A Global Measure for Dyadic Symmetry in a Dynamic Model of Mother-Child Heart Rate Synchrony

Gustav R. Sjobeck Steven M. Boker

Department of Psychology University of Virginia

Summary

Introduction

- The Notion of Symmetry
- Computation of Symmetry
 - Simulated Time Series Example
 - Windowed Cross-Correlation
 - Mahalanobis Distance
 - Computation of a Global Measure
- Symmetry in Practice
 - Symmetry in Dyadic Heart Rate Variability
- Conclusions and Future Directions

- The dynamic nature of human interaction is inherently complex and the burden is on methodologists to parse out the structures, processes, and characteristics of human interaction
 - Synchrony can be thought of as a behavioral coordination between two individuals (Boker, Xu, Rotondo, & King, 2002)
 - The synchrony process involves covariation between time series and can be represented visually with a cross-correlation function (Butler, 2011)
 - Symmetry is created by mirroring phenomenon that occur between two interacting individuals (Ashenfelter, Boker, Waddell, & Vitanov (2009))
 - Can be thought of as relatedness between time points
 - Symmetry here is thought to reflect temporal displacement/translation, although there may be other kinds of symmetry inherent in this system (Rosen, 1983)

Symmetry Formation / Symmetry Breaking

- Symmetry formation is perpetuated by the human tendency to make use of symmetry in situations where similarity might be fruitful (Boker and Rotondo, 2002)
- Symmetry breaking can occur with a shift in context and is attributed with providing informational surprise (Boker and Rotondo, 2002)
 - Approximate Symmetry Transformation (Rosen, 1983)
 - Possible Outcomes After Perturbation:
 - Stability ("damped out")
 - Lability (still in range)
 - Instability (Spontaneous Symmetry Breaking)

5 of 21

Windowed Cross-Correlations: Window Shifting

Windowed Cross-Correlation Plot For Simulated Data

Windowed Cross-Correlation: Simulated Example

Example of a More Complex Windowed Cross-Correlation Plot

Gustav R. Sjobeck

8 of 21

15

A Plot of Prospective Correlations

Prospective Time Points

20

Gustav R. Sjobeck

9 of 21

$$\begin{bmatrix} r_{a_1a_1} & r_{a_1a_2} & r_{a_1a_3} & & r_{a_1a_{1+b}} \\ r_{a_2a_2} & r_{a_2a_3} & r_{a_2a_4} & \dots & r_{a_2a_{2+b}} \\ r_{a_3a_3} & r_{a_3a_4} & r_{a_3a_5} & & r_{a_3a_{3+b}} \\ \vdots & & \ddots & \vdots \\ r_{a_ia_i} & r_{a_ia_{i+1}} & r_{a_ia_{i+b}} & \dots & r_{a_ia_{i+b}} \end{bmatrix}$$

where

is the *i*th time point a_i

h is the number of time points ahead of a_i correlated with a_i

 $r_{a_i a_{i+b}}$ is the correlation of a_i with a_{i+b}

(Notice that the first column of the matrix is all 1's)

Bivariate Mahalanobis Distance: Concept and Calculation

$$D_i^2 = (x_i - \mu)' \Sigma^{-1} (x_i - \mu)$$

where

 x_i is ith row of the data matrix x

 μ is a vector of the mean values of the columns of x

 Σ is the covariance matrix of x

 D_i^2 is the Mahalanobis distance for the *i*th row of x

 In outlier detection, Mahalanobis distance values are generally compared to chi-squared values with alpha at .001 and (with two variables) 2 degrees of freedom (Mahalanobis, 1930; Meyers, Gamst, and Guarino, 2013)

A Comparison of Symmetric and Nonsymmetric Moments

A Global Measure of Symmetry

$$G = \frac{S}{T}$$

where

- *G* is the global percentage of symmetry in the system
- S is the number of Mahalanobis distance values that fall below the threshold
- T is the total number of Mahalanobis distance values in the system

