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.
[I]t is clear that it is not possible to think about learning from
experience and acting on it without coming to terms with
Bayes’ theorem. - Jerome Cornfield
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Introduction to Workshop

Bayesian statistics has long been overlooked in the quantitative
methods training of social scientists.

Typically, the only introduction that a student might have to
Bayesian ideas is a brief overview of Bayes’ theorem while
studying probability in an introductory statistics class.

1 Until recently, it was not feasible to conduct statistical modeling
from a Bayesian perspective owing to its complexity and lack of
availability.

2 Bayesian statistics represents a powerful alternative to frequentist
(classical) statistics, and is therefore, controversial.

Recently, there has been a renaissance in the development and
application of Bayesian statistical methods, owing mostly to
developments of powerful statistical software tools that render
the specification and estimation of complex models feasible
from a Bayesian perspective.
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Paradigm Differences

For frequentists, the basic idea is that probability is represented
by the model of long run frequency.

Frequentist probability underlies the Fisher and
Neyman-Pearson schools of statistics – the conventional
methods of statistics we most often use.

The frequentist formulation rests on the idea of equally probable
and stochastically independent events

The physical representation is the coin toss, which relates to
the idea of a very large (actually infinite) number of repeated
experiments.
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The entire structure of Neyman - Pearson hypothesis testing
and Fisherian statistics (together referred to as the frequentist
school) is based on frequentist probability.

Our conclusions regarding the null and alternative hypotheses
presuppose the idea that we could conduct the same
experiment an infinite number of times.

Our interpretation of confidence intervals also assumes a fixed
parameter and CIs that vary over an infinitely large number of
identical experiments.
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But there is another view of probability as subjective belief.

The physical model in this case is that of the “bet”.

Consider the situation of betting on who will win the the World
Cup (or the World Series).

Here, probability is not based on an infinite number of
repeatable and stochastically independent events, but rather on
how much knowledge you have and how much you are willing
to bet.

Subjective probability allows one to address questions such as
“what is the probability that my team will win the World Cup?”
Relative frequency supplies information, but it is not the same
as probability and can be quite different.

This notion of subjective probability underlies Bayesian
statistics.
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Bayes’ Theorem

Consider the joint probability of two events, Y and X, for
example observing lung cancer and smoking jointly.

The joint probability can be written as

p(cancer, smoking) = p(cancer|smoking)p(smoking) (1)

Similarly

p(smoking, cancer) = p(smoking|cancer)p(cancer) (2)
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Because these are symmetric, we can set them equal to each
other to obtain the following

p(cancer|smoking)p(smoking) = p(smoking|cancer)p(cancer)
(3)

.

p(cancer|smoking) =
p(smoking|cancer)p(cancer)

p(smoking)
(4)

The inverse probability theorem (Bayes’ theorem) states
.

p(smoking|cancer) =
p(cancer|smoking)p(smoking)

p(cancer)
(5)
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Why do we care?

Because this is how you could go from the probability of having
cancer given that the patient smokes, to the probability that the
patient smokes given that he/she has cancer.

We simply need the marginal probability of smoking and the
marginal probability of cancer (”base rates” or what we will call
prior probabilities).
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Statistical Elements of Bayes’ Theorem

What is the role of Bayes’ theorem for statistical inference?

Denote by Y a random variable that takes on a realized value y.
For example, a person’s socio-economic status could be
considered a random variable taking on a very large set of
possible values.

This is the random variable Y . Once the person identifies
his/her socioeconomic status, the random variable Y is now
realized as y.

Because Y is unobserved and random, we need to specify a
probability model to explain how we obtained the actual data
values y.
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Next, denote by θ a parameter that we believe characterizes the
probability model of interest.

The parameter θ can be a scalar, such as the mean or the
variance of a distribution, or it can be vector-valued, such as a
set of regression coefficients in regression analysis or factor
loadings in factor analysis.

We are concerned with determining the probability of observing
y given the unknown parameters θ, which we write as p(y|θ).

In statistical inference, the goal is to obtain estimates of the
unknown parameters given the data.

This is expressed as the likelihood of the parameters given the
data, often denoted as L(θ|y).
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The key difference between Bayesian statistical inference and
frequentist statistical inference concerns the nature of the
unknown parameters θ.

In the frequentist tradition, the assumption is that θ is unknown,
but has a fixed value that we wish to estimate.

In Bayesian statistical inference, θ is considered unknown and
random, possessing a probability distribution that reflects our
uncertainty about the true value of θ.

Because both the observed data y and the parameters θ are
assumed random, we can model the joint probability of the
parameters and the data as a function of the conditional
distribution of the data given the parameters, and the prior
distribution of the parameters.
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More formally,
p(θ, y) = p(y|θ)p(θ). (6)

where p(θ, y) is the joint distribution of the parameters and the
data. Following Bayes’ theorem described earlier, we obtain

Bayes’ Theorem

p(θ|y) =
p(θ, y)

p(y)
=
p(y|θ)p(θ)
p(y)

, (7)

where p(θ|y) is referred to as the posterior distribution of the
parameters θ given the observed data y.
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From equation (7) the posterior distribution of θ give y is equal
to the data distribution p(y|θ) times the prior distribution of the
parameters p(θ) normalized by p(y) so that the posterior
distribution sums (or integrates) to one.

For discrete variables

p(y) =
∑
θ

p(y|θ)p(θ), (8)

and for continuous variables

p(y) =

∫
θ

p(y|θ)p(θ)dθ, (9)
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Notice that p(y) does not involve model parameters, so we can
omit the term and obtain the unnormalized posterior distribution

.

p(θ|y) ∝ p(y|θ)p(θ). (10)

When expressed in terms of the unknown parameters θ for fixed
values of y, the term p(y|θ) is the likelihood L(θ|y), which we
defined earlier. Thus, equation (10) can be re-written as

.

p(θ|y) ∝ L(θ|y)p(θ). (11)
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Equations (10) and (11) represents the core of Bayesian
statistical inference and is what separates Bayesian statistics
from frequentist statistics.

Equation (11) states that our uncertainty regarding the
parameters of our model, as expressed by the prior density
p(θ), is weighted by the actual data p(y|θ) (or equivalently,
L(θ|y)), yielding an updated estimate of our uncertainty, as
expressed in the posterior density p(θ|y).
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The likelihood L(θ|y) is extremely important in Bayesian
inference.

It is the device that we use to summarize the data.

The likelihood principle states that all of the information in a
sample is contained in the likelihood function, and that this
function is indexed by model parameters θ.

Notice that there is no appeal to repeated sampling. All that
matters is the sample in our hand.
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Exchangeability

It is common in statistics to invoke the assumption that the data
y1, y2, . . . yn are independently and identically distributed – often
referred to as the i.i.d assumption.

Bayesians invoke the deeper notion of exchangeability to
produce likelihoods and address the issue of independence.

Exchangeability arises from de Finetti’s Representation
Theorem and implies that the subscripts of a vector of data, e.g.
y1, y2, . . . yn do not carry information that is relevant to
describing the probability distribution of the data.

