Tools for computationally efficient power and sample size determination for mediation models

Alexander M. Schoemann ¹ Aaron J. Boulton ² Stephen D. Short ³

¹East Carolina University ²University of Deleware

³College of Charleston

M3 2017

M3 2017 1 / 24

- Power in Mediation Models
- Monte Carlo Power Analysis
 - Monte Carlo CI for inference
 - Varying N power analysis
 - GUI for computations

Basic Mediation

- Methods of testing the indirect effect have different power for the same data (e.g. Fritz & MacKinnon, 2007, MacKinnon, Lockwood, & Williams, 2004)
 - Difference in coefficients method has extremely low power (especially when c is small)
 - Distribution of the product, bootstrap CI and Monte Carlo CI have higher power
 - Power for these methods is generally comparable

- What else affects power to detect an indirect effect?
 - Sample size
 - Effect size
 - Effect size of both the a and b path

- Methods of power analysis should match methods of analysis
- Seperately determining power for a and b paths and picking the smaller value systematically underestimates power
- No analytic method of power analysis for popular methods of testing the indriect effect, e.g., bootstrap CI or Monte Carlo CI
- We need to use a Monte Carlo power analysis

- General steps in a Monte Carlo Power Analysis
 - Specify all population parameters
 - 2 Create a sample of size N, based on population parameters
 - Inalyze sample data from Step 2 with chosen statistical method(s)
 - Repeat steps 2 and 3 for each of r replications (often r>1000)
 - The proportion of replications with a significant parameter is an estimate of power (for all parameters not equal to 0)

- Best practice approach for assessing power in mediation models (Zhang, 2014)
 - Can utilize any method of testing the indirect effect
- Two main limitations to Monte Carlo Power Analysis for mediation models
 - Limited, user friendly software (e.g. Mplus, bmem, simsem)
 - Very time consuming (especially with bootstrapping!)

Overcoming limitations

- Use Monte Carlo CI to test indirect effects
 - Faster than bootstrapping
 - Estimates of power are similar or slightly higher than bootstrapping (Tofighi & MacKinnon, 2016)
 - Simulation study comparing power analyses. Run 500 power analyses using Monte Carlo CI and Bootstrapped CI for each sample size
 - Sample sizes range from 10 to 200 (in increments of 10)
 - Compare time to completion and estimated power for each method

• Example (from Hayes, 2013):

Monte Carlo Power Analysis

Monte Carlo Power Analysis

- Overcoming limitations
 - Use Monte Carlo CI to test indirect effects
 - Faster than bootstrapping
 - Estimates of power are extremely similar
 - Use varying N for sample size determination (Schoemann, Miller, Pornprasertmanit, & Wu, 2014)

- Determine range of samples sizes of interest
- Vary sample size across replications within a single simulation
 - Example: N ranges from 100 to 500 within a simulation with 10 replications at each sample size (4000 total replications)
- Analyze results with logistic regression
 - Regress significance of a parameter on N
 - From this model the predicted probability for a given sample size is the estimate of power.

- Example (from Hayes, 2013):
 - Run power analysis varying N between 15 and 300
 - ~ 1000 total replications (1144 actual replications)
 - Predicted probability for a given N:

$$\rho = \frac{e^{-2.211+0.053N}}{1+e^{-2.211+0.053N}}$$

- Example (from Hayes, 2013):
 - Target N for power of .80 is 68 with estimated power of 0.801
 - Run power analysis (again) with N = 68 and 1000 replications
 - Estimated power is 0.78

Overcoming limitations

- Use Monte Carlo CI to test indirect effects
 - Faster than bootstrapping
 - Estimates of power are extremely similar
- Use varying N for sample size determination
- Create user friendly software
 - Shiny app for simple mediation models

- Available from http://MARlab.org
 - Further details are in Schoemann, Boulton, & Short (in press)
- Web based or run locally on your computer
 - Requires R is installed on a computer (it helps if RStudio is too)
- Population parameters are entered as correlations
- Multiple mediation models included
 - Simple mediation model and multiple (parallel) mediation models currently available

Power estimation app

Monte Carlo Power Analysis for Indirect Effects Written by Alexander M. Schoemann (Contact), Aaron J. Boulton, & Stephen D. Shor

Model One Mediator 👻
Objective Set Power, Vary N 🔹
Target Power 0.8
Minimum N 50
Maximum N 200
Sample Size Steps 25
of Replications 1000
MCMC Draws per Rep 20000
Random Seed 1738
Confidence Level (%) 95

	х	м	Y
x	1	0.4	0.1
N	0.4	1	0.3
Y	0.1	0.3	1

Instructions

To use this app, follow these steps:

 Select Model. The user should first select the mediation model containing the indirect effect(s) of interest. Models may be selected in the drop-down menu in the left-most column of the app. Note that when a different mediation model is selected, the model graphic and input-value sections in the middle column will be altered.

2. Select Objective. Once the desired model is

Calculate Power							
Parameter	N	LL_pow	pow	UL_pow			
ab	50.00	0.42	0.49	0.55			
ab	75.00	0.61	0.66	0.70			
ab	100.00	0.76	0.80	0.82			
ab	125.00	0.86	0.89	0.91 -			

- Demonstration
- Population Values

	Х	М	Y	
Х	1			
Μ	.340	1		
Υ	.064	.417	1	
SD	1.43	0.72	1.25	

- Best practice recommendations for varying N power analysis
 - $\bullet\,$ Number of replications, distribution of N, optimal meta-model, grid search for optimal N
- Extend methods and Shiny app to complex data and mediation models
 - Other methods of entering population values
 - Longitudinal mediation, moderated mediation
 - Missing data, non-normal data, nested data

- Slides and Shiny app from today at: http://MARlab.org/Supplemental_Materials/
- email: schoemanna@ecu.edu

- Fritz, M. S., & MacKinnon, D. P. (2007). Required Sample Size to Detect the Mediated Effect. *Psychological Science, 18*, 233-239.
- Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press. Chicago
- MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods. *Multivariate Behavioral Research, 39*, 99-128.
- Schoemann, A. M., Boulton, A. J., & Short, S. D. (in press).
 Determining power and sample size for simple and complex mediation models. *Social Psychological and Personality Science*.

- Schoemann, A. M., Miller, P. R., Pornprasertmanit, S., & Wu, W. (2014). Using Monte Carlo simulations to determine power and sample size in planned missing data designs. *International Journal of Behavioral Development, 38*, 471-479.
- Tofighi, D. & MacKinnon, D. P. (2016). Monte Carlo confidence intervals for complex functions of indirect effects. *Structural Equation Modeling, 23*, 194-205.
- Zhang, Z. (2014). Monte Carlo based statistical power analysis for mediation models: Methods and software. *Behavior Research Methods*, 46, 1184-1198.