Application of Cross-Classified Multiple Membership Growth Curve Modeling in a Study of the Effect of School Mobility on Students' Academic Performance

Bess A. Rose Session 1B: Modeling Educational Effects, M3 Conference, University of Connecticut May 23, 2017

Acknowledgements

- Dr. Larry Rogers and the Maryland State Department of Education
- Annie E. Casey Foundation
- Johns Hopkins University interdisciplinary predoctoral research training program, funded by U.S. Department of Education's Institute of Education Sciences
- Dissertation committee: Drs. Stein, Maclver, Burdick-Will, and outside reader Dr. Beretvas
- Westat for conference support

Note: Funding for the original study was provided by The Annie E. Casey Foundation. Funding for the current study was provided by provided by a grant from the U.S. Department of Education's Institute of Education Sciences (IES) to Johns Hopkins University's interdisciplinary pre-doctoral research training program (R305B080020). The opinions expressed are those of the author and do not represent views of the Institute or the U.S. Department of Education.

Mobility

- Mobility is the norm
- This study illustrates methods for growth curve modeling accounting for mobility
 - Cross-classified (CC)
 - Multiple membership (MM)
- Also estimates effects of school changes on students

ANALYTIC METHODS

Review: multilevel growth models

- Repeated measures of the same students over time
 - Estimate their normal trajectories
 - Estimate changes to those trajectories associated with time-varying and non-time-varying covariates or independent variables
- In this illustration, dependent variable is grade point average (GPA), measured annually from 1st to 12th grade (!)

Review: growth models – level 1

- Growth models as a form of HLM
- Measurement occasions "nested" within students, students within schools
- So the GPA at time t for student i in school j:

Time has to start

at 0 for CCMM

Review: growth models – level 2

 The intercept from the previous equation (starting GPA for student *i* in school *j*):

Level 1 intercept (1st grade GPA)

$$\longrightarrow \pi_{0ij} = \beta_{00j} + r_{0ij}$$

Mean 1st grade GPA of all students in all schools

• And the slope (annual change in GPA for student *i* in school *j*):

Level 1 slope (annual change in GPA)

$$\pi_{1ij} = \beta_{10j} + r_{1ij}$$

Mean change in GPA of all students in all schools

Review: growth models - level 3 (no mobility)

Intercept:

$$\beta_{00j} = \gamma_{000} + u_{00j}$$

Slope:

$$\beta_{10j} = \gamma_{100} + u_{10j}$$

Predicted mean starting GPA of students in school *j* is the mean starting GPA of all students across all schools, plus the residual term for school *j*

Predicted mean annual change in GPA of students in school *j* is the mean annual change in GPA of all students across all schools, plus the residual term for school *j*

Review: growth models - level 3 (no mobility)

Intercept:

$$\beta_{00j} = \gamma_{000} + u_{00j}$$

Slope:

$$\beta_{10j} = \gamma_{100} + u_{10j}$$

Predicted mean starting GPA of students in school *j* is the mean starting GPA of all students across all schools, plus the residual term for school *j*

Predicted mean annual change in GPA of students in school *j* is the mean annual change in GPA of all students across all schools, plus the residual term for school *j*

Review: growth models - level 3 (no mobility)

Intercept:

$$\beta_{00j} = \gamma_{000} + u_{00j}$$

Slope:

$$\beta_{10j} = \gamma_{100} + u_{10j}$$

Predicted mean starting GPA of students in school *j* is the mean starting GPA of all students across all schools, plus the residual term for school *j*

Predicted mean annual change in GPA of students in school *j* is the mean annual change in GPA of all students across all schools, plus the residual term for school *j*

How do you handle nesting if student belongs to more than one school?

Goldstein, Burgess, & McConnell (2007) Chung (2009) Grady & Beretvas (2010) Luo & Kwok (2012) Can ignoring mobility change your study's findings?

YES

- <u>Don't</u> delete mobile students from the analysis
- <u>Don't</u> assign them to a single school

Multiple Membership

- Lower-level units belong to more than 1 higher-level unit within the same classification
- Examples:
 - Students attending more than one school
 - Patients served by multiple nurses
 - Doctors practicing in multiple hospitals
 - Students taking multiple classes

Cross-Classification

- Lower-level units belong to more than 1 higher-level *classification*
- Examples:
 - Students may attend the same school but live in different neighborhoods (e.g., Scotland Neighbourhood Study, Garner & Raudenbush, 1991)

Growth models with mobility

(Adapted from Grady & Beretvas, 2010, pp. 405-407)

Level 1 (annual obs)

