Estimating Latent Trends in Multivariate Longitudinal Data via Parafac2 with Functional and Structural Constraints

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities)

Modern Modeling Methods Conference University of Connecticut May 23, 2017

Outline of Talk

- 1) Multiway Data Analysis
 - Bilinear Models
 - Multiway Extensions
- 2) Multiway R Package
 - Overview of Package
 - Constraint Options

- 3) Multiway Constraints
 - Functional Constraints
 - Structural Constraints

- 4) Simulation Study
 - Design & Analyses
 - Results
- 5) U.S. Alcohol Consumption
 - Data & Analyses
 - Results

Multiway Data Analysis

Bilinear Model Form (PCA, FA, ICA)

Let $\mathbf{X} = \{x_{ij}\}_{I \times J}$ where x_{ij} is *i*-th subject's observed value on the *j*-th variable.

A bilinear model assumes that

$$\mathbf{X} = \mathbf{A}\mathbf{B}' + \mathbf{E} \qquad \longleftrightarrow \qquad x_{ij} = \sum_{r=1}^{R} a_{ir}b_{jr} + e_{ij}$$
(1)

where

- $\mathbf{A} = \{a_{ir}\}_{I \times R}$ with a_{ir} denoting the weight (score) of the *i*-th subject on the *r*-th factor/component
- $\mathbf{B} = \{b_{jr}\}_{J \times R}$ with b_{jr} denoting the weight (loading) of the *j*-th variable on the *r*-th factor/component
- $\mathbf{E} = \{e_{ij}\}_{I \times J}$ with e_{ij} denoting the error term corresponding to x_{ij}

Rotational Indeterminacy Problem

Suppose that **R** is an $R \times R$ orthogonal rotation matrix. • $\mathbf{R'R} = \mathbf{RR'} = \mathbf{I}_R$ (identity matrix)

Rotational indeterminacy problem of the bilinear model:

$$AB' = \tilde{A}\tilde{B}'$$

where $\tilde{\mathbf{A}} = \mathbf{A}\mathbf{R}$ and $\tilde{\mathbf{B}} = \mathbf{B}\mathbf{R}$.

Need to make some assumptions to solve the rotational indeterminacy.

- PCA assumes components are orthogonal and explain maximal variance
- ICA assumes components are statistically independent

Two-Way versus Three-Way Arrays

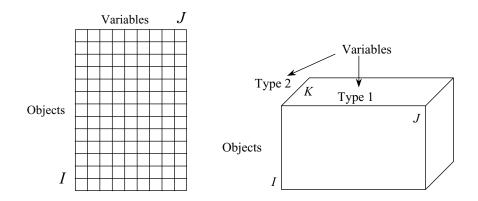


Figure 1: Visualization of 2-way and 3-way arrays from Smilde, Bro, and Geladi (2004).

Multiway Extensions

Talking about Tensors

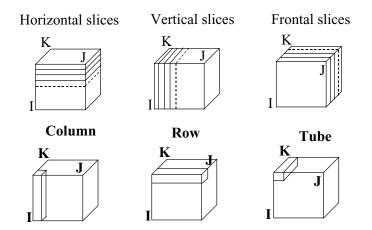


Figure 2: Visualization of three-way array partitions from Smilde, Bro, and Geladi (2004).

"The Covariation Chart" from Cattell (1952)

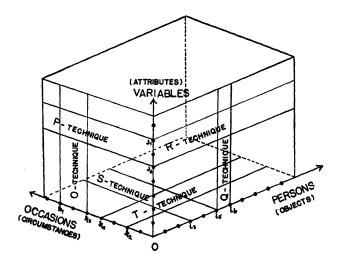


Figure 3: The first illustration of a three-way array.

Tucker's (1966) Three-Way Factor Analysis Model

$$x_{ijk} = \sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} g_{rst} a_{ir} b_{js} c_{kt} + e_{ijk}$$

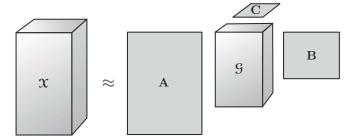


Figure 4: Visualization of Tucker3 structure from Kolda and Bader (2009).

