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Multiway Data Analysis

Multiway Data Analysis
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Multiway Data Analysis Bilinear Models

Bilinear Model Form (PCA, FA, ICA)

Let X = {xij}I⇥J where xij is i-th subject’s observed value on the j-th variable.

A bilinear model assumes that

X = AB

0 + E  ! xij =
RX

r=1

airbjr + eij (1)

where
A = {air}I⇥R with air denoting the weight (score) of the i-th subject on
the r-th factor/component
B = {bjr}J⇥R with bjr denoting the weight (loading) of the j-th variable
on the r-th factor/component
E = {eij}I⇥J with eij denoting the error term corresponding to xij
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Multiway Data Analysis Bilinear Models

Rotational Indeterminacy Problem

Suppose that R is an R⇥ R orthogonal rotation matrix.
R

0
R = RR

0 = IR (identity matrix)

Rotational indeterminacy problem of the bilinear model:

AB

0 = ÃB̃

0

where Ã = AR and B̃ = BR.

Need to make some assumptions to solve the rotational indeterminacy.
PCA assumes components are orthogonal and explain maximal variance
ICA assumes components are statistically independent
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Multiway Data Analysis Multiway Extensions

Two-Way versus Three-Way Arrays
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Figure 1.1. A two-way array has, e.g., the objects as rows and the
variables as columns. There are I objects and J variables.
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Figure 1.2. A typical three-way array has I objects, J type 1 variables and K type 2 variables.

data are represented as a three-way array (box) (Figure 1.2). The columns and rows of
the two-way array are now ‘replaced’ by slices, like slicing a rectangular bread or cake in
different ways. This is shown in Figure 1.3. Each horizontal slice (also sometimes called
horizontal slab) holds the data for one object in a three-way array. Each vertical slice
holds data of one specific variable of one type (say absorbances at different wavelengths or
retention times) and the back-to-front slices the variables of the other type, say judges or
time slots. Other types of arrangements can exist as well. Some three-way arrays have two
types of object modes and only one type of variable mode, or even three objects modes and
no variable mode. An example is in multivariate image analysis where the data are three-
way arrays with x-coordinate, y-coordinate of the pixels as object ways and wavelength as
the variable way. See Figure 1.4. The whole discussion of what the nature of an object or
variable is may not be clear on all occasions. Basically an object is a physical or mental
construct for which information is sought. A variable provides means for obtaining that
information. For example, the physical health of persons might be of interest. Different
persons are therefore objects in this respect. The blood pressure is a variable, and measuring
the blood pressure of the different objects provides information of the health status of the
objects.

For a three-way array of liquid-chromatography–ultraviolet spectroscopy data, the sam-
ples are the objects whereas the absorbance at different retention times (of the chromatogra-
phy mode) and the wavelengths (of the ultraviolet spectroscopy mode) are the two variable
modes. Hence, absorbance is measured as a function of two properties: retention time and
wavelength. For a three-way array of food products × judges × sensory properties, the
judge mode can be an object mode or a variable mode. In a preliminary analysis the judges
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data are represented as a three-way array (box) (Figure 1.2). The columns and rows of
the two-way array are now ‘replaced’ by slices, like slicing a rectangular bread or cake in
different ways. This is shown in Figure 1.3. Each horizontal slice (also sometimes called
horizontal slab) holds the data for one object in a three-way array. Each vertical slice
holds data of one specific variable of one type (say absorbances at different wavelengths or
retention times) and the back-to-front slices the variables of the other type, say judges or
time slots. Other types of arrangements can exist as well. Some three-way arrays have two
types of object modes and only one type of variable mode, or even three objects modes and
no variable mode. An example is in multivariate image analysis where the data are three-
way arrays with x-coordinate, y-coordinate of the pixels as object ways and wavelength as
the variable way. See Figure 1.4. The whole discussion of what the nature of an object or
variable is may not be clear on all occasions. Basically an object is a physical or mental
construct for which information is sought. A variable provides means for obtaining that
information. For example, the physical health of persons might be of interest. Different
persons are therefore objects in this respect. The blood pressure is a variable, and measuring
the blood pressure of the different objects provides information of the health status of the
objects.

