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Multiway Data Analysis
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Multiway Data Analysis Bilinear Models

Bilinear Model Form (PCA, FA, ICA)

Let X = {x;j}1xs wWhere x;; is i-th subject’s observed value on the j-th variable.

A bilinear model assumes that

R
X :ABI+E — xij = Zairbjr+eij (1)
r=1
where

e A = {aj }ixr with a;, denoting the weight (score) of the i-th subject on
the r-th factor/component

e B = {bj.};xr with bj, denoting the weight (loading) of the j-th variable
on the r-th factor/component

o E = {¢;;};xs with ¢;; denoting the error term corresponding to x;;
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Multiway Data Analysis Bilinear Models

Rotational Indeterminacy Problem

Suppose that R is an R x R orthogonal rotation matrix.
@ R'R = RR’ = I (identity matrix)

Rotational indeterminacy problem of the bilinear model:
AB' = AB’
where A = AR and B = BR.
Need to make some assumptions to solve the rotational indeterminacy.

@ PCA assumes components are orthogonal and explain maximal variance

o ICA assumes components are statistically independent
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Multiway Data Analysis Multiway Extensions

Two-Way versus Three-Way Arrays
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Figure 1: Visualization of 2-way and 3-way arrays from Smilde, Bro, and Geladi (2004).
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Multiway Data Analysis Multiway Extensions

Talking about Tensors
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Multiway Data Analysis Multiway Extensions

“The Covariation Chart” from Cattell (1952)
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Figure 3: The first illustration of a three-way array.
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Multiway Data Analysis Multiway Extensions

Tucker’s (1966) Three-Way Factor Analysis Model
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Figure 4:  Visualization of Tucker3 structure from Kolda and Bader (2009).
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Multiway Extensions

A Popular Model for Three-Way Data

R
Xijk = Zr:l airbjrckr + Cijk

Name Proposed by
Polyadic form of a tensor Hitchcock, 1927 [105]
PARAFAC (parallel factors) Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition)  Carroll and Chang, 1970 [38]
Topographic components model Mocks, 1988 [166]
CP (CANDECOMP,/PARAFAC) Kiers, 2000 [122]
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Figure 5:  Visualization of trilinear structure from Kolda and Bader (2009).
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Multiway Data Analysis Multiway Extensions

Harshman’s Parafac and Parafac2 Models

Note that the Parafac model (Harshman, 1970) can be written as
X, = ACkB/ + E;

where Xk = {xij(k)}lxj, Ck = diag(ckl, e 7CkR>, and Ek = {elj(k)}]xj.

The Parafac2 model (Harshman, 1972) is more general and can be written as
X = A C B’ + E; subject to AjA; = P

where Xy = {x;jt) x> Ex = {ejjx) s, and @ = AJ Ay is the common
Mode A cross-product matrix.
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Multiway Data Analysis Multiway Extensions

Intrinsic Axis Property of Parafac and Parafac2

Parafac and Parafac2 can provide essentially unique solutions.
@ No rotational indeterminacy (unlike PCA, ICA, FA, Tucker, etc.)
@ Data determines factor configuration and orientation

Parafac uniqueness: If (A, B, C) and (A, B, C;) have the same fit, then:
o A =APS, and B =BPS, and C; = P'C,PS.
@ Pisan R X R permutation matrix
@ S.. Sy, and S, are diagonal and satisfy S,S,S. = Iz

Parafac2 uniqueness: If (Ag, B, Cy) and (Ag, B, Cy) have the same fit, then:
o Ay = zAPS, and B = BPS, and C; = z%P'CiPS,
e Pand {S,, Sy, S} have the same interpretation
@ 7 € {—1, 1} is due to the special sign indeterminacy (see Helwig, 2013)
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Multiway Data Analysis Multiway Extensions

Simultaneous Component Analysis Models

Figure 6: Visualization of SCA structure from Kolda and Bader (2009).

Four versions of SCA which assume different cross-product structures for
Mode A weights (Timmerman & Kiers, 2003).
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Multiway Data Analysis Multiway Extensions

Alternating Least Squares Estimation

Weight matrices are typically estimated via alternating least squares (ALS):
© Initialize all weight matrices
© Update each weight matrix given others

© Repeat Step 2 until convergence

Above algorithm will converge to a locally optimal solution, which depends
on the weight matrices initialized in Step 1 of the ALS algorithm.

Should try many random starts of the above ALS algorithm to increase chance
of obtaining the globally optimal solution.
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Multiway R Package
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Multiway R Package Overview of Package

Fitting Multiway Models in R

multiway (Helwig, 2017) is an R package (R Core Team, 2017) for fitting

multiway models via ALS with optional constraints.