Mahalanobis Distance Plot and Symmetry Values for Simulated Data

Global Symmetry Values for Simulated Data

Global Symmetry Values for Simulated Data					
	Alpha	Chi-Square	Symmetry		
	(α)	(X^2)	(G)		
	.05	5.99	0.53		
	.025	7.38	0.55		
	.001	13.82	0.66		

Strange Situation Procedure

- 2-hour lab session
- mother-child dyads were subject to the eight episodes of the Strange Situation paradigm (Ainsworth & Bell, 1970)
- Heart-rate collected by electro-cardiogram (ECG) sampled at 300 Hz
- low-frequency (LF) and high frequency (HF) components collected
 - HF reflects parasympathetic nervous system
 - LF reflects sympathetic nervous system
 - LF-to-HF ratio reflects sympathovagal balance

Mahalanobis Distance Plot: High and Low Frequency Heart Rate Measures

Symmetry Applied

Gustav R. Sjobeck 16 of 21

Symmetry Computation: How and Low Frequency Heart Rate Measures

Global Symmetry Values for High Frequency

		_ •
Alpha	Chi-Square	Symmetry
(α)	(X^2)	(<i>G</i>)
.05	5.99	0.58
.025	7.38	0.62
.001	13.82	0.75

Global Symmetry Values for Low Frequency

Alpha	Chi-Square	Symmetry			
(α)	(X^2)	(G)			
.05	5.99	0.54			
.025	7.38	0.55			
.001	13.82	0.73			

Future Directions

- Use the robust mean and covariance matrix to compute the Mahalanobis distance values
- Refine chosen parameters for this context:
 - Wsize, or the size of the window for the windowed cross-correlation
 - b, or the number of prospective correlated time points
 - a, or the reference time point
- Use box-counting dimension techniques to determine a cutoff for nonsymmetric moments that is specific to each set of cross-correlations
- Configure a value that best represents symmetry in a given system
- Develop an algorithm that pinpoints moments of symmetry formation and symmetry breaking ←□ → ←□ → ← ≥ → ← ≥ →

Acknowledgements

- Melissa L. Sturge-Apple
- The Human Dynamics Lab
 - Steven M. Boker
 - Robert G. Moulder
 - M. Joseph Meyer

Thank You

References

- Ainsworth, M. D. S., & Bell, S. M. (1970). Attachment, exploration, and separation: Illustrated by the behavior of one-year-olds in a Strange Situation. Child Development, 41(1), 49.67.
- Ashenfelter, K. T., Boker, S. M., Waddell, J. R., & Vitanov, N. (2009). Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation. *Journal of Experimental Psychology: Human Perception and Performance*, 35(4), 1072-1091.
- Boker, S. M. & Rotondo, J. L. (2002). Symmetry building and symmetry breaking in synchronized movement. In M. Stamenov & V. Gallese (Eds.), Mirror neurons and the evolution of brain and language (pp. 163-171). Amsterdam: John Benjamins.
- Crandell, L. E., Fitzgerald, H. E., & Whipple, E. E. (1997). Dyadic synchrony in parent-child interactions: A link with maternal representations of attachment relationships. *Infant Mental Health Journal*, 18(3), 247-264.
- LaFrance, M. (1985). Postural mirroring and intergroup relations. Personality and Social Psychology Bulletin, 11(2), 207-217.
- Mahalanobis, P. C. (1930). On the generalized distance in statistics. Journal of Asiatic Society of Bengal, 2(1), 541-588.
- Mandelbrot, B. B. (1967). How long is the coast of Britain? Science, 156. 636-638.
 Meyers, L. S., Gamst, G., & Guarino, A. J. (2013). Applied Multivariate Research. Sage.
- Pascal, B. (1941). Pensées: The provincial letters. The Modern Library.
 - Rosen, J. (1983). A symmetry primer for scientists. John Wiley & Sons, Inc.