A Popular Model for Three-Way Data

$$x_{ijk} = \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr} + e_{ijk}$$

Name	Proposed by
Polyadic form of a tensor	Hitchcock, 1927 [105]
PARAFAC (parallel factors)	Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition)	Carroll and Chang, 1970 [38]
Topographic components model	Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC)	Kiers, 2000 [122]

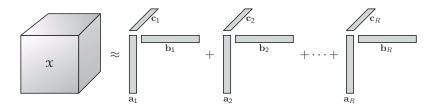


Figure 5: Visualization of trilinear structure from Kolda and Bader (2009).

Harshman's Parafac and Parafac2 Models

Note that the Parafac model (Harshman, 1970) can be written as

 $\mathbf{X}_k = \mathbf{A}\mathbf{C}_k\mathbf{B}' + \mathbf{E}_k$

where $\mathbf{X}_{k} = \{x_{ij(k)}\}_{I \times J}, \mathbf{C}_{k} = \text{diag}(c_{k1}, ..., c_{kR}), \text{ and } \mathbf{E}_{k} = \{e_{ij(k)}\}_{I \times J}.$

The Parafac2 model (Harshman, 1972) is more general and can be written as

$$\mathbf{X}_k = \mathbf{A}_k \mathbf{C}_k \mathbf{B}' + \mathbf{E}_k$$
 subject to $\mathbf{A}'_k \mathbf{A}_k = \mathbf{\Phi}$

where $\mathbf{X}_k = \{x_{ij(k)}\}_{I_k \times J}$, $\mathbf{E}_k = \{e_{ij(k)}\}_{I_k \times J}$, and $\mathbf{\Phi} = \mathbf{A}'_k \mathbf{A}_k$ is the common Mode A cross-product matrix.

Intrinsic Axis Property of Parafac and Parafac2

Parafac and Parafac2 can provide essentially unique solutions.

- No rotational indeterminacy (unlike PCA, ICA, FA, Tucker, etc.)
- Data determines factor configuration and orientation

Parafac uniqueness: If $(\mathbf{A}, \mathbf{B}, \mathbf{C}_k)$ and $(\tilde{\mathbf{A}}, \tilde{\mathbf{B}}, \tilde{\mathbf{C}}_k)$ have the same fit, then:

- $\tilde{\mathbf{A}} = \mathbf{APS}_a$ and $\tilde{\mathbf{B}} = \mathbf{BPS}_b$ and $\tilde{\mathbf{C}}_k = \mathbf{P'C}_k\mathbf{PS}_c$
- **P** is an $R \times R$ permutation matrix
- $\mathbf{S}_a, \mathbf{S}_b, \text{ and } \mathbf{S}_c$ are diagonal and satisfy $\mathbf{S}_a \mathbf{S}_b \mathbf{S}_c = \mathbf{I}_R$

Parafac2 uniqueness: If $(\mathbf{A}_k, \mathbf{B}, \mathbf{C}_k)$ and $(\tilde{\mathbf{A}}_k, \tilde{\mathbf{B}}, \tilde{\mathbf{C}}_k)$ have the same fit, then:

•
$$\tilde{\mathbf{A}}_k = z_k \mathbf{A}_k \mathbf{P} \mathbf{S}_a$$
 and $\tilde{\mathbf{B}} = \mathbf{B} \mathbf{P} \mathbf{S}_b$ and $\tilde{\mathbf{C}}_k = z_k \mathbf{P}' \mathbf{C}_k \mathbf{P} \mathbf{S}_c$

- **P** and $\{\mathbf{S}_a, \mathbf{S}_b, \mathbf{S}_c\}$ have the same interpretation
- $z_k \in \{-1, 1\}$ is due to the special sign indeterminacy (see Helwig, 2013)

Simultaneous Component Analysis Models

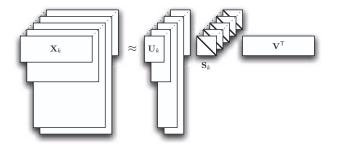


Figure 6: Visualization of SCA structure from Kolda and Bader (2009).

Four versions of SCA which assume different cross-product structures for Mode A weights (Timmerman & Kiers, 2003).