In other words, the joint distribution of the data, f(y1, y2, . . . yn)
is invariant to permutations of the subscripts.
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Consider the response that student i (i = 1, 2, . . . , 10) would
make to the question “My teacher is supportive”, where

yi =

{
1, if student i agrees
0, if student i disagrees

(12)

Next, consider three patterns of responses by 10 randomly
selected students

p(1, 0, 1, 1, 0, 1, 0, 1, 0, 0) (13a)
p(1, 1, 0, 0, 1, 1, 1, 0, 0, 0) (13b)
p(1, 0, 0, 0, 0, 0, 1, 1, 1, 1) (13c)

Note that there are actually 210 possible response patterns.
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If our task were to assign probabilities to all possible outcomes,
this could become prohibitively difficult.

However, suppose we now assume that student responses are
independent of one another.

Exchangeability implies that only the proportion of agreements
matter, not the location of those agreements in the vector.

Given that the sequences are the same length n, we can
exchange the response of student i for student j, the without
changing our belief about the probability model that generated
that sequence.
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Exchangeability means that we believe that there is a
parameter θ that generates the observed data via a stochastic
model and that we can describe that parameter without
reference to the particular data at hand.

The fact that we can describe θ without reference to a particular
set of data is, in fact, what is implied by the idea of a prior
distribution.

The assumption of exchangeability is weaker than the
assumption of independence.

Independence implies that p(A|B) = p(A). If these two events
are independent then they are exchangeable – however,
exchangeability does not imply independence.

A simple example from Suppes (1986) in which an
exchangeable process is not independent is the case of
drawing balls from an urn without replacement
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The Prior Distribution

Why do we specify a prior distribution on the parameters?

The key philosophical reason concerns our view that progress
in science generally comes about by learning from previous
research findings and incorporating information from these
findings into our present studies.

The information gleaned from previous research is almost
always incorporated into our choice of designs, variables to be
measured, or conceptual diagrams to be drawn.

Bayesian statistical inference simply requires that our prior
beliefs be made explicit, but then moderates our prior beliefs by
the actual data in hand.

Moderation of our prior beliefs by the data in hand is the key
meaning behind equations (10) and (11).
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But how do we choose a prior?

The choice of a prior is based on how much information we
believe we have prior to the data collection and how accurate we
believe that information to be.

This issue has also been discussed by Leamer (1983), who
orders priors on the basis of degree of confidence. Leamer’s
hierarchy of confidence is as follow: truths (e.g. axioms) > facts
(data) > opinions (e.g. expert judgement) > conventions (e.g.
pre-set alpha levels).

The strength of Bayesian inference lies precisely in its ability to
incorporate existing knowledge into statistical specifications.
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Non-informative priors

In some cases we may not be in possession of enough prior
information to aid in drawing posterior inferences.

From a Bayesian perspective, this lack of information is still
important to consider and incorporate into our statistical
specifications.

In other words, it is equally important to quantify our ignorance
as it is to quantify our cumulative understanding of a problem at
hand.

The standard approach to quantifying our ignorance is to
incorporate a non-informative prior into our specification.

Non-informative priors are also referred to as vague or diffuse
priors.
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Perhaps the most sensible non-informative prior distribution to
use in this case is the uniform distribution U(α, β) over some
sensible range of values from α to β.

In this case, the uniform distribution essential indicates that we
believe that the value of our parameter of interest lies in range
β−α and that all values have equal probability.

Care must be taken in the choice of the range of values over the
uniform distribution. For example, a U [−∞,∞] is an improper
prior distribution insofar as it does not integrate to 1.0 as
required of probability distributions.
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Informative-Conjugate Priors

It may be the case that some information can be brought to
bear on a problem and be systematically incorporated into the
prior distribution.

Such “subjective” priors are called informative.

One type of informative prior is based on the notion of a
conjugate distribution.

A conjugate prior distribution is one that, when combined with
the likelihood function yields a posterior that is in the same
distributional family as the prior distribution.
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Conjugate Priors for Some Common
Distributions

Data Distribution Conjugate Prior

The normal distribution The normal distribution or Uniform Distribution

The Poisson distribution The gamma distribution

The binomial distribution The Beta Distribution

The multinomial distribution The Dirichlet Distribution
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Figure 1 : Normal distribution, mean unknown/variance known with varying
conjugate priors
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Figure 2 : Poisson distribution with varying gamma-density priors
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Schools of Thought

A critically important component of applied statistics is
hypothesis testing.

The approach most widely used in the social and behavioral
sciences is the Neyman-Pearson approach.

An interesting aspect of the Neyman-Pearson approach to
hypothesis testing is that students (as well as many seasoned
researchers) appear to have a very difficult time grasping its
principles.

Gigerenzer (2004) argued that much of the difficulty in grasping
frequentist hypothesis testing lies in the conflation of Fisherian
hypothesis testing and the Neyman-Pearson approach to
hypothesis testing.
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Fisher’s early approach to hypothesis testing required
specifying only the null hypothesis.

A conventional significance level is chosen (usually the 5%
level).

Once the test is conducted, the result is either significant
(p < .05) or it is not (p > .05).

If the resulting test is significant, then the null hypothesis is
rejected. However, if the resulting test is not significant, then no
conclusion can be drawn.

Fisher’s approach was based on looking at how data could
inform evidence for a hypothesis.
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The Neyman and Pearson approach requires that two
hypotheses be specified – the null and alternative hypothesis –
and is designed to inform specific sets of actions. It’s about
making a choice, not about evidence against a hypothesis.

By specifying two hypotheses, one can compute a desired
tradeoff between two types of errors: Type I errors (α) and Type
II errors (β)

The goal is not to assess the evidence against a hypothesis (or
model) taken as true. Rather, it is whether the data provide
support for taking one of two competing sets of actions.

In fact, prior belief as well as interest in “the truth” of the
hypothesis is irrelevant – only a decision that has a low
probability of being the wrong decision is relevant.
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The conflation of Fisherian and Neyman-Pearson hypothesis
testing lies in the use and interpretation of the p-value.

In Fisher’s paradigm, the p-value is a matter of convention with
the resulting outcome being based on the data.

In the Neyman-Pearson paradigm, α and β are determined
prior to the experiment being conducted and refer to a
consideration of the cost of making one or the other error.

Indeed, in the Neyman-Pearson approach, the problem is one
of finding a balance between α, power, and sample size.

The Neyman-Pearson approach is best suited for experimental
planning. Sometimes, it is used this way, followed by the
Fisherian approach for judging evidence. But, these two ideas
may be incompatible (Royall, 1997).
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However, this balance is virtually always ignored and α = 0.05 is
used.

The point is that the p-value and α are not the same thing.

The confusion between these two concepts is made worse by
the fact that statistical software packages often report a number
of p-values that a researcher can choose from after having
conducted the analysis (e.g., .001, .01, .05).

This can lead a researcher to set α ahead of time, as per the
Neyman-Pearson school, but then communicate a different level
of “significance” after running the test.

The conventional practice is even worse than described, as
evidenced by nonsensical phrases such as results “trending
toward significance”.
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Misunderstanding the Fisher or Neyman-Pearson framework to
hypothesis testing and/or poor methodological practice is not a
criticism of the approach per se.

