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Motivation

� Interest in congeneric measurement models (linear latent

variable models with normal distribution theory).

� Interest in multidimensional (nonhomogeneous,heterogeneous)

models.

� Investigate multidimensional reliability.

� Numerous previous investigators, but main contributors are

(Heise & Bohrnstedt, 1970; McDonald, 1999; Bentler, 2007)

� Reliability will be expressed as McDonald's !.
� Goal here is to �nd an expression for the reliabilities of

individual factors.
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Review

� The congeneric model for a p-item test:

y
p×1

= �
p×1

+ �
p×m

�
m×1

+ �
p×1
;

� ∼ N(0, 	
m×m

); and � ∼ N(0, �
p×p
).

� Consider the unit-weighted sum-score Y = 1′y.
� var(Y ) = 1′(�	�′ +�)1
� Multidimensional reliability is given by McDonald's

! = 1
′�	�′1
var(Y )

� Interested in cases where m > 1.



Source for Examples

� AED: Alcoholic Energy Drink Expectancies Scale (Miller et al.,

In press).

� p = 15 Likert items. Range: 1�6.

� N = 3064

� Maximum Likelihood Estimation:
� lavaan (Rosseel, 2012) in R
� Mplus (Muthén & Muthén, 2017).

� MLE:

!̂ = !(�̂, 	̂, �̂).



Two-Dimensional Scale

To �x ideas I begin with

� Two-factor measurement model

� 5 of 15 items cross-load on both factors

� Factors are correlated



Two-Dimensional Model



Two-dimensional Reliability

! =
1′
[

�1 11�′1 + �1 12�
′
2 + �2 21�

′
1 + �2 22�

′
2
]

1
var Y

= 0.935

De�ne subscale reliabilities as

!1 =
1′
[

�1 11�′1 + �1 12�
′
2
]

1
var(Y )

= 0.266

!2 =
1′
[

�2 22�′2 + �2 21�
′
1
]

1
var(Y )

= 0.670

So that

! = !1 + !2.
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Multidimensional Scale

Now consider a 4-factor scale.

� 4-factor measurement model

� Items form a perfect cluster con�guration

� Factors are correlated



Multidimensional Model



Multidimensional Reliability

! = 1
′�	�′1
var(Y )

= 0.954

De�ne the (general) subscale reliability for factor k as

!k =
1′�k ′k�

′1
var(Y )

.

Then for this 4-dimensional model

!1 =
1′�1 ′1�

′1
var(Y )

= .307; and !2 =
1′�2 ′2�

′1
var(Y )

= .374;

!3 =
1′�3 ′3�

′1
var(Y )

= .209; and !4 =
1′�4 ′4�

′1
var(Y )

= .063.



Detail on Subscale Reliability

The subscale reliability for factor k as can be further explicated as

!k =
1′�k ′k�

′1
var(Y )

=
1′�k kk�′k1 +

∑

j≠k 1′�k kj�
′
j1

var(Y )
= standard reliability + sum of all �cross-reliabilities� .

� If factor k is uncorrelated with the other factors, then !k
reduces to standard reliability.

� Otherwise, !k incorporates all the correlations between the

loadings on factor k and the loadings on the remaining factors.



Hierarchical or Bifactor Scale

Now let's consider the hierarchical or bifactor model.

� One general factor for all 15 items

� 4 correlated speci�c factors

� General factor is uncorrelated with speci�c factors

� Items form a perfect cluster con�guration on each speci�c

factor

This example also demonstrates that a the reliability of a subset of

factors, as opposed that for a single factor, can also be obtained.



Bifactor Model



Bifactor Reliability

The multidimensional reliability is

! = 1
′�	�′1
var(Y )

= .957

The subscale reliability for the general factor is

!1 =
1′�1 ′1�

′1
var(Y )

=
1′�1 11�′11
var(Y )

= .679.

The multidimensional subscale reliability for the speci�c factors is

!2∶5 =
1′�2∶5	2∶5,2∶5�′2∶51

var(Y )
= .278.