Alternating Least Squares Estimation

Weight matrices are typically estimated via alternating least squares (ALS):

- Initialize all weight matrices
- Output the sector of the se
- S Repeat Step 2 until convergence

Above algorithm will converge to a locally optimal solution, which depends on the weight matrices initialized in Step 1 of the ALS algorithm.

Should try many random starts of the above ALS algorithm to increase chance of obtaining the globally optimal solution.

Multiway R Package

Fitting Multiway Models in R

multiway (Helwig, 2017) is an R package (R Core Team, 2017) for fitting multiway models via ALS with optional constraints.

Fit models include:

- Individual Differences Scaling (indscal)
- Parallel Factor Analysis 1 (parafac)
- Parallel Factor Analysis 2 (parafac2)
- Simultaneous Component Analysis (sca)
- Tucker Factor Analysis (tucker)

Parafac and Tucker models are implemented for 3-way and 4-way data.

Example Syntax for Fitting Parafac Model

```
> # fit Parafac model (unconstrained)
> pfac <- parafac(X, nfac=3)</pre>
> pfac
3-way Parafac with 3 factors
Constraints:
    A B C
 none none none
Fit Information.
  SSE = 950.1628
 R^2 = 0.5150726
  GCV = 0.2078407
 EDF = 219
```

Converged: TRUE (17 iterations)

Flexible Parafac and Parafac2 Fitting

parafac and parafac2 allow the user to:

- Fix a mode's weights using fixed arguments
- Constrain structure of a mode's weights using struc arguments

const argument allows user to set constraints for each mode's weights:

- (0) Unconstrained (default)
- (1) Orthogonal
- (2) Non-negative
- (3) Unimodal
- (4) Monotonic
- (5) Periodic
- (6) Smooth

Multiway Constraints

Functional Constraints

Multiway Models with Functional Weights

Parafac Model: $\mathbf{X}_k = \mathbf{A}\mathbf{C}_k\mathbf{B}' + \mathbf{E}_k$ for $k = 1, \dots, K$

Assume that Mode A is the functional mode:

$$\mathbf{A} = \begin{pmatrix} \eta_1(1) & \eta_2(1) & \cdots & \eta_R(1) \\ \eta_1(2) & \eta_2(2) & \cdots & \eta_R(2) \\ \vdots & \vdots & \ddots & \vdots \\ \eta_1(I) & \eta_2(I) & \cdots & \eta_R(I) \end{pmatrix}$$

where $\eta_r(\cdot)$ is the *r*-th component function.

Letting $\{f_1, \ldots, f_\nu\}$ denote a set of known basis functions

$$\eta_r(i) = \sum_{\ell=1}^{\nu} f_\ell(i) \alpha_{\ell r}$$

where $\alpha_r = (\alpha_{1r}, \ldots, \alpha_{\ell r})'$ are the unknown basis function coefficients.

Functional Constraints

Polynomial Functions

If $\eta_r(\cdot)$ is a polynomial function of degree $\nu - 1$, then

$$\eta_r(i) = \sum_{\ell=1}^{\nu} i^{\ell-1} \alpha_{\ell r}$$

and the Parafac model can be written as

$$\mathbf{X}_k = \mathbf{A}\mathbf{C}_k\mathbf{B}' + \mathbf{E}_k = \mathbf{F}\boldsymbol{\alpha}\mathbf{C}_k\mathbf{B}' + \mathbf{E}_k$$

where

$$\mathbf{F} = \begin{pmatrix} 1 & i & i^2 & \cdots & i^{\nu-1} \\ 1 & i & i^2 & \cdots & i^{\nu-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & i & i^2 & \cdots & i^{\nu-1} \end{pmatrix} \quad \text{and} \quad \boldsymbol{\alpha} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1R} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2R} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{\nu 1} & \alpha_{\nu 2} & \cdots & \alpha_{\nu R} \end{pmatrix}$$

Polynomial Splines

For smooth functions of an unknown form, we can use polynomial splines.