Fit models include:
@ Individual Differences Scaling (indscal)
@ Parallel Factor Analysis 1 (parafac)
o Parallel Factor Analysis 2 (parafac?2)
o Simultaneous Component Analysis (sca)

@ Tucker Factor Analysis (tucker)

Parafac and Tucker models are implemented for 3-way and 4-way data.
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Multiway R Package Overview of Package

Example Syntax for Fitting Parafac Model

> # fit Parafac model (unconstrained)
> pfac <- parafac (X, nfac=3)
> pfac

3-way Parafac with 3 factors
Constraints:
A B C

none none none

Fit Information:

SSE = 950.1628

R*2 = 0.5150726
GCV = 0.2078407
EDF = 219

Converged: TRUE (17 iterations)
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Constraint Options

Flexible Parafac and Parafac2 Fitting

parafac and parafac? allow the user to:
e Fix a mode’s weights using f ixed arguments

o Constrain structure of a mode’s weights using st ruc arguments

const argument allows user to set constraints for each mode’s weights:

> # fit Parafac model (non-negativity on Modes B and C)

(0) Unconstrained (default) - pracun < parafac(x, nfac=3, const=c(0,2,2))
> pfacNN

(1) Orthogonal

(2) Non-negative

3-way Parafac with 3 factors

Constraints:

. A B C
(3) Unlmoda] none nonnegative nonnegative
(4) Monotonic Fit Information:
SSE = 950.0538
. . R"2 = 0.5151283
(5) PerlOdlc GCV = 0.2078168
EDF = 219

(6) Smooth

Converged: TRUE (11 iterations)
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Multiway Constraints
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Multiway Constraints Functional Constraints

Multiway Models with Functional Weights

Parafac Model: X, = ACB'+E; for k=1,...,K

Assume that Mode A is the functional mode:

m(1) m() -+ mr(1)
_ m2) m2) - mr(2)
nt) w0 e D

where 7,(-) is the r-th component function.

Letting {f1, . ..,f, } denote a set of known basis functions

(i) = Y fili)a
=1

where o, = (ayy, - . ., ay,)" are the unknown basis function coefficients.
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Multiway Constraints Functional Constraints

Polynomial Functions

If n,(-) is a polynomial function of degree v — 1, then

v
(i) =i o,
=1

and the Parafac model can be written as

Xk = ACkBI + Ek = FaCkB' + Ek

where
1 i & .. ! o1l o2 o (R
1 i & ... vl Q1 Qi o+ QDR
F = and o=
1 i # - ! ayl Qua QR
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Functional Constraints

Polynomial Splines

For smooth functions of an unknown form, we can use polynomial splines.
@ Piecewise polynomial functions that join at “knots”
@ Formed by taking a linear combination of basis functions: A = Fa
@ Can adjust polynomial degree and degrees of freedom (# of knots)

Cubic B-spline Basis: df =5 Cubic B-spline Basis: df =7
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Figure 7: Cubic B-spline basis with 5 (left) and 7 (right) degrees of freedom.
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Functional Constraints

Benefit of Functional Constraints
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Multiway Constraints Functional Constraints

Functional Constraints in Parafac2

Parafac2 Model:  X; = A;C;B’ + E; subject to AjAr = ® forallk

Assume that Mode A is the functional mode:

ni(l)  na(l) -+ nre(1)

me(2)  nu(2) - nre(2)
K= . . _ .

Ulkklk) nzkklk) e TIRk‘(Ik)

where 7% (+) is the r-th component function for the k-th level of Mode C.

Need component functions to satisfy: 1| 7,4 (i)7(i) = ¢ for all k.
o Ay = Fray subject to o F Fra = ®

@ Modified ALS algorithm to update oy matrices (see Helwig, 2016).
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Multiway Constraints Structural Constraints

Multiway Models with Structured Weights

Parafac Model: X, = AC,B' +E; for k=1,....K

Suppose B = {bj},xr where bj, is weight of j-th variable on r-th factor, and
each variable is an indicator for one or more factors.

Need to constrain the weights such that b;, = 0 if the j-th observed variable is
not an indicator for the r-th factor.

Constrained columnwise update of B in ALS algorithm (see Helwig, 2016).
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Multiway Constraints Structural Constraints

Example Structures for Multiway Weights

Table 1: Possible weight structures with R = 2 factors.

