A DISCONTINUOUS PIECEWISE LATENT GROWTH MODEL TO STUDY THE EFFECTS OF A COLLEGE ADMISSIONS TEST OVERHAUL

Paulina Perez Mejias, Ph.D. paulinaperezmejias@gmail.com

Alberto F. Cabrera, Ph.D. cabrera@umd.edu

POLICY CONTEXT

COLLEGE ADMISSIONS TESTS

- Chile has relied on college admissions tests to grant access to public and privates institutions since 1960, tests that were modeled after the American SAT
- College admissions tests are administered once a year, simultaneously across the country to all test takers
- By the end their senior year high school graduates take the test (approx. 250,000 students a year)

APPLICATION AND ADMISSIONS PROCESS

- Centralized and automatized system for college applications an admissions
 - Allows students to make choices and set priorities of majors and colleges
 - Make college admissions decisions according to a set of colleges' predefined criteria
- Up until 2013, college admissions test scores and high school GPA were the only selection criteria for college admissions

TEST OVERHAUL

- Up until 2003 college admissions tests were aptitude-based
- There was a consistent test score gap on students' on the test according to school sector (e.g. Koljatic & Silva, 2006, 2013; OECD & WB, 2009)
- Evidence from the UC System revealed that knowledge-based test were less correlated with students' SES (Atkinson, 2001; Geiser & Studley, 2002)
- Chilean authorities decided to change college admissions tests to measure the knowledge about the national curriculum content

PURPOSE OF THE STUDY

To investigate whether the college admissions *test overhaul* resulted in a *decreased test score gaps* among private, subsidized, and public schools.

METHODS

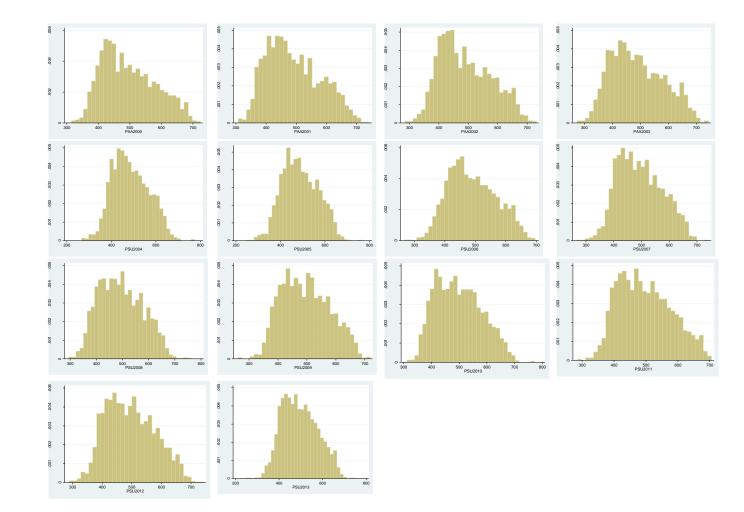
DATA

- Source: Data provided by DEMRE, the official agency in charge of the administration of college admissions tests
- Cross-sectional datasets: 2000 2013
- Datasets contain student individual- and school-level information

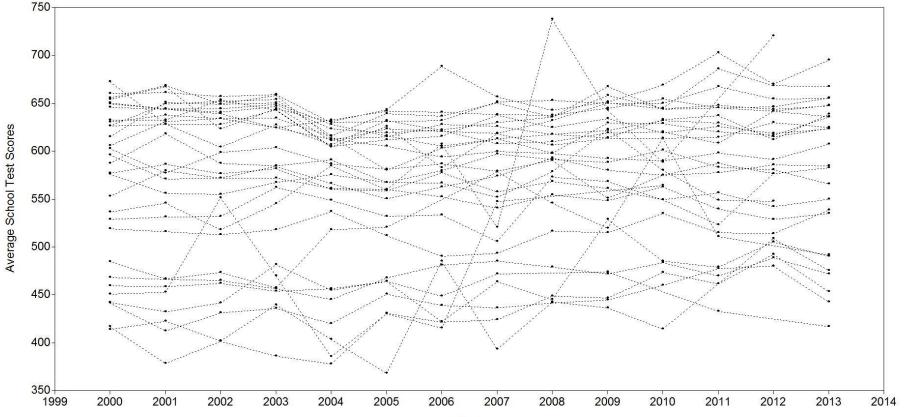
VARIABLES

School test score means (language and math tests)

2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
470.3	465.0	468.7	468.5	470.0	472.0	474.5	482.7	482.9	487.1	491.6	490.9	490.1	491.1