- Piecewise polynomial functions that join at "knots"
- Formed by taking a linear combination of basis functions: $A = F\alpha$
- Can adjust polynomial degree and degrees of freedom (# of knots)

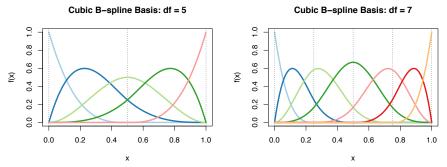


Figure 7: Cubic B-spline basis with 5 (left) and 7 (right) degrees of freedom.

Benefit of Functional Constraints

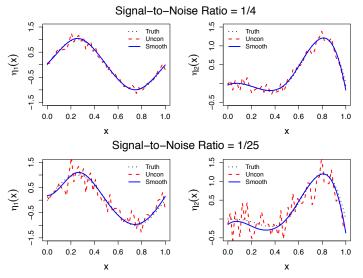


Figure 8: Results from fitting the 3-way Parafac model to a $50 \times 20 \times 10$ tensor with functional Mode A and R = 2 factors. SNR = $||\mathbf{X} - \mathbf{E}||^2 / ||\mathbf{E}||^2$

Functional Constraints in Parafac2

Parafac2 Model: $\mathbf{X}_k = \mathbf{A}_k \mathbf{C}_k \mathbf{B}' + \mathbf{E}_k$ subject to $\mathbf{A}'_k \mathbf{A}_k = \mathbf{\Phi}$ for all k

Assume that Mode A is the functional mode:

$$\mathbf{A}_{k} = \begin{pmatrix} \eta_{1k}(1) & \eta_{2k}(1) & \cdots & \eta_{Rk}(1) \\ \eta_{1k}(2) & \eta_{2k}(2) & \cdots & \eta_{Rk}(2) \\ \vdots & \vdots & \ddots & \vdots \\ \eta_{1k}(I_{k}) & \eta_{2k}(I_{k}) & \cdots & \eta_{Rk}(I_{k}) \end{pmatrix}$$

where $\eta_{rk}(\cdot)$ is the *r*-th component function for the *k*-th level of Mode C.

Need component functions to satisfy: $\sum_{i=1}^{I_k} \eta_{rk}(i) \eta_{sk}(i) = \phi_{rs}$ for all k.

- $\mathbf{A}_k = \mathbf{F}_k \boldsymbol{\alpha}_k$ subject to $\boldsymbol{\alpha}'_k \mathbf{F}'_k \mathbf{F}_k \boldsymbol{\alpha}_k = \boldsymbol{\Phi}$
- Modified ALS algorithm to update α_k matrices (see Helwig, 2016).

Multiway Models with Structured Weights

Parafac Model: $\mathbf{X}_k = \mathbf{A}\mathbf{C}_k\mathbf{B}' + \mathbf{E}_k$ for $k = 1, \dots, K$

Suppose $\mathbf{B} = \{b_{jr}\}_{J \times R}$ where b_{jr} is weight of *j*-th variable on *r*-th factor, and each variable is an indicator for one or more factors.

Need to constrain the weights such that $b_{jr} = 0$ if the *j*-th observed variable is not an indicator for the *r*-th factor.

Constrained columnwise update of **B** in ALS algorithm (see Helwig, 2016).

Example Structures for Multiway Weights

	Unstructured		Discrete		Overlapping		
	r = 1	r = 2	r = 1	r = 2	r = 1	r = 2	
j = 1	*	*	*	0	*	0	
j = 2	*	*	*	0	*	0	
j = 3	*	*	*	0	*	*	
j = 4	*	*	0	*	*	*	
j = 5	*	*	0	*	0	*	
j = 6	*	*	0	*	0	*	
Note. An entry of "*" denotes a non-zero factor loading.							

Table 1: Possible weight structures with R = 2 factors.

The classic ALS algorithm corresponds to the "Unstructured" weights.

Simulation Study

Parafac2 Simulation Design

Generate data from Parafac2 model with...