For a three-way array of liquid-chromatography–ultraviolet spectroscopy data, the sam-
ples are the objects whereas the absorbance at different retention times (of the chromatogra-
phy mode) and the wavelengths (of the ultraviolet spectroscopy mode) are the two variable
modes. Hence, absorbance is measured as a function of two properties: retention time and
wavelength. For a three-way array of food products × judges × sensory properties, the
judge mode can be an object mode or a variable mode. In a preliminary analysis the judges

Figure 1: Visualization of 2-way and 3-way arrays from Smilde, Bro, and Geladi (2004).
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Multiway Data Analysis Multiway Extensions

Talking about Tensors
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Figure 2.1. Pictorial representation of scalars, vectors, matrices and three-way arrays. The circle in
the matrix indicates the (1,1) element and in the three-way array indicates the (1,1,1) element; I, J
and K are the dimensions of the first, second and third mode, respectively.
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Figure 2.2. Pictorial representation of some vector and matrix manipulations. Note that for multipli-
cation no special symbol is used.
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Figure 2.3. Partitioning of a three-way array in slices (two-way arrays).

in parts was already introduced in Chapter 1: frontal, horizontal and vertical slices or
slabs. For convenience, the figure is repeated here (Figure 2.3). There are three different
kinds of slices for the three-way array X (I × J × K ). The first ones are the horizon-
tal slices: X1, . . . , Xi , . . . , XI ; all of size (J × K ). The second ones are the vertical
slices: X1, . . . , X j , . . . , XJ ; all of size (I × K ). The last ones are the frontal slices:
X1, . . . , Xk, . . . , XK ; all of size (I × J ). This shorthand notation is convenient but not al-
ways unambiguous, e.g. X2 might mean three different things. Such ambiguity is removed
in the text where necessary, e.g., using Xi=2 for the first mode. It is also possible to define
column, row and tube vectors in a three-way array. This is shown in Figure 2.4. In a three-way
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Figure 2.4. Definition of columns, rows and tubes in a three-way array.

array X (I × J × K ) there are J × K columns xjk (I × 1); I × K rows xik (J × 1) and
I × J tubes xij (K × 1). Again, ambiguities are resolved in the text where necessary.

2.3 Elementary Operations

Vec-operator

If A is an I × J matrix with columns a j ( j = 1, . . . , J ), then vec A is the IJ vector

vec A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1

a2

·
·
·

aJ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.1)

Hence, vec A is obtained by stacking all the column vectors of A underneath each other.

EXAMPLE 2.1
Vec-operation

An example of vec-operation on a matrix A is given here. The operation looks trivial
and is very simple, but it is useful for writing out complicated equations in a simpler
form.

vec A = vec
[

1 2
3 4

]

=

⎡

⎢

⎢

⎣

1
3
2
4

⎤

⎥

⎥

⎦

The vec-operator obeys some simple rules [Magnus & Neudecker 1988]:

(i) vec (a′) = vec a = a

(ii) vec (ab′) = b ⊗ a

(iii) vec (A)′ vec B = tr A′B; if A and B are of the same order
(2.2)

(iv) vec (ABC) = (C′ ⊗ A)vec B; if ABC exists

Figure 2: Visualization of three-way array partitions from Smilde, Bro, and Geladi (2004).
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Multiway Data Analysis Multiway Extensions

“The Covariation Chart” from Cattell (1952)
THE THREE BASIC FACTOR-ANALYTIC RESEARCH DESIGNS 501

(ATTRIBUTES);
VARIABLES

FIG. 1. THE COVARIATION CHART
series belonging to a single class. Thus in addition to the correlation of
tests js and j? for a series of people, as just illustrated for the classical R
technique, we can draw a channel to the left (Fig. 1) which represents a
correlation of js and ji upon a series of occasions k0 • • • kn, for one per-
son i0.