The speci�c subscale reliabilities may be obtained as in the

multidimensional case.



Extended Congeneric Model

The extended congeneric measurement model is required for

higher-order models. The extended model is

y = � + �� + � with � = � + B� + � .

Thus, var(Y ) = 1′
{

�(I − B)−1	[(I − B)−1]′�′ +�
}

1.

Bentler's extension to ! is

! =
1′�(I − B)−1	[(I − B)−1]′�′1

var(Y )
.

The MLE estimate is now

!̂ = !(�̂, B̂, 	̂, �̂).



Second-order Measurement Model

Now consider a second-order measurement model.

� Items form a perfect cluster con�guration on each of 4 factors

� A second-order factor accounts for the correlation among the 4

�rst-order factors.

� �Direct� reliability among �rst-order factors

� �Indirect� reliability for second-order factor



2nd Order Measurement Model



2nd-order Multidimensional Reliability

! =
1′�(I − B)−1	(I − B)−1]′�′1

var(Y )
= 0.954

Let �̃ = �(I − B)−1. De�ne subscale reliability for factor k as

!k =
1′�̃k ′k�̃

′1
var(Y )

.

Then

!1 = .028; !2 = .039; !3 = .008; !4 = .025;
!5 = .854.



2nd-order Multidimensional Reliability, cont'd

Because of the presence of (I − B)−1 in the expression, the

interpretation of the subscale reliabilities may be obscure. However,

in this case,

(I − B)−1 = I + B.

Thus

! =
1′�(I + B)	(I + B)′�′1

var(Y )
= 0.954

De�ne the layer reliabilities as

Ω1 =
1′�	�′1
var(Y )

= !1 + !2 + !3 + !4 = .100;

Ω2 =
1′�B	B′�′1
var(Y )

= !5 = .854.



Third-order Measurement Model

Now consider more complicated third-order scale.

� Items form a perfect cluster con�guration on each of 4 factors

� Two �rst-order factors are accounted for by a second-order

factor.

� Other two �rst-order factors are accounted for by another

second-order factor.

� The two second-order factors are accounted for by a

third-order factor.



3rd-Order Measurement Model



3rd-order Multidimensional Reliability

! =
1′�(I − B)−1	[(I − B)−1]′�′1

var(Y )
= 0.954

De�ne subscale reliabilities as before

!k =
1′�̃k ′k�̃

′1
var(Y )

.

Then

!1 = .028; !2 = .028; !3 = .008; !4 = .024;
!5 = .008; !6 = .008;

!7 = .848



3rd-order Multidimensional Reliability, cont'd

Again the presence of (I − B)−1 obscures the interpretation of the

subscale reliabilities. However, in this case,

(I − B)−1 = I + B + B2.

The layer reliabilities are

Ω1 =
1′�	�′1
var(Y )

= !1 + !2 + !3 + !4 = .089;

Ω2 =
1′�B	B′�′1
var(Y )

= !5 + !6 = .017.

Ω3 =
1′�B2	B2′�′1

var(Y )
= !7 = .848.



Summary

For the extended congeneric measurement model, multidimensional

reliability for unit-weighted sum scores is McDonald-Bentler's !

! =
1′�(I − B)−1	

[

(I − B)−1
]′ �′1

var(Y )
.

Letting �̃ = �(I − B)−1, the subscale reliability for factor k
(k = 1,… , m) is

!k =
1′�̃k ′k�̃

′1
var(Y )

.

The layer reliability for level r (r = 1,… , s and B0 = I) of an
s-order recursive model is

Ωr =
1′�Br−1	

[

Br−1
]′ �′1

var(Y )
.



Summary

� Natural de�nition

� Consistent method for decomposing multidimensional reliability

� Uses all the information in multidimensional reliability

� Applies to congeneric and extended congeneric models

� Subscale reliability is general

� Level reliability requires recursive higher-order model.

� Assumes all loadings are non-negative�Negative loadings can

yield negative subscale reliability!?!

� There is a parallel development for internal consistency, �.
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