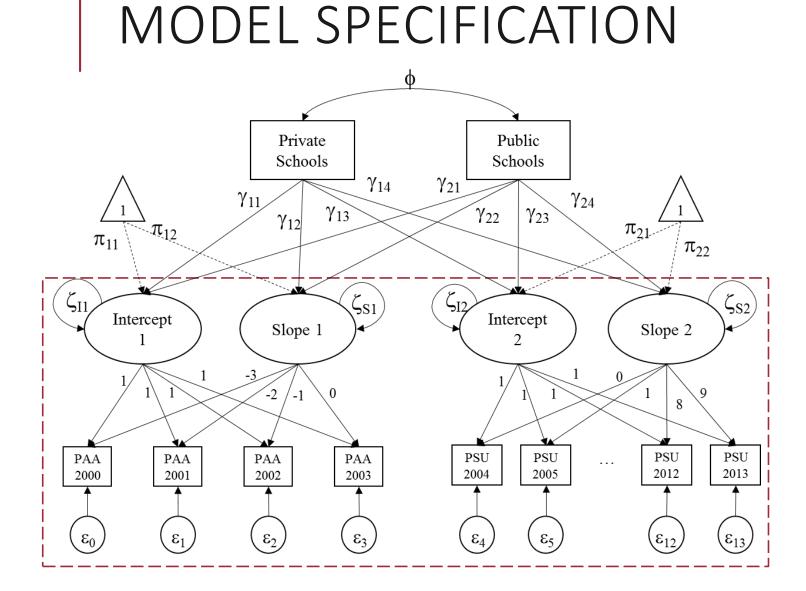

Time

2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
-3	-2	1	0	0	1	2	3	4	5	6	7	8	9


School sector

Private		Subsi	dized	Pul	Total	
903	28.5%	1,701	53.6%	569	17.9%	3,173

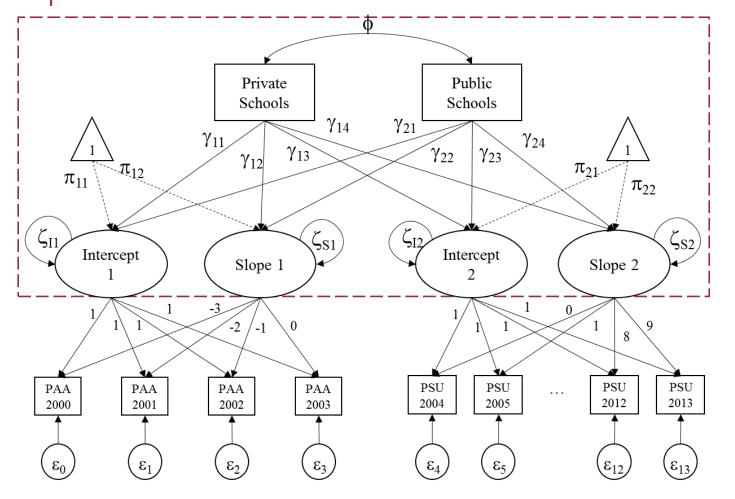
SCHOOL TEST SCORE MEANS


SAMPLE OF SCHOOL MEAN TEST SCORE TRAJECTORIES

Year

MODELING APPROACH

- Discontinuous piecewise latent growth model
- Two periods of analysis: 2 intercepts and 2 slopes
- Appropriate for *multi-phase data*, obtained before and after an intervention or transition point between phases (Kim & Kim, 2012)
- Mplus 7.4, MLR estimator



Measurement Model

 $\begin{aligned} PAA2000 &= 1 * INTRCPT1 + -3 * SLOPE1 + \epsilon_0 \\ PAA2001 &= 1 * INTRCPT1 + -2 * SLOPE1 + \epsilon_1 \\ PAA2002 &= 1 * INTRCPT1 + -1 * SLOPE1 + \epsilon_2 \\ PAA2003 &= 1 * INTRCPT1 + 0 * SLOPE1 + \epsilon_3 \end{aligned}$

 $\begin{array}{l} PSU2004 = 1 * INTRCPT2 + 0 * SLOPE2 + \epsilon_{4} \\ PSU2005 = 1 * INTRCPT2 + 1 * SLOPE2 + \epsilon_{5} \\ PSU2006 = 1 * INTRCPT2 + 2 * SLOPE2 + \epsilon_{6} \\ PSU2007 = 1 * INTRCPT2 + 3 * SLOPE2 + \epsilon_{7} \\ PSU2008 = 1 * INTRCPT2 + 4 * SLOPE2 + \epsilon_{8} \\ PSU2009 = 1 * INTRCPT2 + 5 * SLOPE2 + \epsilon_{9} \\ PSU2010 = 1 * INTRCPT2 + 6 * SLOPE2 + \epsilon_{10} \\ PSU2011 = 1 * INTRCPT2 + 7 * SLOPE2 + \epsilon_{11} \\ PSU2012 = 1 * INTRCPT2 + 8 * SLOPE2 + \epsilon_{12} \\ PSU2013 = 1 * INTRCPT2 + 9 * SLOPE2 + \epsilon_{13} \end{array}$