Or again, we can take two occasions, as shown at k? and k± and cor-
relate the series of people * ' „ • • • *'„ on a test ja, as labelled T technique.
This, incidentally, is a reliability coefficient, and a whole matrix of such
pairs of occasions could be factorized to find "factors in occasions (cir-
cumstances)" producing similar behavior on a test. Channels drawn in
any one plane amount to correctable series in which the same thing is
held constant. For the present we propose to refer only to rectangular
series drawn parallel to an edge, omitting the special problems of "stag-
gered" (lead and lag) correlations, etc.

THE UTILITIES OF THE BASIC DESIGNS
It may help to fix the above six designs in mind, for the purpose of

further abstract reasoning about them, if we expand briefly on the
special scientific utilities of each.

Figure 3: The first illustration of a three-way array.
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Multiway Data Analysis Multiway Extensions

Tucker’s (1966) Three-Way Factor Analysis Model

xijk =
PR

r=1
PS

s=1
PT

t=1 grstairbjsckt + eijkTENSOR DECOMPOSITIONS AND APPLICATIONS 475

A

B

X

G

C

�

Fig. 4.1 Tucker decomposition of a three-way array.

Elementwise, the Tucker decomposition in (4.1) is

xijk �
PX

p=1

QX

q=1

RX

r=1

gpqr aip bjq ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.

Here P , Q, and R are the number of components (i.e., columns) in the factor matrices
A, B, and C, respectively. If P, Q, R are smaller than I, J, K, the core tensor G can be
thought of as a compressed version of X. In some cases, the storage for the decomposed
version of the tensor can be significantly smaller than for the original tensor; see Bader
and Kolda [17]. The Tucker decomposition is illustrated in Figure 4.1.

Most fitting algorithms (discussed in section 4.2) assume that the factor matrices
are columnwise orthonormal, but this is not required. In fact, CP can be viewed as a
special case of Tucker where the core tensor is superdiagonal and P = Q = R.

The matricized forms (one per mode) of (4.1) are

X(1) � AG(1)(C � B)T,

X(2) � BG(2)(C � A)T,

X(3) � CG(3)(B � A)T.

These equations follow from the formulas in sections 2.4 and 2.6; see [134] for further
details.

Though it was introduced in the context of three modes, the Tucker model can
be and has been generalized to N -way tensors [113] as

(4.2) X = G ⇥1 A(1) ⇥2 A(2) · · · ⇥N A(N) = �G ;A(1),A(2), . . . ,A(N)�

or, elementwise, as

xi1i2···iN =
R1X

r1=1

R2X

r2=1

· · ·
RNX

rN=1

gr1r2···rN a(1)
i1r1

a(2)
i2r2

· · · a(N)
iN rN

for in = 1, . . . , In, n = 1, . . . , N.

The matricized version of (4.2) is

X(n) = A(n)G(n)(A
(N) � · · · � A(n+1) � A(n�1) � · · · � A(1))T.

Figure 4: Visualization of Tucker3 structure from Kolda and Bader (2009).
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Multiway Data Analysis Multiway Extensions

A Popular Model for Three-Way Data

xijk =
PR

r=1 airbjrckr + eijk

TENSOR DECOMPOSITIONS AND APPLICATIONS 463

Table 3.1 Some of the many names for the CP decomposition.

Name Proposed by
Polyadic form of a tensor Hitchcock, 1927 [105]
PARAFAC (parallel factors) Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition) Carroll and Chang, 1970 [38]
Topographic components model Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]

X

c1 c2

aR

b1

a1

b2

a2

bR

cR

� + + · · ·+

Fig. 3.1 CP decomposition of a three-way array.

The CP decomposition factorizes a tensor into a sum of component rank-one
tensors. For example, given a third-order tensor X 2 RI�J�K , we wish to write it as

(3.1) X �
RX

r=1

ar � br � cr,

where R is a positive integer and ar 2 RI , br 2 RJ , and cr 2 RK for r = 1, . . . , R.
Elementwise, (3.1) is written as

xijk �
RX

r=1

air bjr ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.