Unstructured Discrete Overlapping

r=1 r=2|r=1 r=2|r=1 r=2
j=1 * * * 0 * 0
j=2 * * * 0 * 0
j= * * * 0 * *
=4 * * 0 * * *
j= * * 0 * 0 *
j= * * 0 * 0 *

Note. An entry of “x” denotes a non-zero factor loading.

The classic ALS algorithm corresponds to the “Unstructured” weights.
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Simulation

Simulation Study
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Simulation Study Design and Analyses

Parafac2 Simulation Design

Generate data from Parafac2 model with. ..

I, = 44 measurements on J = 12 variables from K = 51 units of observation
@ Variables 1-4 are indicators for factor 1
@ Variables 5-8 are indicators for factor 2

@ Variables 9—12 are indicators for factor 3

Latent functions have v = 10 degrees of freedom and crossproduct matrix

1 06 03
=1 06 1 -0.3
-03 03 1
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Simulation Study Design and Analyses

Parafac2 Simulation Analyses

Compare four different algorithms:
@ ALS unconstrained
© ALS with only functional constraints
© ALS with only structural constraints

© ALS with both functional and structural constraints

Examine four different SNRs: {1/2,1,2,4}
o SNR = X — EJ*/|[E|]

Use 100 random starts of each algorithm in each condition.
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Results

>
=
2
2]
3
b
=
g
£

Parameter Recovery

Parafac2 Simulation Results

860 960 ¥60 <¢60

001 d ®pPoN

00'}

ofe
HIE -4

L0

60 80
001V 8poN

ot

90

Figure 9:  Tucker congruence coefficient (TCC) between true and estimated weights.
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Algorithm Convergence

Parafac2 Simulation Results
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Figure 10: Number of iterations (left) and runtime (right) of the ALS algorithm.
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Simulation Study Results

Summary of Simulation Findings

Parameter Recovery:
@ Functional constraints improve recovery of Mode A weights

@ Structural constraints improve recovery of Mode B weights

Algorithm Convergence:
@ Functional constraints have little effect on convergence

@ Structural constraints lead to faster convergence

Functional and structural constraints combined show improvements over
using either method alone.
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United States Alcohol

United States Alcohol
Consumption Example
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United States Alcohol Consumption Example Data and Analyses

NIAAA Alcohol Consumption Data from 1970-2013

Yearly consumption data from the 50 United States and the District of
Columbia for three types of alcoholic beverages: beer, spirits, and wine.

> library (multiway)
> data ("USalcohol")
> head (USalcohol)

year state region type beverage ethanol popl4d pop2l
1 1970 Alabama South Spirits 3863 1738.35 2499 2020
2 1970 Alabama South Wine 1412 225.92 2499 2020
3 1970 Alabama South Beer 33098 1489.41 2499 2020
5 1970 Alaska West Spirits 945 425.25 205 165
6 1970 Alaska West Wine 470 75.20 205 165
7 1970 Alaska West Beer 5372 241.74 205 165

Data were obtained from the National Institute on Alcohol Abuse and
Alcoholism (NIAAA) Surveillance Report #102*

*
https://pubs.niaaa.nih.gov/publications/surveillancel02/pcyrl19702013.txt
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United States Alcohol Consumption Example Data and Analyses

Data Tensor: Years x Variables x States

Create a tensor of the form 44 years x 6 variables x 51 states
@ Years: 1970 — 2013
@ Variables: Beer (Bev. & Eth.), Spirits (Bev. & Eth.), Wine (Bev. & Eth.)
e States: 50 United States and District of Columbia

Bev. = gallons of beverage consumed per capita age 21+
Eth. = gallons of ethanol consumed per capita age 21+

> Xbev <- with (USalcohol,

+ tapply (beverage/pop2l, list (year, type, state), c))
> Xeth <- with (USalcohol,

+ tapply (ethanol/pop21, list (year, type, state), c))
> X <- array (0, dim=c (44, 6, 51))

> X[, c(1,3,5) ,]1 <= Xbev

> X[, c(2,4,6) ,]1 <- Xeth
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United States Alcohol Consumption Example Data and Analyses

Assumed Model for Data Tensor

Xy denotes the 44 time points x 6 variables data matrix for the k-th state.

