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Motivation

Interest in congeneric measurement models (linear latent
variable models with normal distribution theory).

Interest in multidimensional (nonhomogeneous,heterogeneous)
models.

Investigate multidimensional reliability.

Numerous previous investigators, but main contributors are
(Heise & Bohrnstedt, 1970; McDonald, 1999; Bentler, 2007)

Reliability will be expressed as McDonald's .

Goal here is to find an expression for the reliabilities of
individual factors.



Review

The congeneric model for a p-item test:

y=v+An+e€;
px1  pX1 pXmpsq pxl

n~N@O, ¥), and €~ N(0, O).
mxm pPXp

Consider the unit-weighted sum-score Y = 1'y.
var(Y) = I/(AYA’ + 0)1
Multidimensional reliability is given by McDonald's
_ TAPA'l
~ var(Y)

Interested in cases where m > 1.



Source for Examples

AED: Alcoholic Energy Drink Expectancies Scale (Miller et al.,
In press).

p =15 Likert items. Range: 1-6.

N = 3064

Maximum Likelihood Estimation:
e lavaan (Rosseel, 2012) in R
e Mplus (Muthén & Muthén, 2017).
MLE:
o =wlA,Y,0).



Two-Dimensional Scale

To fix ideas | begin with
e Two-factor measurement model
e 5 of 15 items cross-load on both factors

e Factors are correlated
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Two-dimensional Reliability
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Two-dimensional Reliability

r ['1111111'1,1 + Ay d) +

Ay 4] + Agw A

—

w =

varY

= 0.935

Define subscale reliabilities as

_ U [y 4] + 4wp2)) 1

= 0.266

w
! var(Y)

v [ Ay Ay + Aawy A

1

[ —
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So that
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Multidimensional Scale

Now consider a 4-factor scale.
e 4-factor measurement model
e Items form a perfect cluster configuration

e Factors are correlated
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Multidimensional Reliability

_TAPA'1
~ var(Y)

Define the (general) subscale reliability for factor k as

= 0.954

Uiy Al
Pk = var(Y)

Then for this 4-dimensional model

11,9’ A1 1,p’A'1
o= — 307 and @y = 220
var(Y') var(Y)
B 1’i3w’3A’1 1’,{41//2A'1 B

w3 = T(Y) = 209, and wy =



Detail on Subscale Reliability

The subscale reliability for factor k as can be further explicated as

lllkW;{A/l I’Akwkk}”;gl + 21?5/{ l,lkl[/kjl;l
Pk = var(Y) B var(Y)
= standard reliability + sum of all “cross-reliabilities”.

e If factor k is uncorrelated with the other factors, then w,
reduces to standard reliability.

o Otherwise, @, incorporates all the correlations between the
loadings on factor k and the loadings on the remaining factors.



Hierarchical or Bifactor Scale

Now let’s consider the hierarchical or bifactor model.

¢ One general factor for all 15 items

4 correlated specific factors

General factor is uncorrelated with specific factors

Items form a perfect cluster configuration on each specific
factor

This example also demonstrates that a the reliability of a subset of
factors, as opposed that for a single factor, can also be obtained.






Bifactor Reliability

The multidimensional reliability is

/ /
_ 1’AYA'1 — 957
var(Y)

The subscale reliability for the general factor is

l’llw’lA’l l’llw“l'll
1= var(Y)  var(Y)

=.679.

The multidimensional subscale reliability for the specific factors is

_ I,AZ:S\PZ:S,Z:SA;;sl

s = =.278.
@2:5 var(Y)

The specific subscale reliabilities may be obtained as in the
multidimensional case.



Extended Congeneric Model

The extended congeneric measurement model is required for
higher-order models. The extended model is

y=v+An+e with n=a+Bn+¢.

Thus, var(Y) =1' {A0-B)""P[I-B)"'A’ + O} 1.

Bentler's extension to w is

_ VAQ-B)'W[(I-B)'IA1
®= var(Y) '

The MLE estimate is now

® = wA,B,¥,0).



Second-order Measurement Model

Now consider a second-order measurement model.

Items form a perfect cluster configuration on each of 4 factors

A second-order factor accounts for the correlation among the 4
first-order factors.

“Direct” reliability among first-order factors

"Indirect” reliability for second-order factor



2nd Order Measurement Model



2nd-order Multidimensional Reliability

lA(I B 'WwI-B)'17A'1
var(Y)

Let A = A(I— B)~!. Define subscale reliability for factor k as

= 0.954

. 17,y A1
k= var(Y)
Then

o, =028 @, =.039 =008 =025
w5 = .854.



2nd-order Multidimensional Reliability, cont’'d

Because of the presence of (I —B)~! in the expression, the
interpretation of the subscale reliabilities may be obscure. However,
in this case,
I-B)!'=1+B.
Thus
_ I'Ad+B)¥I +B)'A'1

= = 0.954
@ var(Y)

Define the layer reliabilities as

AYA'L
1= Ty SOt et oyt o, =100
_ VABYB'A'l _

_ = - = 854.
2 var(Y) @s



Third-order Measurement Model

Now consider more complicated third-order scale.

Items form a perfect cluster configuration on each of 4 factors
Two first-order factors are accounted for by a second-order
factor.

Other two first-order factors are accounted for by another
second-order factor.

The two second-order factors are accounted for by a
third-order factor.



3rd-Order Measurement Model
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3rd-order Multidimensional Reliability

_TAQ-B)'Y[AI-B)"'TA'1
= var(Y)

Define subscale reliabilities as before

=0.954

= </
l’lky/;{A 1
W, = ——.
var(Y)
Then
.028; w3 =.008; w,=.024;

.008; wg =.008;
w; = .848

w; =.028; w,

s



3rd-order Multidimensional Reliability, cont’'d

Again the presence of (I — B)~! obscures the interpretation of the
subscale reliabilities. However, in this case,

(I-B)"'=I+B+B%

The layer reliabilities are

1'A¥A'1
1= T(Y) = W +(X)2+(D3+CO4 = 089,
1’AB¥YB'A’1
= = =.017.
2 var(Y) @5 + @
_ UAB2WBZA'1

Q, = = w; = .848.

var(Y)



Summary

For the extended congeneric measurement model, multidimensional
reliability for unit-weighted sum scores is McDonald-Bentler's w

_ VAO-B [ - B A1
@= var(Y) '

Letting A = A(I— B)~!, the subscale reliability for factor k
(k=1,...,m)is
= ~/
IR |
w0, = ———.
var(Y)
The layer reliability for level r (r=1,...,s and B =1) of an
s-order recursive model is
UVAB™~'¥ [B']" A1

Qr
var(Y)
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Summary

Natural definition

Consistent method for decomposing multidimensional reliability
Uses all the information in multidimensional reliability

Applies to congeneric and extended congeneric models
Subscale reliability is general

Level reliability requires recursive higher-order model.

Assumes all loadings are non-negative—Negative loadings can
yield negative subscale reliability!?!

There is a parallel development for internal consistency, a.
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