This is illustrated in Figure 3.1.
The factor matrices refer to the combination of the vectors from the rank-one

components, i.e., A =
�
a1 a2 · · · aR

�
and likewise for B and C. Using these

definitions, (3.1) may be written in matricized form (one per mode; see section 2.4):

X(1) � A(C � B)T,(3.2)

X(2) � B(C � A)T,

X(3) � C(B � A)T.

Recall that � denotes the Khatri–Rao product from section 2.6. The three-way model
is sometimes written in terms of the frontal slices of X (see Figure 2.2):

Xk � AD(k)BT, where D(k) � diag(ck:) for k = 1, . . . , K.

Analogous equations can be written for the horizontal and lateral slices. In general,
though, slicewise expressions do not easily extend beyond three dimensions. Following
Kolda [134] (see also Kruskal [141]), the CP model can be concisely expressed as

X � �A,B,C� �
RX

r=1

ar � br � cr.

Figure 5: Visualization of trilinear structure from Kolda and Bader (2009).
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Multiway Data Analysis Multiway Extensions

Harshman’s Parafac and Parafac2 Models

Note that the Parafac model (Harshman, 1970) can be written as

Xk = ACkB

0 + Ek

where Xk = {xij(k)}I⇥J , Ck = diag(ck1, . . . , ckR), and Ek = {eij(k)}I⇥J .

The Parafac2 model (Harshman, 1972) is more general and can be written as

Xk = AkCkB

0 + Ek subject to A

0
kAk = �

where Xk = {xij(k)}Ik⇥J , Ek = {eij(k)}Ik⇥J , and � = A

0
kAk is the common

Mode A cross-product matrix.
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Multiway Data Analysis Multiway Extensions

Intrinsic Axis Property of Parafac and Parafac2

Parafac and Parafac2 can provide essentially unique solutions.
No rotational indeterminacy (unlike PCA, ICA, FA, Tucker, etc.)
Data determines factor configuration and orientation

Parafac uniqueness: If (A, B, Ck) and (Ã, B̃, C̃k) have the same fit, then:
Ã = APSa and B̃ = BPSb and C̃k = P

0
CkPSc

P is an R⇥ R permutation matrix
Sa, Sb, and Sc are diagonal and satisfy SaSbSc = IR

Parafac2 uniqueness: If (Ak, B, Ck) and (Ãk, B̃, C̃k) have the same fit, then:
Ãk = zkAkPSa and B̃ = BPSb and C̃k = zkP

0
CkPSc

P and {Sa, Sb, Sc} have the same interpretation
zk 2 {�1, 1} is due to the special sign indeterminacy (see Helwig, 2013)
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Multiway Data Analysis Multiway Extensions

Simultaneous Component Analysis Models

482 TAMARA G. KOLDA AND BRETT W. BADER

Xk Uk
VT

Sk

�

Fig. 5.1 Illustration of PARAFAC2.

PARAFAC2 is not unique without additional constraints. For example, if T is an
R ⇥R nonsingular matrix and Fk is an R ⇥R diagonal matrix for k = 1, . . . , K, then

UkSkV
T = (UkSkT

�1F�1
k )Fk(VTT)T = GkFkW

T

is an equally valid decomposition. Consequently, to improve the uniqueness proper-
ties, Harshman [92] imposed the constraint that the cross product UT

kUk is constant
over k, i.e., � = UT

kUk for k = 1, . . . , K. Thus, with this constraint, PARAFAC2 can
be expressed as

(5.3) Xk � QkHSkV
T, k = 1, . . . , K.

Here, Uk = QkH, where Qk is of size Ik ⇥ R and constrained to be orthonormal and
H is an R ⇥ R matrix that does not vary by slice. The cross-product constraint is
enforced implicitly since

UT
kUk = HTQT

kQkH = HTH = �.

5.2.1. Computing PARAFAC2. Algorithms for fitting PARAFAC2 either fit the
cross-products of the covariance matrices [92, 118] (indirect fitting) or fit (5.3) to the
original data itself [126] (direct fitting). The indirect fitting approach finds V, Sk,
and � corresponding to the cross-products

XT
kXk � VSk�SkV

T, k = 1, . . . , K.