- $I_k = 44$ measurements on J = 12 variables from K = 51 units of observation
 - Variables 1–4 are indicators for factor 1
 - Variables 5–8 are indicators for factor 2
 - Variables 9–12 are indicators for factor 3

Latent functions have $\nu = 10$ degrees of freedom and crossproduct matrix

$$oldsymbol{\Phi} = egin{pmatrix} 1 & 0.6 & -0.3 \ 0.6 & 1 & -0.3 \ -0.3 & -0.3 & 1 \end{pmatrix}$$

Parafac2 Simulation Analyses

Compare four different algorithms:

- ALS unconstrained
- ALS with only functional constraints
- ALS with only structural constraints
- ALS with both functional and structural constraints

Examine four different SNRs: $\{1/2, 1, 2, 4\}$

• SNR = $||\mathbf{X} - \mathbf{E}||^2 / ||\mathbf{E}||^2$

Use 100 random starts of each algorithm in each condition.

Results

Parafac2 Simulation Results: Parameter Recovery

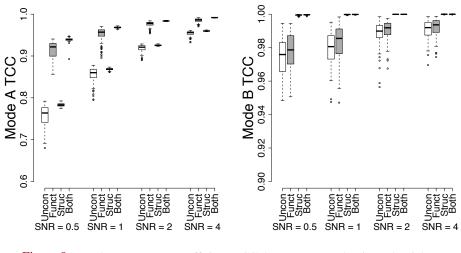


Figure 9: Tucker congruence coefficient (TCC) between true and estimated weights.

Parafac2 Simulation Results: Algorithm Convergence

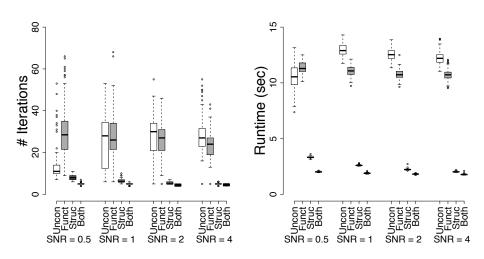


Figure 10: Number of iterations (left) and runtime (right) of the ALS algorithm.

Summary of Simulation Findings

Parameter Recovery:

- Functional constraints improve recovery of Mode A weights
- Structural constraints improve recovery of Mode B weights

Algorithm Convergence:

- Functional constraints have little effect on convergence
- Structural constraints lead to faster convergence

Functional and structural constraints combined show improvements over using either method alone.

United States Alcohol Consumption Example

NIAAA Alcohol Consumption Data from 1970–2013

Yearly consumption data from the 50 United States and the District of Columbia for three types of alcoholic beverages: beer, spirits, and wine.

- > library(multiway)
- > data("USalcohol")
- > head(USalcohol)

	year	state	region	type	beverage	ethanol	pop14	pop21
1	1970	Alabama	South	Spirits	3863	1738.35	2499	2020
2	1970	Alabama	South	Wine	1412	225.92	2499	2020
3	1970	Alabama	South	Beer	33098	1489.41	2499	2020
5	1970	Alaska	West	Spirits	945	425.25	205	165
6	1970	Alaska	West	Wine	470	75.20	205	165
7	1970	Alaska	West	Beer	5372	241.74	205	165

Data were obtained from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) Surveillance Report #102*

^{*}https://pubs.niaaa.nih.gov/publications/surveillance102/pcyr19702013.txt

Data Tensor: Years \times Variables \times States

Create a tensor of the form 44 years \times 6 variables \times 51 states

- Years: 1970 2013
- Variables: Beer (Bev. & Eth.), Spirits (Bev. & Eth.), Wine (Bev. & Eth.)
- States: 50 United States and District of Columbia

Bev. = gallons of beverage consumed per capita age 21+ Eth. = gallons of ethanol consumed per capita age 21+

```
> Xbev <- with(USalcohol,
+ tapply(beverage/pop21, list(year, type, state), c))
> Xeth <- with(USalcohol,
+ tapply(ethanol/pop21, list(year, type, state), c))
> X <- array(0, dim=c(44, 6, 51))
> X[, c(1,3,5),] <- Xbev
> X[, c(2,4,6),] <- Xeth</pre>
```

Assumed Model for Data Tensor

 \mathbf{X}_k denotes the 44 time points \times 6 variables data matrix for the *k*-th state.

