A Latent State-Trait Model for Analyzing States, Traits, Situations, Method Effects, and Their Interactions

Fred Hintz¹
Christian Geiser¹
Saul Shiffman²

Presented at the Modern Modeling Methods (M3) Conference, University of Connecticut. May 24, 2016.

¹Utah State University, Psychology Department
²University of Pittsburgh, Psychology Department
fred.hintz@aggiemail.usu.edu

UtahStateUniversity

The Person-Situation Debate

600

Many leading personality theorists view personality traits as a distribution of individual behaviors in situations (Fleeson, 2001; Funder, 1991). Traits may not be universal across all situations.

Person-Situation Interactions
Home anxiety level predicts
increase. Not always true, but
can be true.

Situation 1 Situation 2: Airplane

Many leading personality theorists view personality traits as a distribution of individual behaviors in situations (Fleeson, 2001; Funder, 1991). Traits may not be universal across all situations.

Person-Situation Interactions
Home anxiety level predicts
increase. Not always true, but
can be true.

Multi-method Designs

- Multiple Viewpoints
- Examples:
 - Multiple Informants (Peer, Parent, Teacher, Supervisor)
 - Physiological measures (hormones, heart rate)
 - Different wording / measurements
- Accounts for method bias

Method Effects in Situation Research

- Are situation effects simply methodological artifacts?
- Are method effects constant across situations?
- Do method effects interact with situations?
- These have been crucial questions in investigating the distinction between persons and situations (Kenrick & Funder, 1988).
- Theorists have argued that the interactions of method effects and situations should be better researched (Schmitt, 2006).

The Model

- Extension of existing latent variable techniques
- Combines analyzing person-situation interaction modeling (LST-RF) and multi-trait multi-method modeling (CTC(M-1)).

Latent State-Trait Models

- Identify portions of measurement variance that are due to trait-like variance, occasion-specific residual variance, and measurement error.
- Individuals measured at multiple time points
- Steyer, Ferring, & Schmitt (1992); Kenny & Zautra (1995); Eid (1996); Steyer et al. (2015)

Occasion-specific Classical LST Model unstable variance "Random situation" Overall Feeling *t*=1 T_1 Indicator-specific O_1 Time Point 1 Happy t=1trait factors Content *t*=1 Trait-like stable T_2 variance Overall Feeling *t*=2 O_2 Time Point 2 T_3 Happy t=2Content *t*=2

Adapted from Eid (1996)

Confounding of Situation and Interaction effects

 In LST models, situations are assumed to be randomly sampled from a universe of possible situations.

• Since the situations are not identified it is impossible to separate situation effects and person-situation interaction effects.

LST-RF Models

- Person-situation interactions
 - Need to examine specific, pre-identified situations.
- Geiser et al: Latent State-Trait model for Random and Fixed effects.
- Measurements taken at
 - multiple time points
 - multiple fixed situations.

Difference Score Parameterization

Reference Situation 1
Pre-quitting smoking

Situation 1
Post-quitting smoking

Adapted from Geiser et al. (2015)

Extension to Multiple Methods

- There are many ways to model method effects using CFA (Eid, 2000; Kenny, 1975; Marsh & Hocevar, 1984; Widaman, 1985).
- We use the Correlated Traits Correlated Methods (minus 1) model [CTC(M-1)] model (Eid, 2000)
- Requires choosing a reference method
- MM-LST Models (Courvoisier et al., 2008)

MM-LST-RF Model

How Method-Specific Are The Trait and State Portions In Each Situation?

Within-Fixed Situations Coefficients

Shared and unique consistency

$$SCon(\tau_{imts}) = \frac{\lambda_{ims}^{2} Var(T_{11s})}{Var(\tau_{imts})} \qquad UCon(\tau_{imts}) = \frac{Var(TM_{imts})}{Var(\tau_{imts})}$$

Shared and unique occasion-specificity

$$SOSpe(\tau_{imts}) = \frac{\delta_{ims}^{2} Var(O_{11ts})}{Var(\tau_{imts})} \qquad UOSpe(\tau_{imts}) = \frac{\gamma_{ims}^{2} Var(OM_{mts})}{Var(\tau_{imts})}$$

Effects We Want To Study

- Are situation effects simply methodological artifacts?
- Are method effects constant across situations?
- Do method effects interact with situations?

Are situation effects method-specific? Across Fixed Situations Coefficients

Situation-specificity of traits

$$SitSpe(T_{i1}) = 1 - [Corr(T_{i1r}, T_{i1s})]^{2}$$

Method-specificity of situation effect

$$MS(T_{ims} - T_{imr}) = \frac{Var(TM_{ims} - TM_{imr})}{Var(T_{ims} - T_{imr})}$$

MM-LST-RF Model

 We can look at method effect x situation interactions using a similar parameterization as the LST-RF model

Reference Situation 0 TM_{im0} β_{1ims} ω_{ims} Situation s TM_{ims} TM_{ims} TM_{im0}

Are P x S Interactions Method-Specific? Across Fixed Situations Coefficients

Person x situation interaction coefficient

$$(P \times S)_{11s} = \frac{\beta_{111s}^{2} Var(T_{11r})}{Var(T_{11s} - T_{11r})}$$

Method-specificity of person x situation interaction

$$MS(PxS_{ims}) = \frac{\beta_{1ims}^{2} Var(TM_{imr})}{\lambda_{im}^{2} \beta_{11rs}^{2} Var(T_{11r}) + \beta_{1ims}^{2} Var(TM_{imr})}$$

Are Method Effects Constant Across Situations? Across Fixed Situations Coefficients

Situation-specificity of method effects

$$SitSpe(TM_{im}) = 1 - [Corr(TM_{imr}, TM_{ims})]^{2}$$

How much of the change in method effects is due to ME x S interactions?