This can be done by using a DEDICOM decomposition (see section 5.4) with positive
semidefinite constraints on �. The direct fitting approach solves for the unknowns
in a two-step iterative approach by first finding Qk from a minimization using the
SVD and then updating the remaining unknowns, H, Sk, and V, using one step of a
CP-ALS procedure. See [126] for details.

PARAFAC2 is (essentially) unique under certain conditions pertaining to the
number of matrices (K), the positive definiteness of �, full column rank of A, and
nonsingularity of Sk [100, 215, 126].

5.2.2. PARAFAC2 Applications. Bro, Andersson, and Kiers [31] use PARAFAC2
to handle time shifts in resolving chromatographic data with spectral detection. In
this application, the first mode corresponds to elution time, the second mode to wave-
length, and the third mode to samples. The PARAFAC2 model does not assume paral-
lel proportional elution profiles but rather that the matrix of elution profiles preserves

Figure 6: Visualization of SCA structure from Kolda and Bader (2009).

Four versions of SCA which assume different cross-product structures for
Mode A weights (Timmerman & Kiers, 2003).

Nathaniel E. Helwig (U of Minnesota) Functional and Structural Parafac2 Constraints M3 Talk – May 23, 2017 : Slide 13



Multiway Data Analysis Multiway Extensions

Alternating Least Squares Estimation

Weight matrices are typically estimated via alternating least squares (ALS):
1 Initialize all weight matrices
2 Update each weight matrix given others
3 Repeat Step 2 until convergence

Above algorithm will converge to a locally optimal solution, which depends
on the weight matrices initialized in Step 1 of the ALS algorithm.

Should try many random starts of the above ALS algorithm to increase chance
of obtaining the globally optimal solution.
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Multiway R Package
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Multiway R Package Overview of Package

Fitting Multiway Models in R

multiway (Helwig, 2017) is an R package (R Core Team, 2017) for fitting
multiway models via ALS with optional constraints.

Fit models include:
Individual Differences Scaling (indscal)
Parallel Factor Analysis 1 (parafac)
Parallel Factor Analysis 2 (parafac2)
Simultaneous Component Analysis (sca)
Tucker Factor Analysis (tucker)

Parafac and Tucker models are implemented for 3-way and 4-way data.
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Multiway R Package Overview of Package

Example Syntax for Fitting Parafac Model

> # fit Parafac model (unconstrained)

> pfac <- parafac(X, nfac=3)

> pfac

3-way Parafac with 3 factors

Constraints:

A B C

none none none

Fit Information:

SSE = 950.1628

R^2 = 0.5150726

GCV = 0.2078407

EDF = 219

Converged: TRUE (17 iterations)
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Multiway R Package Constraint Options

Flexible Parafac and Parafac2 Fitting

parafac and parafac2 allow the user to:
Fix a mode’s weights using fixed arguments
Constrain structure of a mode’s weights using struc arguments

const argument allows user to set constraints for each mode’s weights:

(0) Unconstrained (default)
(1) Orthogonal
(2) Non-negative
(3) Unimodal
(4) Monotonic
(5) Periodic
(6) Smooth

> # fit Parafac model (non-negativity on Modes B and C)

> pfacNN <- parafac(X, nfac=3, const=c(0,2,2))

> pfacNN

3-way Parafac with 3 factors

Constraints:

A B C

none nonnegative nonnegative

Fit Information:

SSE = 950.0538

R^2 = 0.5151283

GCV = 0.2078168

EDF = 219

Converged: TRUE (11 iterations)
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Multiway Constraints
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Multiway Constraints Functional Constraints

Multiway Models with Functional Weights

Parafac Model: Xk = ACkB

0 + Ek for k = 1, . . . , K

Assume that Mode A is the functional mode:

A =

0

BBB@

⌘1(1) ⌘2(1) · · · ⌘R(1)
⌘1(2) ⌘2(2) · · · ⌘R(2)

...
...

. . .
...

⌘1(I) ⌘2(I) · · · ⌘R(I)

1

CCCA

where ⌘r(·) is the r-th component function.