However, from the frequentist point of view, a criticism often
leveled at the Bayesian approach to statistical inference is that it
is “subjective”, while the frequentist approach is “objective”.

The objection to “subjectivism” is somewhat perplexing insofar
as frequentist hypothesis testing also rests on assumptions that
do not involve data.

The simplest and most ubiquitous example is the choice of
variables in a regression equation.
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Point Summaries of the Posterior Distribution

Hypothesis testing begins first by obtaining summaries of
relevant distributions.

The difference between Bayesian and frequentist statistics is
that with Bayesian statistics we wish to obtain summaries of the
posterior distribution.

The expressions for the mean and variance of the posterior
distribution come from expressions for the mean and variance
of conditional distributions generally.
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For the continuous case, the mean of the posterior distribution
of θ given the data y is referred to as the expected a posteriori
or EAP estimate and can be written as

E(θ|y) =

+∞∫
−∞

θp(θ|y)dθ. (14)

Similarly, the variance of posterior distribution of θ given y can
be obtained as

var(θ|y) = E[(θ − E[(θ|y])2|y),

=

+∞∫
−∞

(θ − E[θ|y])2p(θ|y)dθ. (15)
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Another common summary measure would be the mode of the
posterior distribution – referred to as the maximum a posteriori
(MAP) estimate.

The MAP begins with the idea of maximum likelihood
estimation. The MAP can be written as

.

θ̂MAP = arg max
θ
L(θ|y)p(θ). (16)

where arg maxθ stands for “maximizing the value of the
argument”.
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Posterior Probability Intervals

In addition to point summary measures, it may also be desirable
to provide interval summaries of the posterior distribution.

Recall that the frequentist confidence interval requires twe
imagine an infinite number of repeated samples from the
population characterized by µ.

For any given sample, we can obtain the sample mean x̄ and then
form a 100(1− α)% confidence interval.

The correct frequentist interpretation is that 100(1− α)% of the
confidence intervals formed this way capture the true parameter µ
under the null hypothesis. Notice that the probability that the
parameter is in the interval is either zero or one.
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Posterior Probability Intervals (cont’d)

In contrast, the Bayesian framework assumes that a parameter
has a probability distribution.

Sampling from the posterior distribution of the model parameters,
we can obtain its quantiles. From the quantiles, we can directly
obtain the probability that a parameter lies within a particular
interval.

So, a 95% posterior probability interval would mean that the
probability that the parameter lies in the interval is 0.95.

Notice that this is entirely different from the frequentist
interpretation, and arguably aligns with common sense.
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Bayesian Model Building

The frequentist and Bayesian goals of model building are the
same.

First, a researcher will specify an initial model relying on a
lesser or greater degree of prior theoretical knowledge.

Second, these models will be fit to data obtained from a sample
from some relevant population.

Third, an evaluation of the quality of the models will be
undertaken, examining where each model might deviate from
the data, as well as assessing any possible model violations. At
this point, model respecification may come into play.

Finally, depending on the goals of the research, the “best
model” will be chosen for some purpose.
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Despite these similarities there are important differences.

A major difference between the Bayesian and frequentist goals
of model building lie in the model specification stage.

Because the Bayesian perspective explicitly incorporates
uncertainty regarding model parameters in terms of probability
distributions, the first phase of modeling building will require the
specification of a full probability model for the data and the
parameters of the model, where the latter requires the
specification of the prior distribution.

The notion of model fit, therefore, implies that the full probability
model fits the data. Lack of model fit may well be due to
incorrect specification of likelihood, the prior distribution, or
both.
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Another difference between the Bayesian and frequentist goals
of model building relates to the justification for choosing a
particular model among a set of competing models.

Model building and model choice in the frequentist domain is
based primarily on choosing the model that best fits the data.

This has certainly been the key motivation for model building,
respecification, and model choice in the context of structural
equation modeling (Kaplan 2009).

In the Bayesian domain, the choice among a set of competing
models is based on which model provides the best posterior
predictions.

That is, the choice among a set of competing models should be
based on which model will best predict what actually happened.
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Posterior Predictive Checking

A very natural way of evaluating the quality of a model is to
examine how well the model fits the actual data.

In the context of Bayesian statistics, the approach to examining
how well a model predicts the data is based on the notion of
posterior predictive checks, and the accompanying posterior
predictive p-value.

The general idea behind posterior predictive checking is that
there should be little, if any, discrepancy between data
generated by the model, and the actual data itself.

Posterior predictive checking is a method for assessing the
specification quality of the model. Any deviation between the
data generated from the model and the actual data implies
model misspecification.
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In the Bayesian context, the approach to examining model fit
and specification utilizes the posterior predictive distribution of
replicated data.
Let yrep be data replicated from our current model.

Posterior Predictive Distribution

p(yrep|y) =

∫
p(yrep|θ)p(θ|y)dθ

=

∫
p(yrep|θ)p(y|θ)p(θ)dθ (17)

Equation (17) states that the distribution of future observations
given the present data, p(yrep|y), is equal to the probability
distribution of the future observations given the parameters,
p(yrep|θ), weighted by the posterior distribution of the model
parameters.
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To assess model fit, posterior predictive checking implies that
the replicated data should match the observed data quite
closely if we are to conclude that the model fits the data.

One approach to model fit in the context of posterior predictive
checking is based on Bayesian p-values.

Denote by T (y) a test statistic (e.g. χ2) based on the data, and
let T (yrep) be the same test statistics for the replicated data
(based on MCMC). Then, the Bayesian p-value is defined to be

p-value = pr[T (yrep, θ) ≥ T (y, θ)|y]. (18)

The p-value is the proportion of of replicated test values that
equal or exceed the observed test value. High (or low if signs
are reversed) values indicate poor model fit.
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Bayes Factors

A very simple and intuitive approach to model building and
model selection uses so-called Bayes factors (Kass & Raftery,
1995)

In essence, the Bayes factor provides a way to quantify the
odds that the data favor one hypothesis over another. A key
benefit of Bayes factors is that models do not have to be
nested.

Consider two competing models, denoted as M1 and M2, that
could be nested within a larger space of alternative models. Let
θ1 and θ2 be the two parameter vectors associated with these
two models.

These could be two regression models with a different number
of variables, or two structural equation models specifying very
different directions of mediating effects.
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The goal is to develop a quantity that expresses the extent to
which the data support M1 over M2. One quantity could be the
posterior odds of M1 over M2, expressed as

Bayes Factors
p(M1|y)

p(M2|y)
=
p(y|M1)

p(y|M2)
×
[
p(M1)

p(M2)

]
. (19)

Notice that the first term on the right hand side of equation (19)
is the ratio of two integrated likelihoods.

This ratio is referred to as the Bayes factor for M1 over M2,
denoted here as B12.

Our prior opinion regarding the odds of M1 over M2, given by
p(M1)/p(M2) is weighted by our consideration of the data,
given by p(y|M1)/p(y|M2).
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This weighting gives rise to our updated view of evidence
provided by the data for either hypothesis, denoted as
p(M1|y)/p(M2|y).

An inspection of equation (19) also suggests that the Bayes
factor is the ratio of the posterior odds to the prior odds.