Assumed model for the observed data matrices:
Xy = 1y + ACiB'E + E T subject to AjA; = P

where
@ p, is the k-th state’s unknown mean vector
e 3 = diag(oy,...,o0y) is an unknown scaling matrix with o; > 0

@ Other terms are Parafac2 weight matrices
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United States Alcohol Consumption Example Data and Analyses

Preprocessing the Data Tensor

Before fitting the Parafac2 model, we need to preprocess the data:
@ Center variables across time w/in states (to remove ;)

© Scale variables across time and states (to remove )

\4

# center each variable across time (within state)
Xc <- ncenter (X, mode=1)

\Y

\Y

# scale each variable (across time and states)
Xs <- nscale (Xc, mode=2, ssnew=44x%51)

\%

Now the centered and scaled data tensor Xs is ready for Parafac? fitting.
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United States Alcohol

Plot the Subtracted Means

Example

Data and Analyses
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Figure 11: Mean gallons of ethanol consumed per capita for each beverage type.
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Data and Analyses

Plot the Standardized Data
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Figure 12: Standardized data for a sample of six states.
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United States Alcohol Consumption Example Data and Analyses

Create the Structure

Matrix

Create the structure constraint matrix (for the Bst ruc argument):

> Bstruc <- matrix(
+

+

> rownames (Bstruc)
> colnames (Bstruc)
> Bstruc

factorl
Beer.bev TRUE
Beer.eth TRUE

Spirits.bev FALSE
Spirits.eth FALSE
Wine.bev FALSE
Wine.eth FALSE

Nathaniel E. Helwig (U of Minnesota)

c(T, T, ¥, ¥, F, F,
¥, ¥, T, T, F, F,
v, ¥, ¥, ¥, T, T),

<— dnames[[2]]

nrow=6, ncol=3)

<- pastel ("factor",1:3)

factor2 factor3
FALSE FALSE
FALSE FALSE
TRUE FALSE
TRUE FALSE
FALSE TRUE
FALSE TRUE
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United States Alcohol Consumption Example Data and Analyses

Fitting the Parafac Model

Start by fitting the Parafac model to the data:

> set.seed(1l)
> pfac <- parafac(Xs, nfac=3, nstart=100, const=c(6,0,0), Bstruc=Bstruc)
> pfac

3-way Parafac with 3 factors
Constraints:
A B C

smooth structure none

Fit Information:
SSE = 3583.515

R"2 = 0.7338447
GCV = 0.2731702
EDF = 174

Converged: TRUE (4 iterations)
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United States Alcohol Consumption Example Data and Analyses

Fitting the Parafac2 Model

Now fit the Parafac2 model to the data:

> set.seed (1)
> pfac2 <- parafac2(Xs, nfac=3, nstart=100, const=c(6,0,0), Bstruc=Bstruc
> pfac2

3-way Parafac2 with 3 factors
Constraints:
A B C

smooth structure none

Fit Information:
SSE = 1939.451

R"2 = 0.8559528
GCV = 0.1660572
EDF = 924

Converged: TRUE (9 iterations)
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United States Alcohol Consumption Example Results

Average Parafac and Parafac2 Functional Factor Scores

Parafac model essentially captures the average pattern across states.
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Figure 13: Average (across states) factor scores for Parafac and Parafac2 models.
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Results

Parafac2 Functional Factor Scores
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United States Alcohol Consumption Example Results

Check Factor Correlations and Loadings

> # correlation matrix
> round (pfac2$Phi, 3)

factorl factor2 factor3
factorl 1.000 0.643 0.184
factor2 0.643 1.000 0.420
factor3 0.184 0.420 1.000

> # factor loadings
> round (pfac2$B, 3)
factorl factor2 factor3

Beer.bev 1 0.000 0.000
Beer.eth 1 0.000 0.000
Spirits.bev 0 1.000 0.000
Spirits.eth 0 0.997 0.000
Wine.bev 0 0.000 1.000
Wine.eth 0 0.000 0.984
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Figure 15: Absolute value of Parafac2 Mode C weights, which are factor score SDs.
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United States Alcohol Consumption Example Results

Parafac2 Predicted Gallons of Ethanol Consumed per Capita

Yearly Gallons Ethanol
per Person 21 or Older

Figure 16: Parafac2 predicted gallons of ethanol consumed per capita for each state.
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United States Alcohol Consumption Example Results

Summary of Results

Beer and spirits consumption is decreasing; wine consumption is increasing.
@ US consumes most of its alcohol in the form of beer

@ Trends suggest wine is becoming more popular in many states

State-specific longitudinal differences in alcohol consumption trends exist.
@ Some states show little variation in their consumption

@ Other states have large fluctuations in particular beverage types

Parafac? is a powerful model for analyzing multivariate longitudinal data.
o Constraints can improve estimation/interpretation

@ Flexible estimates of individual differences in latent trends
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