Letting {f1, . . . , f⌫} denote a set of known basis functions

⌘r(i) =
⌫X

`=1

f`(i)↵`r

where ↵r = (↵1r, . . . , ↵`r)0 are the unknown basis function coefficients.
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Multiway Constraints Functional Constraints

Polynomial Functions

If ⌘r(·) is a polynomial function of degree ⌫ � 1, then

⌘r(i) =
⌫X

`=1

i`�1↵`r

and the Parafac model can be written as

Xk = ACkB

0 + Ek = F↵CkB

0 + Ek

where

F =

0

BBB@

1 i i2 · · · i⌫�1

1 i i2 · · · i⌫�1

...
...

...
. . .

...
1 i i2 · · · i⌫�1

1

CCCA
and ↵ =

0

BBB@

↵11 ↵12 · · · ↵1R

↵21 ↵22 · · · ↵2R
...

...
. . .

...
↵⌫1 ↵⌫2 · · · ↵⌫R

1

CCCA
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Multiway Constraints Functional Constraints

Polynomial Splines

For smooth functions of an unknown form, we can use polynomial splines.
Piecewise polynomial functions that join at “knots”
Formed by taking a linear combination of basis functions: A = F↵
Can adjust polynomial degree and degrees of freedom (# of knots)
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Figure 7: Cubic B-spline basis with 5 (left) and 7 (right) degrees of freedom.
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Multiway Constraints Functional Constraints

Benefit of Functional Constraints
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Figure 8: Results
from fitting the 3-way
Parafac model to a
50 ⇥ 20 ⇥ 10 tensor
with functional Mode
A and R = 2 factors.
SNR = kX�Ek2/kEk2
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Multiway Constraints Functional Constraints

Functional Constraints in Parafac2

Parafac2 Model: Xk = AkCkB

0 + Ek subject to A

0
kAk = � for all k

Assume that Mode A is the functional mode:

Ak =

0

BBB@

⌘1k(1) ⌘2k(1) · · · ⌘Rk(1)
⌘1k(2) ⌘2k(2) · · · ⌘Rk(2)

...
...

. . .
...

⌘1k(Ik) ⌘2k(Ik) · · · ⌘Rk(Ik)

1

CCCA

where ⌘rk(·) is the r-th component function for the k-th level of Mode C.

Need component functions to satisfy:
PIk

i=1 ⌘rk(i)⌘sk(i) = �rs for all k.
Ak = Fk↵k subject to ↵0

kF

0
kFk↵k = �

Modified ALS algorithm to update ↵k matrices (see Helwig, 2016).
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Multiway Constraints Structural Constraints

Multiway Models with Structured Weights

Parafac Model: Xk = ACkB

0 + Ek for k = 1, . . . , K

Suppose B = {bjr}J⇥R where bjr is weight of j-th variable on r-th factor, and
each variable is an indicator for one or more factors.

Need to constrain the weights such that bjr = 0 if the j-th observed variable is
not an indicator for the r-th factor.

Constrained columnwise update of B in ALS algorithm (see Helwig, 2016).
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Multiway Constraints Structural Constraints

Example Structures for Multiway Weights

Table 1: Possible weight structures with R = 2 factors.

Unstructured Discrete Overlapping
r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

j = 1 ⇤ ⇤ ⇤ 0 ⇤ 0
j = 2 ⇤ ⇤ ⇤ 0 ⇤ 0
j = 3 ⇤ ⇤ ⇤ 0 ⇤ ⇤
j = 4 ⇤ ⇤ 0 ⇤ ⇤ ⇤
j = 5 ⇤ ⇤ 0 ⇤ 0 ⇤
j = 6 ⇤ ⇤ 0 ⇤ 0 ⇤
Note. An entry of “⇤” denotes a non-zero factor loading.

The classic ALS algorithm corresponds to the “Unstructured” weights.
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Simulation Study

Simulation Study
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Simulation Study Design and Analyses

Parafac2 Simulation Design

Generate data from Parafac2 model with. . .