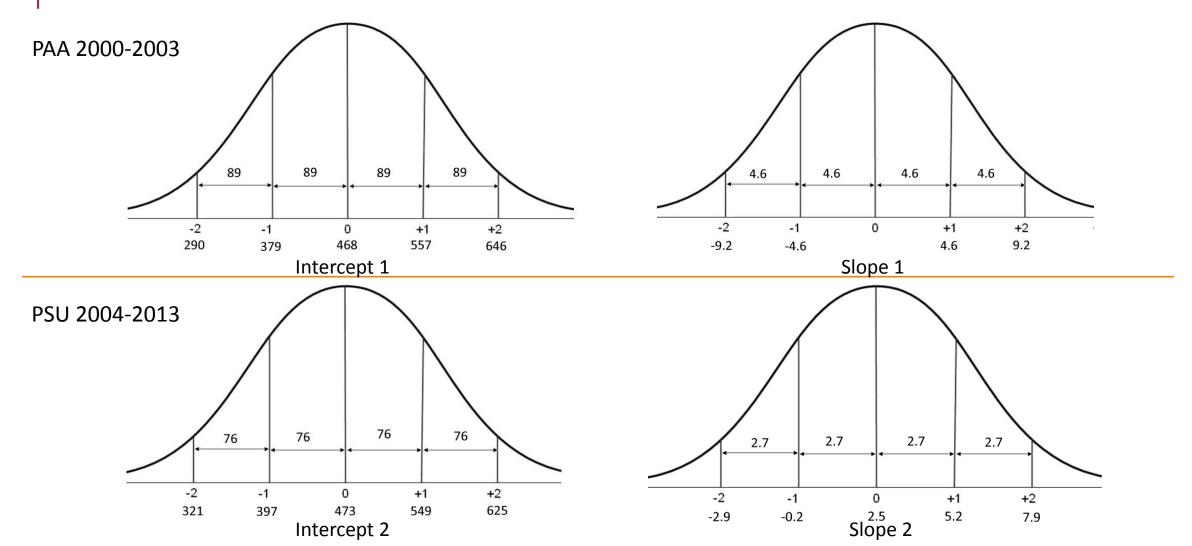
MODEL SPECIFICATION

Structural Model

 $INTRCPT1 = \gamma_{11} \times PUBLIC + \gamma_{21} \times PRIVATE + \zeta_{i1}$ $SLOPE1 = \gamma_{12} \times PUBLIC + \gamma_{22} \times PRIVATE + \zeta_{s1}$ $INTRCPT2 = \gamma_{13} \times PUBLIC + \gamma_{23} \times PRIVATE + \zeta_{i2}$ $SLOPE2 = \gamma_{14} \times PUBLIC + \gamma_{24} \times PRIVATE + \zeta_{s2}$

MODEL FIT

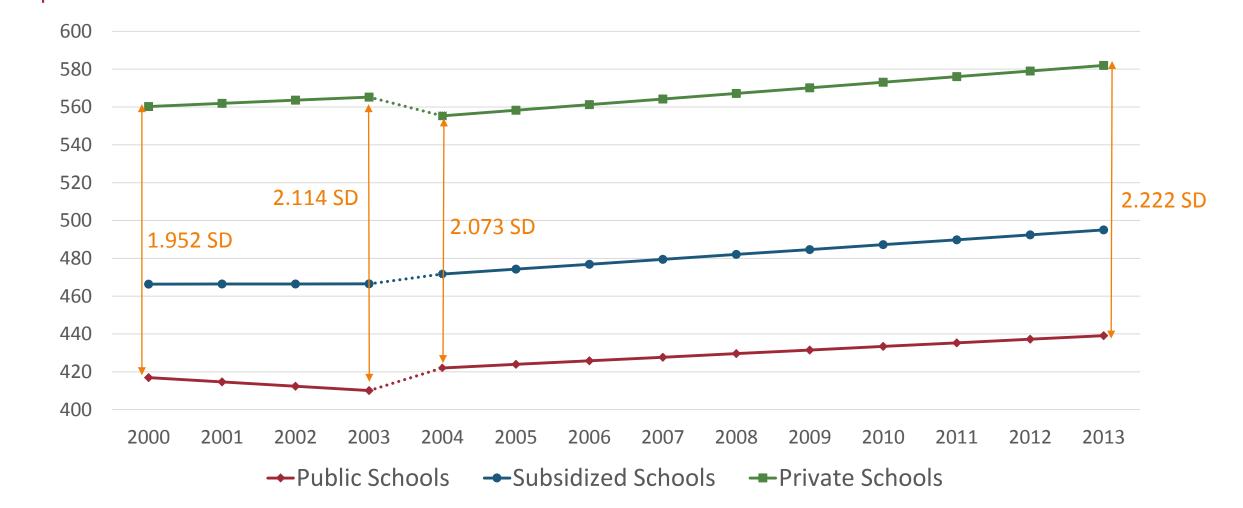
Fit Indices	Values
RMSEA	0.030
CFI	0.982
SRMR	0.035