In practice, there may be no prior preference for one model over
the other. In this case, the prior odds are neutral and
p(M1) = p(M2) = 1/2.

When the prior odds ratio equals 1, then the posterior odds is
equal to the Bayes factor.
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Bayesian Information Criterion

A popular measure for model selection used in both frequentist
and Bayesian applications is based on an approximation of the
Bayes factor and is referred to as the Bayesian information
criterion (BIC), also referred to as the Schwarz criterion.

Again two models, M1 and M2 with M2 nested in M1. Under
conditions where there is little prior information, the BIC can be
written as

BIC = −2 log(θ̂|y) + p log(n) (20)

where −2 log θ̂|y describes model fit while p log(n) is a penalty
for model complexity, where p represents the number of
variables in the model and n is the sample size.
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As with Bayes factors, the BIC is often used for model
comparisons. Specifically, the difference between two BIC
measures comparing, say M1 to M2 can be written as

∆(BIC12) = BIC(M1) −BIC(M2) (21)

= log(θ̂1|y)− log(θ̂2|y)− 1

2
(p1 − p2) log(n)

Rules of thumb have been developed to assess the quality of
the evidence favoring one hypothesis over another using Bayes
factors and the comparison of BIC values from two competing
models. Using M1 as the reference model,

BIC Difference Bayes Factor Evidence against M2

0 to 2 1 to 3 Weak
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

52 / 116



Introduction
to Workshop
and
Bayesian
Theory

Bayesian
Model
Building
Posterior
Predictive
Checking

Bayes Factors

Bayesian
Model
Averaging

Markov Chain
Monte Carlo
Sampling

Bayesian
Linear
Regression

Advanced
Topics

Wrap-up

Deviance Information Criterion

The BIC (ironically) is not fundamentally Bayesian

An explicitly Bayesian approach to model comparison has been
developed based on the notion of Bayesian deviance.

Define Bayesian deviance as

Bayes Deviance

D(θ) = −2 log[p(y|θ)] + 2 log[h(y)], (22)

To make this Bayesian this, we obtain a posterior mean over θ
by defining

.

D(θ) = Eθ[−2log[p(y|θ)|y] + 2log[h(y)]. (23)
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Let D(θ̄) be a posterior estimate of θ. From here, we can define
the effective dimension of the model as qD = D(θ)−D(θ̄).

We then add the model fit term D(θ) to obtain the deviance
information criterion (DIC) - namely,

Deviance Information Criterion

DIC = D(θ) + qD = 2D(θ)−D(θ̄). (24)

The advantage of the DIC over the BIC in Bayesian applications
arises from the fact that the DIC can be obtained by calculating
equation (23) over MCMC samples. Models with the lowest DIC
values are preferred.
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Bayesian Model Averaging

The selection of a particular model from a universe of possible
models can also be characterized as a problem of uncertainty.
This problem was succinctly stated by Hoeting, Raftery &
Madigan (1999) who write

.
“Standard statistical practice ignores model uncertainty. Data analysts
typically select a model from some class of models and then proceed as if
the selected model had generated the data. This approach ignores the
uncertainty in model selection, leading to over-confident inferences and
decisions that are more risky than one thinks they are.”(pg. 382)

An approach to addressing the problem is the method of
Bayesian model averaging (BMA). We will show this in the
regression example.

55 / 116



Introduction
to Workshop
and
Bayesian
Theory

Bayesian
Model
Building
Posterior
Predictive
Checking

Bayes Factors

Bayesian
Model
Averaging

Markov Chain
Monte Carlo
Sampling

Bayesian
Linear
Regression

Advanced
Topics

Wrap-up

MCMC

The key reason for the increased popularity of Bayesian
methods in the social and behavioral sciences has been the
(re)-discovery of numerical algorithms for estimating the
posterior distribution of the model parameters given the data.

Prior to these developments, it was virtually impossible to
analytically derive summary measures of the posterior
distribution, particularly for complex models with many
parameters.

Rather than attempting the impossible task of analytically
solving for estimates of a complex posterior distribution, we can
instead draw samples from p(θ|y) and summarize the
distribution formed by those samples. This is referred to as
Monte Carlo integration.

The two most popular methods of MCMC are the Gibbs
sampler and the Metropolis-Hastings algorithm.
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A decision must be made regarding the number of Markov
chains to be generated, as well as the number of iterations of
the sampler.

Each chain samples from another location of the posterior
distribution based on starting values.

With multiple chains, fewer iterations are required, particularly if
there is evidence for the chains converging to the same
posterior mean for each parameter.

Once the chain has stabilized, the burn-in samples are
discarded.

Summaries of the posterior distribution as well as convergence
diagnostics are calculated on the post-burn-in iterations.
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The goal of this simple example is to obtain the posterior
distribution of the mean of the normal distribution with known
variance where the prior distributions are conjugate. That is, the
prior distribution for the mean is N(0, 1) and the prior
distribution for the precision parameter is inv-gamma(a, b)
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Figure 3 : Posterior density of the mean - two chains
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Figure 6 : Gelman-Rubin-Brooks plot
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Bayesian Linear Regression

We will start with the basic multiple regression model.

To begin, let y be an n-dimensional vector (y1, y2, . . . , yn)′

(i = 1, 2, . . . , n) of reading scores from n students on the PISA
reading assessment, and let X be an n× k matrix containing k
background and attitude measures. Then, the normal linear
regression model can be written as

y = Xβ + u, (25)

where β is an k × 1 vector of regression coefficients and where
the first column of β contains an n-dimensional unit vector to
capture the intercept term. We assume that student level PISA
reading scores scores are generated from a normal distribution.

We also assume that the n-dimensional vector u are
disturbance terms assumed to be independently, identically,
and normally distributed – specifically.

62 / 116



Introduction
to Workshop
and
Bayesian
Theory

Bayesian
Model
Building
Posterior
Predictive
Checking

Bayes Factors

Bayesian
Model
Averaging

Markov Chain
Monte Carlo
Sampling

Bayesian
Linear
Regression

Advanced
Topics

Wrap-up

Recall that the components of Bayes’ theorem require the
likelihood and the priors on all model parameters.

We will write the likelihood for the regression model as

L(β, σ2|X,y) (26)

Conventional statistics stops here and estimates the model
parameters with either maximum likelihood estimation or
ordinary least square.

But for Bayesian regression we need to specify the priors for all
model parameters.
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First consider non-informative priors.

In the context of the normal linear regression model, the
uniform distribution is typically used as a non-informative prior.

That is, we assign an improper uniform prior to the regression
coefficient β that allows β to take on values over the support
[−∞,∞].

This can be written as p(β) ∝ c, where c is a constant.

Note that there is no such thing as an “informationless” prior.
This uniform prior says a lot!!
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Next, we assign a uniform prior to log(σ2) because this
transformation also allows values over the support [0,∞].

From here, the joint posterior distribution of the model
parameters is obtained by multiplying the prior distributions of β
and σ2 by the likelihood give in equation (26).

Assuming that β and σ2 are independent, we obtain
.

p(β, σ2|y,X) ∝ L(β, σ2|y,X)p(β)p(σ2). (27)

.
In virtually all packages, non-informative or weakly informative
priors are the default.
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What about informative priors?

