish, 2016 8, 10, 14 7-14

McNeish & Stapleton, 2016 4, 8, 10, 14 7-14, 17-34

Stegmueller, 2013 5, 10, 15, 20, 25, 30 500

Tsai & Hsiao, 2008 15 6



Results – Priors

• Default prior = general prior, ‘naive’ use of Bayes

• Adapted prior = specific prior information included

• Data-dependent prior = partly based on Maximum
Likelihood estimate

Sanne Smid - Utrecht University - s.c.smid@uu.nl 8



Results – Priors
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Results – Bayes vs ML

n = 3 studies investigated adapted priors

n = 1: no clear difference between ML and Bayes

n = 2: Bayes adapted > ML

and ML > Bayes default
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Results – Bayes vs ML

n = 3 studies investigated adapted priors

n = 1: no clear difference between ML and Bayes

n = 2: Bayes adapted > ML, and ML > Bayes default

n = 1 study investigated default and data-dependent priors

n = 1: no clear difference between ML and Bayes

n = 6 studies investigated only default priors

n = 2: ML > Bayes default

n = 4: Bayes default > ML
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Results – Bayes vs ML

With a small sample size, performance of Bayes with 
default priors is worse than ML!

• High bias in variance components

• Default prior ≠ noninformative prior when the sample 
size is small!

McNeish (2016): “With small samples, the idea of 
noninformative priors is more myth than reality.”
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Results – Bayes vs ML

- Latent Growth Model: Variance of latent slope is highly 
biased (McNeish, 2016)

- Mixture Model: Prior on the class proportions seems to 
be really important! (Depaoli, 2012; Depaoli, 2013)

- CFA: Large differences in performance of 3 default 
priors, especially with small samples (Van Erp , Mulder, 
Obserski, submitted)
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Conclusion

Is it valid to use Bayesian instead of Maximum 
Likelihood estimation for SEM when the sample size is 
small?

- Bayesian estimation can have advantages
- Never naively use default priors 
when the sample size is small!

Choose your priors carefully!
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