Ik = 44 measurements on J = 12 variables from K = 51 units of observation
Variables 1–4 are indicators for factor 1
Variables 5–8 are indicators for factor 2
Variables 9–12 are indicators for factor 3

Latent functions have ⌫ = 10 degrees of freedom and crossproduct matrix

� =

0

@
1 0.6 �0.3

0.6 1 �0.3
�0.3 �0.3 1

1

A
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Simulation Study Design and Analyses

Parafac2 Simulation Analyses

Compare four different algorithms:
1 ALS unconstrained
2 ALS with only functional constraints
3 ALS with only structural constraints
4 ALS with both functional and structural constraints

Examine four different SNRs: {1/2, 1, 2, 4}
SNR = kX� Ek2/kEk2

Use 100 random starts of each algorithm in each condition.
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Simulation Study Results

Parafac2 Simulation Results: Parameter Recovery
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Simulation Study Results

Parafac2 Simulation Results: Algorithm Convergence
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Figure 10: Number of iterations (left) and runtime (right) of the ALS algorithm.
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Simulation Study Results

Summary of Simulation Findings

Parameter Recovery:
Functional constraints improve recovery of Mode A weights
Structural constraints improve recovery of Mode B weights

Algorithm Convergence:
Functional constraints have little effect on convergence
Structural constraints lead to faster convergence

Functional and structural constraints combined show improvements over
using either method alone.
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United States Alcohol Consumption Example

United States Alcohol

Consumption Example
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United States Alcohol Consumption Example Data and Analyses

NIAAA Alcohol Consumption Data from 1970–2013

Yearly consumption data from the 50 United States and the District of
Columbia for three types of alcoholic beverages: beer, spirits, and wine.

> library(multiway)

> data("USalcohol")

> head(USalcohol)

year state region type beverage ethanol pop14 pop21

1 1970 Alabama South Spirits 3863 1738.35 2499 2020

2 1970 Alabama South Wine 1412 225.92 2499 2020

3 1970 Alabama South Beer 33098 1489.41 2499 2020

5 1970 Alaska West Spirits 945 425.25 205 165

6 1970 Alaska West Wine 470 75.20 205 165

7 1970 Alaska West Beer 5372 241.74 205 165

Data were obtained from the National Institute on Alcohol Abuse and
Alcoholism (NIAAA) Surveillance Report #102⇤

⇤
https://pubs.niaaa.nih.gov/publications/surveillance102/pcyr19702013.txt
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United States Alcohol Consumption Example Data and Analyses

Data Tensor: Years ⇥ Variables ⇥ States

Create a tensor of the form 44 years ⇥ 6 variables ⇥ 51 states
Years: 1970 – 2013
Variables: Beer (Bev. & Eth.), Spirits (Bev. & Eth.), Wine (Bev. & Eth.)
States: 50 United States and District of Columbia

Bev. = gallons of beverage consumed per capita age 21+
Eth. = gallons of ethanol consumed per capita age 21+

> Xbev <- with(USalcohol,

+ tapply(beverage/pop21, list(year, type, state), c))

> Xeth <- with(USalcohol,

+ tapply(ethanol/pop21, list(year, type, state), c))

> X <- array(0, dim=c(44, 6, 51))

> X[, c(1,3,5) ,] <- Xbev

> X[, c(2,4,6) ,] <- Xeth
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United States Alcohol Consumption Example Data and Analyses

Assumed Model for Data Tensor

Xk denotes the 44 time points ⇥ 6 variables data matrix for the k-th state.

Assumed model for the observed data matrices:

Xk = 1µ0
k + AkCkB

0⌃ + Ek⌃ subject to A

0
kAk = �

where
µk is the k-th state’s unknown mean vector
⌃ = diag(�1, . . . , �J) is an unknown scaling matrix with �j > 0
Other terms are Parafac2 weight matrices
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United States Alcohol Consumption Example Data and Analyses

Preprocessing the Data Tensor

Before fitting the Parafac2 model, we need to preprocess the data:
1 Center variables across time w/in states (to remove µk)
2 Scale variables across time and states (to remove ⌃)

> # center each variable across time (within state)

> Xc <- ncenter(X, mode=1)

> # scale each variable (across time and states)