The most sensible conjugate prior distribution for the vector of
regression coefficients β of the linear regression model is the
multivariate normal prior.

The conjugate prior for the variance of the disturbance term σ2

is the inverse-Gamma distribution, with shape and scale
hyperparameters a and b, respectively.

From here, we can obtain the joint posterior distribution of all
model parameters using conjugate priors based on expert
opinion or prior research.
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Bayesian Regression: Non-informative Priors

##############################################################################
### Example Regression Analysis: Non-informative Priors ##############################################################################

#------- Install Needed Packages --------#
library(MCMCpack)
library(coda)
library(BMA)

#------- Read in data and delete missing data --------#
datafile <- read.csv("˜/Desktop/Bayes book/Bayes book programs/
Ch.6.regression/datafile.csv",header=T)
datafile9 <- subset(datafile, select=c(rcomb1, gender, native, slang, ESCS,

JOYREAD, DIVREAD, MEMOR, ELAB, CSTRAT))
datafile9<-na.omit(datafile9)

#------- Run Bayesian regression ------- #
FullModel <- MCMCregress(rcomb1˜gender+native+ slang+ESCS+

JOYREAD+ DIVREAD+ MEMOR+ ELAB+ CSTRAT,
data=datafile9,burnin=5000,mcmc=100000,thin=10,b0=0,B0=0)

plot(FullModel)
autocorr.plot(FullModel)
dev.off()
summary(FullModel)

#------ Obtain diagnostics ----------- #
geweke.diag(FullModel, frac1=0.1, frac2=0.5)
heidel.diag(FullModel,eps=0.1,pvalue=0.05)
raftery.diag(FullModel,q=0.5,r=0.05,s=0.95,converge.eps=0.001)
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Figure 7 : Diagnostic Plots for Regression Example: Selected Parameters
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Table 1 : Bayesian Linear Regression Estimates: Non-informative Prior
Case

Parameter EAP SD 95% Posterior Probability Interval
Full Model

INTERCEPT 442.28 3.22 435.99, 448.66
READING on GENDER 17.46 2.29 12.94, 21.91
READING on NATIVE 6.81 3.54 -0.14, 13.9
READING on SLANG 38.45 4.04 30.30, 46.36
READING on ESCS 26.24 1.32 23.69, 28.80
READING on JOYREAD 27.47 1.28 24.97, 29.93
READING on DIVREAD -5.06 1.21 -7.41, -2.66
READING on MEMOR -19.03 1.33 -21.65, -16.47
READING on ELAB -13.74 1.26 -16.26, -11.32
READING on CSTRAT 26.92 1.45 24.07, 29.77

Note. EAP = Expected A Posteriori. SD = Standard Deviation.
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Bayesian Regression: Informative Priors

########################################################################
### Example Regression Analysis: Informative Priors ####
########################################################################

library(MCMCpack)

FullModel_inf <- MCMCregress(rcomb1˜gender+ native+ slang+ ESCS+
JOYREAD+ DIVREAD+ MEMOR+ ELAB+ CSTRAT,data=datafile9,
marginal.likelihood="Chib95",mcmc=10000,

b0=c(491.2, 12.9, 3.4, 21.4, 32.6, 22.9, 0.01, -18.6, -11.1, 22.8),
B0=c(0.0173, 0.0932, 0.0141, 0.0216, 0.3354, 0.3210, 0.3245, 0.2101, 0.2111, 0.1707))

pdf(’FullModel_inf.trace.pdf’)
plot(FullModel_inf) # Produces the convergence plots and the posterior densities
pdf(’FullModel_inf.acf.pdf’)
autocorr.plot(FullModel_inf)
dev.off()
summary(FullModel_inf)

#------ Obtain diagnostics ----------- #

geweke.diag(FullModel_inf, frac1=0.1, frac2=0.5)
heidel.diag(FullModel_inf,eps=0.1,pvalue=0.05)
raftery.diag(FullModel_inf,q=0.5,r=0.05,s=0.95,converge.eps=0.001)
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Table 2 : Bayesian Regression Estimates: Informative Priors based on
PISA 2000

Parameter EAP SD 95% PPI
Full Model

INTERCEPT 487.94 2.82 482.52, 493.59
READING on GENDER 9.46 1.86 5.81, 13.07
READING on NATIVE -6.87 3.28 -13.30, -0.26
READING on SLANG 9.53 3.56 2.44, 16.48
READING on ESCS 31.19 1.04 29.20, 33.23
READING on JOYREAD 26.50 1.00 24.53, 28.43
READING on DIVREAD -2.52 0.97 -4.40, -0.59
READING on MEMOR -18.77 1.09 -20.91, -16.64
READING on ELAB -13.62 1.06 -15.76, -11.60
READING on CSTRAT 26.06 1.17 23.77, 28.36

Note. EAP = Expected A Posteriori. SD = Standard Deviation.
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Model Comparison Using Bayes Factors

###########################################################################
### Example Regression Analysis: Model Comparison with Bayes Factors ####
###########################################################################
# Model Comparison: Background variables only

BGModel_inf <- MCMCregress(rcomb1˜gender+ native+ slang+ ESCS
,data=datafile9,marginal.likelihood="Chib95",mcmc=10000,

b0=c(470.9, 26.3, 4.7, 23.3, 39.9 ),
B0=c( 0.0185, 0.0952, 0.0151, 0.0222, 0.3541 ))
plot(BGModel_inf)
dev.off()
summary(BGModel_inf)

# Model Comparison: Attitudinal variables only

ATTModel_inf <- MCMCregress(rcomb1˜JOYREAD+ DIVREAD,
data=datafile9,marginal.likelihood="Chib95",mcmc=10000,
b0=c( 505.4, 27.2, 8.4 ),B0=c(0.3643, 0.3147, 0.3497))
plot(ATTModel_inf)
dev.off()
summary(ATTModel_inf)

# Model Comparison: Learning strategies variables only

LSModel_inf <- MCMCregress(rcomb1˜ MEMOR+ ELAB+ CSTRAT,
data=datafile9,marginal.likelihood="Chib95",mcmc=10000,
b0=c( 509.7, -24.2, -9.8, 38.9),B0=c( 0.3327, 0.1829, 0.1848, 0.1563))
plot(LSModel_inf)
dev.off()
summary(LSModel_inf)

# Calculation of Bayes Factors

bf <- BayesFactor(BGModel_inf, ATTModel_inf, LSModel_inf, FullModel_inf)
print(bf)
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Table 3 : Natural Log Bayes Factors: Informative Priors Case

Sub-Model BGModel ATTModel LSModel FullModel
BGModel 0.0 27.8 85.6 -539
ATTModel -27.8 0.0 57.8 -567
LSModel -85.6 -57.8 0.0 -625
FullModel 539.2 567.0 624.8 0

Note. BGModel = Background variables model; ATTModel = Attitude variables model; LSModel =

Learning Strategies model; FullModel = Model with all variables.
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Model Comparison Using Bayes Factors

####### Bayesian Model Averaging #######################################
attach(datafile9)
bma=bicreg(cbind(gender, native, slang, ESCS,