R-SQUARE OF INDICATORS

	Estimate	SE	p-value
PAA2000	0.963	0.008	0.0000
PAA2001	0.933	0.006	0.0000
PAA2002	0.927	0.007	0.0000
PAA2003	0.939	0.009	0.0000
PSU2004	0.897	0.009	0.0000
PSU2005	0.898	0.009	0.0000
PSU2006	0.905	0.007	0.0000
PSU2007	0.907	0.008	0.0000
PSU2008	0.909	0.008	0.0000
PSU2009	0.930	0.006	0.0000
PSU2010	0.931	0.006	0.0000
PSU2011	0.940	0.007	0.0000
PSU2012	0.938	0.007	0.0000
PSU2013	0.943	0.006	0.0000

ESTIMATED FACTOR PARAMETERS (ALL SCHOOLS)

	Mean			Stand	ard Devi	ation	Correlations				
	Estimate	SE	p-value	Estimate	SE	p-value	Intercept 1	Slope 1	Intercept 2	Slope 2	
Intercept 1	467.740	26.522	0.0000	88.621	9.989	0.0000	1.000				
Slope 1	-0.331	6.939	0.2170	4.604	1.049	0.0000	0.558	1.000			
Intercept 2	472.492	17.386	0.0000	75.676	7.663	0.0000	0.986	0.524	1.000		
Slope 2	2.460	2.687	0.0000	3.093	0.782	0.0000	-0.012	0.017	-0.003	1.000	


ESTIMATED FACTOR PARAMETERS (ALL SCHOOLS)

ESTIMATED FACTOR PARAMETERS BY SCHOOL SECTOR

		Means	
	Estimate	SE	p-value
Intercept 1			
Reference group (Subsidized schools)	466.517	2.343	0.0000
Public schools	-58.737	3.425	0.0000
Private schools	100.419	4.670	0.0000
Slope 1			
Reference group (Subsidized schools)	0.038	0.500	0.9400
Public schools	-2.322	0.678	0.0010
Private schools	1.638	0.796	0.0400
Intercept 2			
Reference group (Subsidized schools)	471.690	1.720	0.0000
Public schools	-49.664	2.607	0.0000
Private schools	83.606	3.720	0.0000
Slope 2			
Reference group (Subsidized schools)	2.589	0.150	0.0000
Public schools	-0.690	0.250	0.0060
Private schools	0.379	0.261	0.1470

TEST SCORE GAP BY SCHOOL SECTOR

DISCUSSION

- On average, school trajectories were very flat before the test overhaul, while afterwards, they have been growing 2.5 score points a year.
- However, public schools have negative slopes, an public schools positive slopes in both periods.
- On average, test score gaps exceed 2 standard deviations among private and public schools, even after the test revamp.
- The test overhauled prevented the gap among private and public schools to keep growing, but only marginally.

IMPLICATIONS

- Efforts to improve educational measurement instruments would only result in a more precise assessment of students outcomes; but it cannot be expected it will result in decreased achievement gaps.
- Given the persistent gaps among school sectors, test-based admissions to college does not provide equitable opportunities of access to higher education for students of different school sectors.

REFERENCES

- Atkinson, R. (2001). Achievement versus aptitude in college admissions. Issues in Science and Technology, 18 (2) (2001), pp. 31–36
- Geiser, S., & Studley, R. (2002). UC and the SAT: Predictive Validity and Differential Impact of the SAT I and SAT II at the University of California. Educational Assessment, 8(1), 1-26.
- Kim, S. & Kim, J. (2012). Investigating stage-Sequential growth mixture models with multiphase longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 19(2), 293-319.
- Koljatic, M., & Silva, M. (2006). Equity issues associated with the change of college admission tests in Chile. Equal Opportunities International, 25(7), 544-561.
- Koljatic, M., Silva, M., & Cofré, R. (2013). Achievement versus aptitude in college admissions: A cautionary note based on evidence from Chile. International Journal of Educational Development, 33(1), 106-115. doi:10.1016/j.ijedudev.2012.03.001
- OECD & The World Bank (2009). Reviews of National Policies for Education: Tertiary Education in Chile 2009. OECD Publishing.