Across Fixed Situations Coefficients

• Method x situation interaction coefficient

$$(M \times S)_{ims} = \frac{\beta_{1ims}^{2} Var(TM_{imr})}{Var(TM_{ims} - TM_{imr})}$$

Empirical Application

- EMA study of smokers' affect (N=235) (Shiffman et al., 2002)
- Affect recorded prior to quitting and post quitting
- 6 affect indicators:

Goodness of Fit Tests

- Found that we did not need method-specific occasion-residual factors for positively keyed items
- Final model fit after invariance constraints:
- $\chi^2(590)=755.60$, p<.001; RMSEA=.035; CFI=.96

Within-Fixed Situations Coefficients

Within-Fixed-Situations Coefficients
As a Proportion of Each Indicator's True Score Variance

Within-Fixed Situations Coefficients

Unique Consistency As a Proportion of Total Trait-Like Variance

Shared and Method-specific Occasion-residual Variance

Average Unique Occasion-Specificity as a Proportion of Total Occasion-Specific Variance

Situation Specificity, P x S of Reference Trait Method specificity of Situation Effect

- SitSpe(Overall Feeling₁)= 0
- P x S(Overall Feeling₁)= 1

Person x Situation Interaction

Regression of Overall Feeling Post Minus Pre Difference Score on Pre-quitting Overall Feeling Trait score:

$$\beta_0$$
=-2.41
 β_1 =.641 (p =.04)

Average Difference Score: $\beta_0 + \beta_1 E(T_{11r})$ = -2.41 + (.641)(3.54)= -.14

Method-specificity of P x S interaction

Situation-Specificity of Method Effect

Situation-Specificity of Method Effect

Method x Situation Interactions

Table. Difference regression coefficients for assessing method x situation interaction

Indicator	b_{oim}	b_{1im}	p value (b_{1im})
Content	_	.004	.98
Happy	_	175	.23
Irritable	_	331	.09
Miserable	_	.132	.59
Frustrated	_	092	.57

Note. *p<.05 **p<.01 ***p<.001

Advantages

- The MM-LST-RF model allows researchers to examine a large number of effects previously not considered by other approaches.
- The MM-LST-RF model is highly flexible

Limitations

- Large amount of within-subjects measurements.
- Requires selection of a reference method.

Thank you!

Questions?

Table 4. Model Goodness-of-Fit Measures for different MM-LST-RF models fit to Smoker's Affect Data

							Comp.				
Model	χ2	df	p	RMSEA	CFI	AIC	Model	χ2 Δ	$df\Delta$	$p(\chi 2 \Delta)$	ΔCFI
1. Baseline LST Model	720.68	560 -	<.001	.035	.961	16315					
2. $\lambda_{imr} = \lambda_{ims} \delta_{imr} = \delta_{ims}$	736.01	572 -	<.001	.035	.960	16307	1	15.33	12	.224	001
3. $\alpha_{imr} = \alpha_{ims}$	747.52	577 -	<.001	.035	.958	16308	2	11.50	5	.042*	002
4. $\alpha_{imr} = \alpha_{ims}$; $Happy$ item intercept freely estimated	737.34	576	<.001	.035	.961	16300	3	1.32	4	.857	.003
5. E(T _{11r})=E(T _{11s})	752.06	577	<.001	.036	.957	16313	4	14.73	1	<.001***	004
6. $Var(T_{11r}) = Var(T_{11s})$	751.45	577 -	<.001	.036	.958	16312	4	14.12	1	<.001***	003
$7.Var(O_{1tr}) = Var(O_{1ts})$	740.28	581 -	<.001	.034	.961	16293	4	2.94	1	.086	.000
8. $Var(OM_{m1r}) = Var(OM_{m2r})$ $Var(OM_{m1s}) = Var(OM_{m2s})$	753.23	585	<.001	.035	.959	16298	7	12.95	4	.01*	002
9. $Var(OM_{mtr}) = Var(OM_{mtr})$ $Var(OM_{mts}) = Var(OM_{mts})$ excluding $t=1r$	742.71	584 -	<.001	.034	.961	16290	7	2.43	3	.489	.000
10. Var(OM _{mtr})=Var(OM _{mts}) excluding t =1r	744.52	585 -	<.001	.034	.961	16289	9	1.81	1	.178	.000
11. Var(TM _{imr})=Var(TM _{ims})	755.60	590 -	<.001	.035	.960	16290	10	12.89	5	.024*	001

Note. Comp. Model = Comparison Model. RMSEA= Root Mean Square Error of Approximation. CFI = Comparative Fit Index. AIC=Akaike's information criterion. *p < .05 **p < .01 ***p < .001