JOYREAD, DIVREAD, MEMOR, ELAB, CSTRAT),rcomb1,strict=FALSE,OR=20)
summary(bma)
plot(bma,include.intercept=FALSE)
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Bayesian Model Averaging

Table 4 : Bayesian model averaging results for full multiple regression
model

Predictor Post Prob Avg coef SD Model 1 Model 2 Model 3 Model 4
Full Model

INTERCEPT 1.00 493.63 2.11 494.86 491.67 492.77 496.19
GENDER 0.42 2.72 3.54 . 6.46 6.84 .
NATIVE 0.00 0.00 0.00 . . . .
SLANG 0.00 0.00 0.00 . . . .
ESCS 1.00 30.19 1.24 30.10 30.36 30.18 29.90
JOYREAD 1.00 29.40 1.40 29.97 28.93 27.31 28.35
DIVREAD 0.92 -4.01 1.68 -4.44 -4.28 . .
MEMOR 1.00 -18.61 1.31 -18.47 -18.76 -18.99 -18.70
ELAB 1.00 -15.24 1.26 -15.37 -14.95 -15.43 -15.90
CSTRAT 1.00 27.53 1.46 27.62 27.43 27.27 27.45
R2 0.340 0.341 0.339 0.338
BIC -1993.72 -1992.98 -1988.72 -1988.51
PMP 0.54 0.37 0.05 0.04
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Figure 8 : BMA posterior distributions for model parameters. Note that the
narrow spike corresponds to p(βk = 0|y). Thus, in the case of gender, note
that p(βgender > 0|y) = .42 and therefore p(βgender = 0|y) = 0.58.
corresponding to the spike found in the BMA posterior distribution plot for
GENDER.
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Bayesian Multilevel Modeling

A common feature of data collection in the social sciences is
that units of analysis (e.g. students or employees) are nested in
higher organizational units (e.g. schools or companies,
respectively).

For example, the OECD/PISA study deliberately samples
schools (within a country) and then takes an age-based sample
of 15 year olds within sampled schools.

Such data collection plans are generically referred to as
clustered sampling designs.
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In addition to being able to incorporate priors directly into a
multilevel model, the Bayesian conception of multilevel
modeling has another advantage – namely it clears up a great
deal of confusion in the presentation of multilevel models.

The literature on multilevel modeling attempts to make a
distinction between so-called “fixed-effects” and
“random-effects”.

Gelman and Hill have recognized this issue and present five
different definitions of fixed and random effects.

The advantage of the Bayesian approach is that all parameters
are assumed to be random. When conceived as a Bayesian
hierarchical model, much of the confusion around terminology
disappears.
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Bayesian Random Effects ANOVA

Perhaps the most basic multilevel model is the random effects
analysis of variance model.

As a simple example consider whether there are differences
among G schools (g = 1, 2, . . . , G) on the outcome of student
reading performance y obtained from n students
(i = 1, 2, . . . , n).

In this example, it is assumed that the G schools are a random
sample from a population of schools.
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The model can be written as a two level hierarchical linear
model as follows: Let

Level - 1

yig = βg + rij , (28)

The model for the school random effect can be written as

Level - 2

βg = µ+ ug, (29)

Inserting equation (29) into equation (28) yields
.

yig = µ+ ug + rig. (30)
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For the model in equation (30), we first specify the distribution
of the reading performance outcome yig given the school effect
ug and the within school variance σ2. Specifically,

.

yig|ug, σ2 ∼ N(ug, σ
2). (31)

Next specify the prior distribution on the remaining model
parameters. For this model, we specify conjugate priors

.

ug|µ, ω2 ∼ N(0, ω2), (32)
µ ∼ N(b0, B0), (33)

σ2 ∼ inverse-Gamma(a, b), (34)

ω2 ∼ inverse-Gamma(a, b), (35)
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Now we can arrange all of the parameters of the random effects
ANOVA model into a vector θ and write the prior density as

.

p(θ) = p(u1, u2, . . . , uG, µ, σ
2, ω2), (36)

where under the assumption of exchangeability of the school
effects ug we obtain

.

p(θ) =

G∏
g=1

p(ug|µ, ω2)p(µ)p(σ2)p(ω2). (37)
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Table 5 : Parameter Estimates for Bayesian Random Effects ANOVA

Parameter EAP SD 95% PPI

Fixed Effect :
Intercept 500.11 10.19 479.70, 520.60

Variance Component of Random Intercept :
Intercept 2303.00 328.32 1758.00, 3008.00

Note. EAP = Expected A Posteriori. SD = Posterior Standard Deviation.
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Bayesian Multilevel Regression

Suppose interest centers on reading proficiency among 15 year
old students in the US.

We can write a substantive model as

Level - 1

READig = β0ig + β1ig(GENDER) + β2ig(JOY READ), (38)
+ β3ig(MEMOR) + β4ig(DISCLIM) + rig,

where βkig (k = 1, 2, . . . ,K + 1) are the intercept and regression
coefficients (slopes) that are allowed to vary over the G groups.
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We can model the intercept and slopes as a function of school
level predictors, which we will denote as zg. For the following
example, the school level predictors include a measure of
teacher shortage in the school and a measure of the school
size.

Level - 2

β0g = γ00 + γ01(SCHSIZE) + γ02(TCSHORT ) + u0g, (39a)
β1g = γ10 + u1g, (39b)
β2g = γ20 + γ21(TCSHORT ) + u2g, (39c)
β3g = γ30 + u3g, (39d)
β4g = γ40 + u4g, (39e)

where γ’s are the coefficients relating βkg to the school level
predictors.
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The mixed model can be written as

Mixed Model

READig = γ00 + γ01(SCHSIZE) + γ02(TCSHORT ) (40)
+ γ10(GENDER) + γ20(JOY READ)

+ γ21(TCSHORT )(JOY READ)

+ γ30(MEMOR) + γ40(DISCLIM) + rig

+ u0g + u1g(GENDER) + u2g(JOY READ) + u3g + u4g.

In terms of a Bayesian hierarchical model, the priors would
have to be chosen for σ2

g and the hyperparameters γg and ω2
k.
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Table 6 : Parameter Estimates for Multilevel Model

Parameter EAP SD 95% PPI

Fixed Effects:
Intercept 484.61 11.74 463.01, 506.86
READING on JOYREAD 27.90 2.59 22.91, 33.06
READING on GENDER 14.54 4.78 5.38, 23.92
READING on MEMOR -1.11 2.23 -5.37, 3.38
READING on DISCLIMA -6.51 2.69 -11.85, -0.96
Intercept on SCHSIZE 0.59 0.80 -0.93, 2.15
Intercept on TCSHORT -11.13 7.32 -25.99, 2.32
Slope of JOYREAD on TCSHORT -1.61 2.63 -6.83, 3.33

Variance Components of Random Effects:
Intercept 1369.11 320.14 941.62, 2136.75
JOYREAD 46.41 17.75 20.61, 88.86
GENDER 5.12 12.52 0.60, 29.92
MEMOR 3.35 4.11 0.62, 13.34
DISCLIMA 62.82 19.67 32.77, 108.07

Note. EAP = Expected A Posteriori. SD = Posterior Standard Deviation.
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Bayesian CFA

Recall the factor analysis model

y = α+ Λη + ε, (41)

A Bayesian approach to confirmatory factor analysis requires
the specification of priors on all model parameters.