Assumed model for the observed data matrices:

$$\mathbf{X}_k = \mathbf{1} \boldsymbol{\mu}'_k + \mathbf{A}_k \mathbf{C}_k \mathbf{B}' \boldsymbol{\Sigma} + \mathbf{E}_k \boldsymbol{\Sigma}$$
 subject to $\mathbf{A}'_k \mathbf{A}_k = \boldsymbol{\Phi}$

where

- μ_k is the *k*-th state's unknown mean vector
- $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_J)$ is an unknown scaling matrix with $\sigma_j > 0$
- Other terms are Parafac2 weight matrices

Preprocessing the Data Tensor

Before fitting the Parafac2 model, we need to preprocess the data:

- Center variables across time w/in states (to remove μ_k)
- **②** Scale variables across time and states (to remove Σ)

- > # center each variable across time (within state)
 > Xc <- ncenter(X, mode=1)</pre>
- > # scale each variable (across time and states)
 > Xs <- nscale(Xc, mode=2, ssnew=44*51)</pre>

Now the centered and scaled data tensor Xs is ready for Parafac2 fitting.

Plot the Subtracted Means



Figure 11: Mean gallons of ethanol consumed per capita for each beverage type.

Plot the Standardized Data

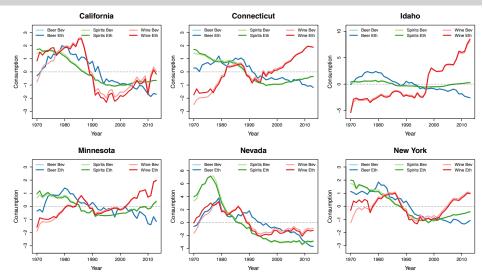


Figure 12: Standardized data for a sample of six states.

Nathaniel E. Helwig (U of Minnesota)

Functional and Structural Parafac2 Constraints

Data and Analyses

Create the Structure Matrix

Create the structure constraint matrix (for the Bstruc argument):

```
+
                  F, F, T, T, F, F,
+
                  F, F, F, F, T, T), nrow=6, ncol=3)
> rownames(Bstruc) <- dnames[[2]]</pre>
> colnames(Bstruc) <- paste0("factor",1:3)</pre>
> Bstruc
          factor1 factor2 factor3
Beer.bev
            TRUE
                  FALSE
                         FALSE
Beer.eth
           TRUE FALSE FALSE
Spirits.bev FALSE TRUE FALSE
Spirits.eth FALSE TRUE FALSE
Wine.bev
        FALSE FALSE
                          TRUE
Wine.eth
        FALSE FALSE
                          TRUE
```

Data and Analyses

Fitting the Parafac Model

Start by fitting the Parafac model to the data:

```
> set.seed(1)
> pfac <- parafac(Xs, nfac=3, nstart=100, const=c(6,0,0), Bstruc=Bstruc)</pre>
> pfac
3-way Parafac with 3 factors
Constraints:
         B C
     Α
 smooth structure none
Fit Information:
  SSE = 3583.515
 R^2 = 0.7338447
 GCV = 0.2731702
 EDF = 174
Converged: TRUE (4 iterations)
```

Data and Analyses

Fitting the Parafac2 Model

Now fit the Parafac2 model to the data:

```
> set.seed(1)
> pfac2 <- parafac2(Xs, nfac=3, nstart=100, const=c(6,0,0), Bstruc=Bstruc)</pre>
> pfac2
3-way Parafac2 with 3 factors
Constraints:
     Α
         B C
 smooth structure none
Fit Information:
  SSE = 1939.451
 R^2 = 0.8559528
 GCV = 0.1660572
 EDF = 924
Converged: TRUE (9 iterations)
```

Average Parafac and Parafac2 Functional Factor Scores

Parafac model essentially captures the average pattern across states.

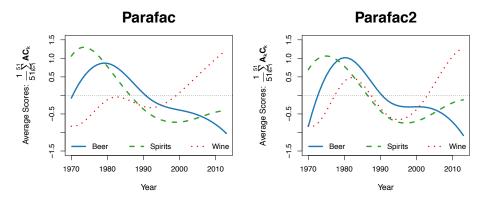


Figure 13: Average (across states) factor scores for Parafac and Parafac2 models.