 $GPA_{ti{j}{k}} = \pi_{0i{j}{k}} + \pi_{1i{j}{k}} Time_{ti{j}{k}} + e_{ti{j}{k}}$ Level 2 (student)

 $\pi_{0i\{j\}\{k\}} = \beta_{00\{j\}\{k\}} + r_{0i\{j\}\{k\}} \quad \leftarrow \text{ Initial status (1st grade GPA)}$ $\pi_{1i\{j\}\{k\}} = \beta_{10\{j\}\{k\}} + r_{1i\{j\}\{k\}} \quad \leftarrow \text{ Annual change in GPA}$ **Level 3 (school)**

$$\begin{split} \beta_{00\{j\}\{k\}} &= \gamma_{0000} + \Sigma_{h\in\{j\}} W_{tih} U_{000h} \quad \leftarrow \text{Variation among 1st grade schools} \\ \beta_{10\{j\}\{k\}} &= \gamma_{1000} + \Sigma_{h\in\{j\}} W_{tih} U_{100h} + \Sigma_{h\in\{k\}} W_{tih} U_{10h} \\ \text{Variation among 1st grade schs} \quad + \quad \text{Variation among subsequent schs} \end{split}$$

Using growth models with mobility to estimate effect of school changes Level 1 (annual obs)

 $GPA_{ti{j}{k}} = \pi_{0i{j}{k}} + \pi_{1i{j}{k}} Time_{ti{j}{k}} + \pi_{2i{j}{k}} Newschs_{ti{j}{k}} + e_{ti{j}{k}}$ Level 2 (student)

 $\pi_{0i\{j\}\{k\}} = \beta_{00\{j\}\{k\}} + r_{0i\{j\}\{k\}}$ $\pi_{1i\{j\}\{k\}} = \beta_{10\{j\}\{k\}} + r_{1i\{j\}\{k\}}$ $\pi_{2i\{j\}\{k\}} = \beta_{20\{j\}\{k\}}$

Change in GPA for each new school

Level 3 (school)

$$\begin{split} \beta_{00\{j\}\{k\}} &= \gamma_{0000} + \Sigma_{h \in \{j\}} w_{tih} u_{000h} \\ \beta_{10\{j\}\{k\}} &= \gamma_{1000} + \Sigma_{h \in \{j\}} w_{tih} u_{100h} + \Sigma_{h \in \{k\}} w_{tih} u_{10h} \\ \beta_{20\{j\}\{k\}} &= \gamma_{2000} \end{split}$$

RUNNING MODELS

MLwiN

- MLwiN uses Markov Chain Monte Carlo (MCMC) to run these CCMM growth curve models (shout out to Bayesians in the room)
- There are extensive instructional materials on the MLwiN website
- Stata now has a module to call MLwiN

© Centre for Multilevel Modelling University of Bristol

> Software authors : Jon Rasbash and William Browne Michael Healy

Bruce Cameron Christopher Charlton

September 2015

Setting Up Data

- Single "long" data file
- Each row is a measurement occasion; multiple records per student
- Student and school info repeated within student

Data for MLwiN

- Columns:
 - Time (starts at 0)
 - lev1_id (Level 1 ID)
 - id (student ID)
 - GPA
 - firstsch_1, firstsch_2, firstsch_3, firstsch_4
 - firstsch_1_wt, firstsch_2_wt, firstsch_3_wt, firstsch_4_wt
 - subsch1 through subsch12
 - subschwt1 through subschwt12
 - Student covars, panel vars
 - Constant = 1 (required by MLwiN)

Stata code to run models in MLwiN

use data_models_20160423, clear

**** UNCONDITIONAL REPEATED-MEASURES MODEL

- * First run IGLS to get starting values
- runmlwin gpa cons time, level4(firstsch_1: cons time) level3(subsch1: time) level2(id: cons time) level1(lev1_id: cons) nopause
- * Now run CCMM, multiple membership in firstsch and subsch, cross-classified runmlwin gpa cons time, ///
- level4(firstsch_1: cons time, mmids(firstsch_1 firstsch_2 firstsch_3 firstsch_4)
 mmweights(firstsch_1_wt firstsch_2_wt firstsch_3_wt firstsch_4_wt)) ///
- level3(subsch1: time, mmids(subsch1 subsch2 subsch3 subsch4 subsch5 subsch6
 subsch7 subsch8 subsch9 subsch10 subsch11 subsch12) ///

mmweights (subschwt1 subschwt2 subschwt3 subschwt4 subschwt5 subschwt6
 subschwt7 subschwt8 subschwt9 subschwt10 subschwt11 subschwt12)) ///
level2(id: cons time) level1(lev1_id: cons) ///
mcmc(cc) initsprevious