> Xs <- nscale(Xc, mode=2, ssnew=44

*

51)

Now the centered and scaled data tensor Xs is ready for Parafac2 fitting.
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United States Alcohol Consumption Example Data and Analyses

Plot the Subtracted Means
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Figure 11: Mean gallons of ethanol consumed per capita for each beverage type.
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United States Alcohol Consumption Example Data and Analyses

Plot the Standardized Data
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Figure 12: Standardized data for a sample of six states.
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United States Alcohol Consumption Example Data and Analyses

Create the Structure Matrix

Create the structure constraint matrix (for the Bstruc argument):

> Bstruc <- matrix(c(T, T, F, F, F, F,

+ F, F, T, T, F, F,

+ F, F, F, F, T, T), nrow=6, ncol=3)

> rownames(Bstruc) <- dnames[[2]]

> colnames(Bstruc) <- paste0("factor",1:3)

> Bstruc

factor1 factor2 factor3

Beer.bev TRUE FALSE FALSE

Beer.eth TRUE FALSE FALSE

Spirits.bev FALSE TRUE FALSE

Spirits.eth FALSE TRUE FALSE

Wine.bev FALSE FALSE TRUE

Wine.eth FALSE FALSE TRUE
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United States Alcohol Consumption Example Data and Analyses

Fitting the Parafac Model

Start by fitting the Parafac model to the data:
> set.seed(1)

> pfac <- parafac(Xs, nfac=3, nstart=100, const=c(6,0,0), Bstruc=Bstruc)

> pfac

3-way Parafac with 3 factors

Constraints:

A B C

smooth structure none

Fit Information:

SSE = 3583.515

R^2 = 0.7338447

GCV = 0.2731702

EDF = 174

Converged: TRUE (4 iterations)
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United States Alcohol Consumption Example Data and Analyses

Fitting the Parafac2 Model

Now fit the Parafac2 model to the data:
> set.seed(1)

> pfac2 <- parafac2(Xs, nfac=3, nstart=100, const=c(6,0,0), Bstruc=Bstruc)

> pfac2

3-way Parafac2 with 3 factors

Constraints:

A B C

smooth structure none

Fit Information:

SSE = 1939.451

R^2 = 0.8559528

GCV = 0.1660572

EDF = 924

Converged: TRUE (9 iterations)
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United States Alcohol Consumption Example Results

Average Parafac and Parafac2 Functional Factor Scores

Parafac model essentially captures the average pattern across states.
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Figure 13: Average (across states) factor scores for Parafac and Parafac2 models.
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Parafac2 Functional Factor Scores
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Figure 14: Parafac2 functional factor scores for a sample of six states.
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Check Factor Correlations and Loadings

> # correlation matrix

> round(pfac2$Phi, 3)

factor1 factor2 factor3

factor1 1.000 0.643 0.184

factor2 0.643 1.000 0.420

factor3 0.184 0.420 1.000

> # factor loadings

> round(pfac2$B, 3)

factor1 factor2 factor3

Beer.bev 1 0.000 0.000

Beer.eth 1 0.000 0.000

Spirits.bev 0 1.000 0.000

Spirits.eth 0 0.997 0.000

Wine.bev 0 0.000 1.000

Wine.eth 0 0.000 0.984
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Parafac2 Mode C Weights (Factor Score SDs)
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Figure 15: Absolute value of Parafac2 Mode C weights, which are factor score SDs.
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Parafac2 Predicted Gallons of Ethanol Consumed per Capita
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Figure 16: Parafac2 predicted gallons of ethanol consumed per capita for each state.
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United States Alcohol Consumption Example Results

Summary of Results

Beer and spirits consumption is decreasing; wine consumption is increasing.
US consumes most of its alcohol in the form of beer
Trends suggest wine is becoming more popular in many states

State-specific longitudinal differences in alcohol consumption trends exist.
Some states show little variation in their consumption
Other states have large fluctuations in particular beverage types

Parafac2 is a powerful model for analyzing multivariate longitudinal data.
Constraints can improve estimation/interpretation
Flexible estimates of individual differences in latent trends
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