Parafac2 Functional Factor Scores

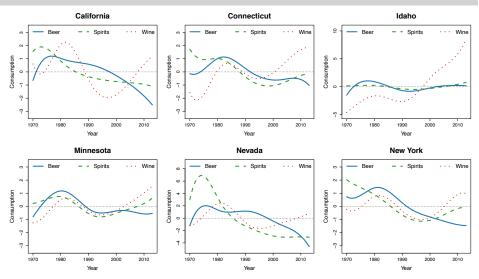


Figure 14: Parafac2 functional factor scores for a sample of six states.

Check Factor Correlations and Loadings

> # correlation matrix				
> round(pfac2\$Phi, 3)				
	factor1	fact	cor2 fac	tor3
factor1	1.000	0	.643 C	.184
factor2	0.643	1	.000 C	.420
factor3	0.184	0	.420 1	.000
> # factor loadings				
<pre>> round(pfac2\$B, 3)</pre>				
	fact	cor1	factor2	factor3
Beer.bev		1	0.000	0.000
Beer.eth		1	0.000	0.000
Spirits.bev		0	1.000	0.000
Spirits.eth		0	0.997	0.000
Wine.bev		0	0.000	1.000
Wine.eth		0	0.000	0.984

Parafac2 Mode C Weights (Factor Score SDs)

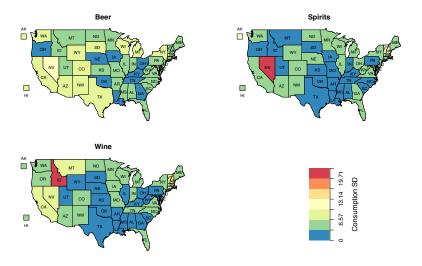


Figure 15: Absolute value of Parafac2 Mode C weights, which are factor score SDs.

Results

Parafac2 Predicted Gallons of Ethanol Consumed per Capita

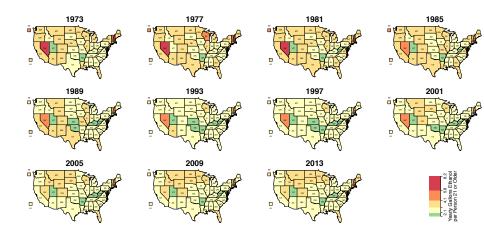


Figure 16: Parafac2 predicted gallons of ethanol consumed per capita for each state.

Results

Summary of Results

Beer and spirits consumption is decreasing; wine consumption is increasing.

- US consumes most of its alcohol in the form of beer
- Trends suggest wine is becoming more popular in many states

State-specific longitudinal differences in alcohol consumption trends exist.

- Some states show little variation in their consumption
- Other states have large fluctuations in particular beverage types

Parafac2 is a powerful model for analyzing multivariate longitudinal data.

- Constraints can improve estimation/interpretation
- Flexible estimates of individual differences in latent trends

References

- Cattell, R. B. (1952). The three basis factor-analytic research designs their interrelations and derivatives. *Psychological Bulletin* 49, 499–520.
- Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis. *UCLA Working Papers in Phonetics* 16, 1–84.
- Harshman, R. A. (1972). PARAFAC2: Mathematical and technical notes. UCLA Working Papers in Phonetics 22, 30–44.
- Helwig, N. E. (2013). The special sign indeterminacy of the direct-fitting Parafac2 model: Some implications, cautions, and recommendations for Simultaneous Component Analysis. *Psychometrika* 78, 725–739.
- Helwig, N. E. (2016). Estimating latent trends in multivariate longitudinal data via Parafac2 with functional and structural constraints. *Biometrical Journal [Advance Online Version]*, 1–21.
- Helwig, N. E. (2017). multiway: Component Models for Multi-Way Data. R package version 1.0-3.
- Kolda, T. G. and B. W. Bader (2009). Tensor decompositions and applications. SIAM Review 51, 455-500.
- R Core Team (2017). *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing.
- Smilde, A., R. Bro, and P. Geladi (2004). *Multi-way Analysis with Applications in the Chemical Sciences*. Chicester, UK: Wiley.
- Timmerman, M. E. and H. A. L. Kiers (2003). Four simultaneous component analysis models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences. *Psychometrika* 68, 105–121.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. *Psychometrika 31*, 279–311.