Output

MLwiN 2.35 multilevel model Number of obs = 46226 Normal response model Estimation algorithm: MCMC

No. of Observations per Group Level Variable | Groups Minimum Average Maximum 1 59.2 5309 781 firstsch 1 1 55.6 5645 subsch1 831 id 7267 1 6.4 14

Burnin	=	500
Chain	=	5000
Thinning	=	1
Run time (seconds)	=	142
Deviance (dbar)	=	66499.76
Deviance (thetabar)	=	58023.77
Effective no. of pars (pd)	=	8475.99
Bayesian DIC	=	74975.75

gpa	Mean	Std. Dev.	ESS	P
cons	3.194171	.0135122	224	0.000
time	1205852	.0041899	57	

Rar	ndom Parameters	Mean	Std. Dev.	ESS
Level	4: firstsch_1			
	var(cons)	.0883889	.0077531	565
	cov(cons,time)	0095343	.0012274	157
	var(time)	.0015203	.00024	121
Level	3: subsch1			
	var(time)	.01062	.0007602	328
Level	2: id			
	var(cons)	.2138489	.0065058	688
	cov(cons,time)	0090847	.0010284	365
	var(time)	.0052748	.0002398	346
Level	1: lev1_id			
	var(cons)	.2467643	.0019128	2500

estimates table,	star(.05 .01 .	001) b(%9.3g)
Variable	active	
FP1		
cons	3.19***	
time	121***	
RP4		
var(cons)	.0884***	
cov(cons\t~)	00953***	
var(time)	.00152***	
RP3		
var(time)	.0106***	
RP2		
var(cons)	.214***	
cov(cons\t~)	00908***	
var(time)	.00527***	
RP1		
var(cons)	.247***	
legend: * p<.05;	** p<.01; ***	p<.001

gpa		Mean	Std. Dev.	ESS	Р
cons time moball	+ - 	3.205194 119758 0399817	.0137068 .0038107 .0054452	262 103 2973	0.000 0.000 0.000

RESULTS

Research questions

- What is the relationship between changing schools and academic performance (GPA) in the year of the school change?
- How does this relationship vary among different types of concurrent changes in children's social, educational, residential, and familial environments?

Measures

- Dependent variable: GPA
- Independent variable: School changes
- Time-varying covariates
 - Panel variables
 - Chronic absence
- Non-time-varying covariates
 - Student demographics

Distilling among types of school changes

- First series of models to estimate overall mobility effect
 - Newschs (Level 1)
 - Controlling for panel design and chronic absence (Level 1) and student demographics (Level 2)
- Second series of models to distinguish among types of transfers
 - Variables for school change types in place of the overall mobility variable *Newschs* (Level 1)

Overall mobility effect

- On average first grade GPA = 3.45; annual change = -0.13
- When students changed schools, GPA dropped
 0.02 points
- Controlling for panel design, student demographics, and chronic absence

Why Students Change Schools

No so n =	cial chg 5,643	Social group change n = 5,579					
5	0%	No resider	tial change	50% Resi	o dential cha	nσο	
		n = 783 7%		n = 3,154 28%			
Type 1 No other change (closure/ rezoning) n = 216 2%	Type 2 School level change (promotion) n = 5,427 48%	Type 3 Setting change (parent- initiated) n = 617 5%	Type 4 Setting change (school- initiated) n = 166 1%	Type 5 No family change n = 1,698 15%	Family n = 1 13 Type 6 Family structure change n = 760 7%	change .,456 3% Type 7 Family financial issues n = 696 6%	Type 9 Solo transfer, reason unknown n = 1,642 15%

Not all school changes have negative effects

- When social, residential, and familial environments remain stable, school changes have no effect (school closures and promotions)
- Declines occur only when familial environments change along with school changes

DISCUSSION

Long term effects?

- This study examined performance in the year of the school change only
- Changes in school and other settings may also affect long term
 - Modeling long-term effects is "one of the most challenging aspects of modeling longitudinal achievement data"
 - Growing attention with "value added"
 - Should examine short-term as well as long-term patterns to disentangle the immediate and lasting impacts of mobility

School mediators and moderators?