Let θnorm = {α,Λ} be the set of free model parameters that are
assumed to follow a normal distribution and let θIW = {Φ,Ψ}
be the set of free model parameters that are assumed to follow
an inverse-Wishart distribution. Thus,

θnorm ∼ N(µ,Ω), (42)

and
θIW ∼ IW (R, δ), (43)
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Example of Bayesian CFA

This example is based on a reanalysis of a confirmatory factor
analysis of data from OECD/PISA.

A confirmatory factor analysis was employed to construct two
indices indicating teacher and student behavioral problems
(TEACBEHA and STUDBEHA), using a weighted sample of
students from the OECD countries.

For this example, we used an unweighted sample of 165 school
principals in the United States who participated in PISA 2009.

The principals were administered a questionnaire asking to
what extent student learning is hindered by student or teacher
behavioral problems. Each item has the following four
categories: not at all, very little, to some extent, and a lot.
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The analysis for this example used the Gibbs sampler as
implemented in “rjags” with two chains, 50,000 iterations with
5,000 burn-in and a thinning interval of 50.

Thus, summary statistics on the model parameters are based
on 1000 draws from the posterior distribution generated via the
Gibbs sampler.

We compare non-informative priors to informative priors based
on PISA 2000.
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Non-Informative Priors
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Informative Priors

Figure 9 : Autocorrelation, Trace, and Density Plots For Selected
Parameters: Bayesian confirmatory factor analysis.
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Non-informative Priors

Informative Priors

Figure 10 : Geweke Plots for Selected Parameters: Bayesian confirmatory
factor analysis: Non-informative and Informative Priors
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Table 7 : Parameter Estimates for CFA – Non-informative Priors

Parameter EAP SD 95% PPI Intercepts(EAP/SD) Residuals(EAP/SD)

Non-informative Prior
Loadings: TEABEHA by
Item SC17Q01 1.00 0.00 1.00, 1.00 2.03 (0.06) 0.30 (0.04)
Item SC17Q03 0.98 0.12 0.77, 1.24 1.92 (0.05) 0.15 (0.02)
Item SC17Q05 0.90 0.11 0.70, 1.14 2.16 (0.05) 0.19 (0.03)
Item SC17Q06 0.67 0.11 0.46, 0.90 1.82 (0.05) 0.28 (0.03)
Item SC17Q09 0.95 0.12 0.73, 1.21 2.27 (0.05) 0.25 (0.03)
Item SC17Q11 0.49 0.10 0.31, 0.69 1.72 (0.04) 0.25 (0.03)
Item SC17Q13 0.96 0.12 0.74, 1.22 1.88 (0.05) 0.23 (0.03)

Loadings: STUDBEHA by
Item SC17Q02 1.00 0.00 1.00, 1.00 2.68 (0.06) 0.33 (0.04)
Item SC17Q04 0.89 0.11 0.68, 1.14 2.05 (0.05) 0.19 (0.03)
Item SC17Q07 1.08 0.14 0.83, 1.37 2.21 (0.06) 0.31 (0.04)
Item SC17Q08 0.99 0.12 0.77, 1.25 2.13 (0.05) 0.16 (0.02)
Item SC17Q10 0.53 0.10 0.33, 0.74 2.03 (0.05) 0.31 (0.04)
Item SC17Q12 0.57 0.09 0.42, 0.76 1.99 (0.04) 0.14 (0.02)

Factor Correlation: 0.69 0.05 0.58, 0.78

Note. EAP = Expected A Posteriori. SD = Posterior Standard Deviation.
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Table 8 : Parameter Estimates for CFA – Informative Priors Based on PISA
2000

Parameter EAP SD 95% PPI Intercepts(EAP/SD) Residuals(EAP/SD)

Informative Prior
Loadings: TEABEHA by
Item SC17Q01 1.00 0.00 1.00, 1.00 2.03 (0.06) 0.30 (0.04)
Item SC17Q03 0.94 0.08 0.79, 1.11 1.92 (0.06) 0.16 (0.04)
Item SC17Q05 0.98 0.09 0.81, 1.15 2.16 (0.05) 0.19 (0.02)
Item SC17Q06 0.74 0.09 0.57, 0.92 1.82 (0.05) 0.27 (0.03)
Item SC17Q09 0.99 0.09 0.82, 1.18 2.26 (0.05) 0.24 (0.02)
Item SC17Q11 0.55 0.08 0.40, 0.70 1.72 (0.05) 0.25 (0.03)
Item SC17Q13 1.01 0.09 0.84, 1.20 1.88 (0.06) 0.23 (0.04)

Loadings: STUDBEHA by
Item SC17Q02 1.00 0.00 1.00, 1.00 2.67 (0.05) 0.33 (0.02)
Item SC17Q04 0.92 0.09 0.75, 1.10 2.05 (0.05) 0.19 (0.03)
Item SC17Q07 1.17 0.12 0.95, 1.42 2.21 (0.05) 0.31 (0.04)
Item SC17Q08 1.03 0.09 0.85, 1.22 2.13 (0.04) 0.16 (0.03)
Item SC17Q10 0.66 0.10 0.47, 0.85 2.03 (0.04) 0.31 (0.02)
Item SC17Q12 0.65 0.08 0.51, 0.82 1.99 (0.05) 0.14 (0.03)

Factor Correlation: 0.68 0.06 0.56, 0.78

Note. EAP = Expected A Posteriori. SD = Posterior Standard Deviation.
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Figure 11 : PPC Scatterplot and histogram for CFA: Informative Priors

On the basis of the posterior predictive p-value of 0.001 and the
plots, we conclude that this model shows very poor posterior
predictive quality.
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Bayesian Structural Equation Modeling

Recall the equations for the latent variable structural equation
model

y = α+ Λη + Kx + ε, (44)

η = ν + Bη + Γx + ζ, (45)
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Conjugate Priors for SEM Parameters

Let θnorm = {α, ν,Λ,B,Γ,K} be the vector of free model
parameters that are assumed to follow a normal distribution,
and let θIW = {Ξ,Ψ} be the vector of free model parameters
that are assumed to follow the inverse-Wishart distribution. As
with CFA, we write

θnorm ∼ N(µ,Ω), (46)

and
θIW ∼ IW (R, δ), (47)
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An Example of Bayesian Path Analysis

We look at a path analysis of mathematics achievement using
data from 5456 United States students from the PISA 2003
survey.

Figure 12 : Path Diagram for Student Level Model
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Figure 13 : Trace and Density Plots for Bayesian Single Level SEM
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Figure 14 : Autocorrelation plots for single level Bayesian SEM
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Figure 15 : Geweke plots for single level Bayesian SEM
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Table 9 : Bayesian Single-level Path Analysis Estimates: PISA 2003

Parameter EAP SD 95% PPI

MATCHSCORE on
INTERCEPT 357.00 7.59 342.20, 372.10
MOMEDUC 8.09 1.05 6.00, 10.14
DADEDUC 7.14 1.13 4.92, 9.35
PERTEACH 9.80 1.98 5.92, 13.68
IMPORTNT 11.31 1.79 7.78, 14.84
ENJOY 1.60 1.61 -1.53, 4.73

IMPORTNT on
INTERCEPT 1.27 0.05 1.18, 1.36
MOMEDUC 0.01 0.01 0.00, 0.02
PERTEACH 0.21 0.01 0.18, 0.24
ENJOY 0.48 0.01 0.47, 0.50

ENJOY on
INTERCEPT 1.09 0.06 0.98 , 1.21
PERTEACH 0.41 0.02 0.37 , 0.45

Residual Variances
ENJOY 0.57 0.01 0.55, 0.60
IMPORTNT 0.29 0.01 0.28, 0.30
MATHSCOR 8209.00 157.70 7909.00, 8524.00

Note. EAP = Expected A Posteriori. SD = Posterior Standard Deviation.
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Figure 16 : PPC Scatterplot and histogram for SEM: Non-informative Priors
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Wrap-up: Some Philosophical Issues

Bayesian statistics represents a powerful alternative to
frequentist (classical) statistics, and is therefore, controversial.

The controversy lies in differing perspectives regarding the
nature of probability, and the implications for statistical practice
that arise from those perspectives.

The frequentist framework views probability as synonymous
with long-run frequency, and that the infinitely repeating
coin-toss represents the canonical example of the frequentist
view. frequency.

In contrast, the Bayesian viewpoint regarding probability was,
perhaps, most succinctly expressed by de Finetti
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.
Probability does not exist.

- Bruno de Finetti
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That is, probability does not have an objective status, but rather
represents the quantification of our experience of uncertainty.

For de Finetti, probability is only to be considered in relation to
our subjective experience of uncertainty, and, for de Finetti,
uncertainty is all that matters.

.
“The only relevant thing is uncertainty – the extent of our known knowledge and
ignorance. The actual fact that events considered are, in some sense, determined, or
known by other people, and so on, is of no consequence.” (pg. xi).

The only requirement then is that our beliefs be coherent,
consistent, and have a reasonable relationship to any
observable data that might be collected.
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Summarizing the Bayesian Advantage

The major advantages of Bayesian statistical inference over
frequentist statistical inference are

1 Coherence

2 Handling non-nested models

3 Flexibility in handling complex data structures

4 Inferences based on data actually observed

5 Quantifying evidence

6 Incorporating prior knowledge
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Subjective v. Objective Bayes

Subjective Bayesian practice attempts to bring prior knowledge
directly into an analysis. This prior knowledge represents the
analysts (or others) degree-of-uncertainity.

An analyst’s degree-of-uncertainty is encoded directly into the
specification of the prior distribution, and in particular on the
degree of precision around the parameter of interest.

The advantages include

1 Subjective priors are proper

2 Priors can be based on factual prior knowledge

3 Small sample sizes can be handled.
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The disadvantages to the use of subjective priors according to
Press (2003) are

1 It is not always easy to encode prior knowledge into probability
distributions.

2 Subjective priors are not always appropriate in public policy or
clinical situations.

3 Prior distributions may be analytically intractable unless they are
conjugate priors.
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Within objective Bayesian statistics, there is disagreement
about the use of the term “objective”, and the related term
“non-informative”.

Specifically, there are a large class of so-called reference priors
(Kass and Wasserman,1996).

An important viewpoint regarding the notion of objectivity in the
Bayesian context comes from Jaynes (1968).

For Jaynes, the “personalistic” school of probability is to be
reserved for

.
“...the field of psychology and has no place in applied statistics. Or, to
state this more constructively, objectivity requires that a statistical analysis
should make use, not of anybody’s personal opinions, but rather the
specific factual data on which those opinions are based.”(pg. 228)
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In terms of advantages Press (2003) notes that

1 Objective priors can be used as benchmarks against which
choices of other priors can be compared

2 Objective priors reflect the view that little information is available
about the process that generated the data

3 An objective prior provides results equivalent to those based on a
frequentist analysis

4 Objective priors are sensible public policy priors.
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In terms of disadvantages of objective priors, Press (2003)
notes that

1 Objective priors can lead to improper results when the domain of
the parameters lie on the real number line.

2 Parameters with objective priors are often independent of one
another, whereas in most multi-parameter statistical models,
parameters are correlated.

3 Expressing complete ignorance about a parameter via an
objective prior leads to incorrect inferences about functions of the
parameter.
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Kadane (2011) states, among other things:
.

“The purpose of an algorithmic prior is to escape from the
responsibility to give an opinion and justify it. At the same
time, it cuts off a useful discussion about what is
reasonable to believe about the parameters. Without such
a discussion, appreciation of the posterior distribution of
the parameters is likely to be less full, and important
scientific information may be neglected.”(pg. 445)
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Final Thoughts: A Call for Evidenced-based
Subjective Bayes

The subjectivist school, advocated by de Finetti, Savage, and
others, allows for personal opinion to be elicited and
incorporated into a Bayesian analysis. In the extreme, the
subjectivist school would place no restriction on the source,
reliability, or validity of the elicited opinion.

The objectivist school advocated by Jeffreys, Jaynes, Berger,
Bernardo, and others, views personal opinion as the realm of
psychology with no place in a statistical analysis. In their
extreme form, the objectivist school would require formal rules
for choosing reference priors.

The difficulty with these positions lies with the everyday usage
of terms such as “subjective” and “belief”.

Without careful definitions of these terms, their everyday usage
might be misunderstood among those who might otherwise
consider adopting the Bayesian perspective.
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“Subjectivism” within the Bayesian framework runs the gamut
from the elicitation of personal beliefs to making use of the best
available historical data available to inform priors.

I argue along the lines of Jaynes (1968) – namely that the
requirements of science demand reference to “specific, factual
data on which those opinions are based” (pg. 228).

This view is also consistent with Leamer’s hierarchy of
confidence on which priors should be ordered.

We may refer to this view as an evidence-based form of
subjective Bayes which acknowledges (1) the subjectivity that
lies in the choice of historical data; (2) the encoding of historical
data into hyperparameters of the prior distribution; and (3) the
choice among competing models to be used to analyze the
data.
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What if factual historical data are not available?

Berger (2006) states that reference priors should be used “in
scenarios in which a subjective analysis is not tenable”,
although such scenarios are probably rare.

The goal, nevertheless, is to shift the practice of Bayesian
statistics away from the elicitation of personal opinion (expert or
otherwise) which could, in principle, bias results toward a
specific outcome, and instead move Bayesian practice toward
the warranted use prior objective empirical data for the
specification of priors.

The specification of any prior should be explicitly warranted
against observable, empirical data and available for critique by
the relevant scholarly community.
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To conclude, the Bayesian school of statistical inference is,
arguably, superior to the frequentist school as a means of
creating and updating new knowledge in the social sciences.

An evidence-based focus that ties the specification of priors to
objective empirical data provides stronger warrants for
conclusions drawn from a Bayesian analysis.

In addition predictive criteria should always be used as a means
of testing and choosing among Bayesian models.

As always, the full benefit of the Bayesian approach to research
in the social sciences will be realized when it is more widely
adopted and yields reliable predictions that advance knowledge.
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THANK YOU
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