- School-level variation in GPAs accounted for about a third of the overall variation
- School contextual variables including schoollevel mobility rates were not included in the analyses
- Did not examine variation in mobility effect among schools (fixed effect)
- Preliminary research on this dataset suggests mobility gaps were especially large in schools with higher overall levels of achievement

Q&A

My contact info: Bess Rose barose129@gmail.com

ADDITIONAL SLIDES

Background

- Changing schools creates instability and stress for children
- Most school changes are accompanied by social, educational, residential, and/or familial changes
- These concurrent changes are likely to exacerbate the stress of changing schools and to negatively impact academic performance

Sample

- Random sample of schools from all districts in Maryland in 2001
- Proportional stratified sampling based on district and grade span enrollment
- 315 schools (117 elementary, 110 middle and 88 high schools)
- Representative of the population of public schools in Maryland in 2001

Data collection

- At each school, the roster of one 5th, 8th, or 12th grade classroom was selected for student record review.
- Data were collected from their cumulative folders
- Total 7,803 students
- Covers 1987-88 2001-02

Mobility and educational policy

- Data covered 1988 to 2002, just prior to implementation of NCLB
 - Fairly stable educational policy context in Maryland
 - Stable backdrop for investigating changes in GPA over time
 - Similar to the accountability policies in all states under NCLB

Mobility and Common Core?

- Some of mobility's negative impact may be due to dissimilar curricula and standards from school to school
- Common Core could establish consistent educational standards and expectations across states
- States may be moving away from the same set of standards across states (although they may be retaining CC's central idea of aligning standards, curriculum, and assessment)
 - Within states, greater consistency
 - Between states, may continue to be lack of consistency
- Understanding effects of school mobility and policies will continue to be important
 - Could leverage differences between states

Required Reading:

MLwiN online course at Center for Multilevel Modelling <u>www.bristol.ac.</u> <u>uk/cmm/</u>

- Fielding & Goldstein (2006): Crossclassified and Multiple Membership Structures in Multilevel Models <u>http://www.education.gov.uk/publications/eo</u> <u>rderingdownload/rr791.pdf</u>
- Grady & Beretvas (2010): Incorporating student mobility in achievement growth modeling: A cross-classified multiple membership growth curve model *Multivariate Behavioral Research*
- Leckie & Bell (2013): MLwiN Practical on Cross-Classified Multilevel Models (MLwiN course)
- Leckie & Owen (2013): MLwiN Practical on Multiple Membership Multilevel Models (MLwiN course)

- Browne, W. J. (2012). MCMC estimation in MLwiN version 2.26. Centre for Multilevel Modelling, University of Bristol.
- Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton,
 J. Q. (2010). Organizing schools for improvement: Lessons from Chicago. Chicago: The University of Chicago Press.
- Chung, H. (2009). The Impact of Ignoring Multiple-Membership Data Structures. Dissertation. The University of Texas at Austin.
- Fielding, A. & Goldstein, H. (2006). Cross-classified and Multiple Membership Structures in Multilevel Models: An Introduction and Review. Research Report No. 791. Department for Education and Skills.

Goldstein, H. (2003). *Multilevel Statistical Models*, 3rd ed. London: Arnold.

- Goldstein, H., Burgess, S., & McConnell, B. (2007). Modelling the effect of pupil mobility on school differences in educational achievement. *Journal of the Royal Statistical Society*, *170*, 941-954.
- Grady, M. W., & Beretvas, S. N. (2010). Incorporating student mobility in achievement growth modeling: A cross-classified multiple membership growth curve model. *Multivariate Behavioral Research*, 45, 393-419.

- Leckie, G., & Bell, A. (2013). Cross-Classified Multilevel Models MLwiN Practical. LEMMA VLE Module 12, 1-60. http://www.bristol.ac.uk/cmm/learning/course.html
- Leckie, G., & Owen, D. (2013). Multiple Membership Multilevel Models – MLwiN Practical. LEMMA VLE Module 13, 1-48. http://www.bristol.ac.uk/cmm/learning/course.html
- Luo, W., & Kwok, O. (2012). The consequences of ignoring individuals' mobility in multilevel growth models: A Monte Carlo study. *Journal of Educational and Behavioral Statistics*, 37, 31-56.

- Rasbash, J., Browne, W. J., Healy, M., Cameron, B., & Charlton, C. (2013). MLwiN Version 2.27. Centre for Multilevel Modelling, University of Bristol.
- Raudenbush, S. W., & Bryk, A. S. (2002). *Hierarchical linear models: Applications and data analysis methods*, 2nd ed. Thousand Oaks, CA: SAGE.
- Rumberger, R. W. (2002). Student mobility. In *Encyclopedia of Education* (2nd ed., Vol. 7, pp. 2381-2385). New York: Macmillan Reference USA.