Mplus 8: Dynamic SEM

Time series analysis and state-space modeling

Ellen L. Hamaker Utrecht University

Tihomir Asparouhov & Bengt Muthén Muthén & Muthén

May 23, 2016

Cattell's data box

Cross-sectional research: A single snapshot

Panel research: A few snapshots

Dersons occasions

Time series data: Looking at the movie

Time series data: Looking at the movie

Outline

- Why time series analysis?
- Autocorrelation
- ARMA models
- Stationarity
- The state-space model
- Kalman filter and parameter estimation
- Diverse models in state-space format
- Miscellaneous

What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics, seismology, meteorology, control engineering, and signal processing.

Main characteristics:

- N=1 technique
- T is large (say >50)
- concerned with *trends*, *cycles* and *autocorrelation structure* (i.e., serial dependency)
- goal: forecasting (\neq prediction)

TSA in the social and medical sciences

In sociology:

- quarterly unemployment numbers
- effect of alcohol consumption per capita on criminal violence rates
- effect of suicide news on suicide rates

In medical research:

- effect of safety warnings on antidepressants use
- effects of pain control strategies
- effect of 9/11 attacks on weekly psychiatric patient admissions

In psychology:

- network of symptoms in depressive patient
- effect of feedback on academic performance
- effect of an intervention on the relationship between stress and affect

Intensive longitudinal data

Intensive longitudinal data are gathered using:

- daily diary with end-of-day-measurements (self-report)
- experience sampling method (self-report)
- ecological momentary assessment (self-report)
- ambulatory assessment (including physiological variables)
- event contingency (self-report)
- observational measurements (expert rater)

For more info on methodology, check out:

- Tamlin Conner (e.g., her seminar with Joshua Smyth on YouTube)
- Society for Ambulatory Assessment
- Trull and Ebner-Priemer (2013)

It's a revolution!

Publications on experience sampling, ambulatory assessment, ecological momentary assessment, or daily diary

A fundamental problem in a nutshell

Taken from Hamaker (2012).

Three perspectives on data

Taken from Hamaker (2012).

Interindividual differences in intraindividual variation

Taken from Hamaker and Grasman (2014).

Cross-sectional correlations: A blend

Schmitz (2000):

$$r_{cs} = \eta^2 r_b + (1 - \eta^2) r_w$$

where

- r_{cs} is the cross-sectional correlation
- r_b is the between-person correlation
- r_w is the within-person correlation
- η^2 is the proportion of between-person variance of the total variability

Consequences:

- cross-sectional and panel research may result in an "**uninterpretable blend**" of within-person and between-person relationships (cf. Raudenbush and Bryk, 2002)
- in N=1 time series analysis there is only within-person variance

Outline

- Why time series analysis?
- Autocorrelation
- ARMA models
- Stationarity
- The state-space model
- Kalman filter and parameter estimation
- Diverse models in state-space format
- Miscellaneous

Lags

Y	Y at lag 1	Y at lag 2
y_1		
y_2	y_1	
y_3	y_2	y_1
y_4	y_3	y_2
y_5	y_4	y_3
y_6	y_5	y_4
y_7	y_6	y_5
y_8	y_7	y_6
• • •		•••
y_T	y_{T-1}	y_{T-2}
	y_T	y_{T-1}
		y_T

Autocorrelation function (ACF)

The ACF and the PACF can be used as **diagnostic tools** to determine the nature of the underlying process.

Variance (or: auto-covariance at lag 0):

$$\gamma_0 = \frac{1}{T} \sum_{t=1}^T \left(y_t - \bar{y}_t \right)^2$$

Auto-covariance at lag k:

$$\gamma_k = \frac{1}{T-k} \sum_{t=k+1}^{T} (y_t - \bar{y}_t) (y_{t-k} - \bar{y}_t)$$

Autocorrelation at lag k:

$$\rho_k = \frac{\gamma_k}{\gamma_0}$$

Partial autocorrelation function (PACF)

Partial autocorrelation at lag k is the correlation between y_t and y_{t-k} after removing the effect of the intermediate observations (i.e., y_{t-1} to y_{t-k+1}).

Y	Y at lag 1	Y at lag 2
y_1		
y_2	y_1	
y_3	y_2	y_1
y_4	y_3	y_2
y_5	y_4	y_3
•••		
y_T	y_{T-1}	y_{T-2}
	y_T	y_{T-1}
		y_T

For instance: Is there a relationship between yesterday's positive affect and tomorrow's positive affect above and beyond their relationship to today's positive affect?

Sequence, ACF and PACF

200 400 600 800 1000

Time

0

0 5

25

15

Lag

25

Lag

0 5 15

Outline

- Why time series analysis?
- Autocorrelation
- ARMA models
- Stationarity
- The state-space model
- Kalman filter and parameter estimation
- Diverse models in state-space format
- Miscellaneous

AR(1): $y_t = \phi_1 y_{t-1} + u_t$

Example with $\phi_1 = 0.7$ and $\phi_1 = -0.7$:

Example with $\phi_1 = 1.2$ and $\phi_2 = -0.7$ and with $\phi_1 = 0.2$ and $\phi_2 = 0.7$:

MA(1): $y_t = u_t - \theta_1 u_{t-1}$

Examples with $\theta_1 = 0.7$ and with $\theta_1 = -0.7$:

MA(2): $y_t = u_t - \theta_1 u_{t-1} - \theta_2 u_{t-2}$

Examples with $\theta_1 = 1.2$ and $\theta_2 = -0.7$, and with $\theta_1 = 0.2$ and $\theta_2 = 0.7$:

Example with $\phi_1 = .8$ and $\theta_1 = 0.8$, and with $\phi_1 = -0.8$ and $\theta_1 = -0.8$:

Pure AR, pure MA, or an ARMA(p, q)?

In general:

- an AR(p) can always be written as an MA(∞)
- an $\mathsf{MA}(q)$ can **always** be written as an $\mathsf{AR}(\infty)$

Other (rather unexpected) results found by Granger and Morris (1976):

- $AR(1) + WN \rightarrow ARMA(1,1)$
- $AR(1) + AR(1) \rightarrow ARMA(2,1)$
- $MA(1) + WN \rightarrow MA(1)$

You may consider:

- interpretation (social sciences)
- forecasting (econometrics)
- parsimony

Outline

- Why time series analysis?
- Autocorrelation
- ARMA models
- Stationarity
- The state-space model
- Kalman filter and parameter estimation
- Diverse models in state-space format
- Miscellaneous

Stationarity

Stationarity is an important concept in time series analysis:

- is based on using **backshift operators** and the **unit root circle** (as all introductory texts on time series analysis do!)
- implies that **all moments** (i.e., means, variances, covariances, lagged covariances, etc.) are **independent of time**

For instance:

- mean is constant over time
- γ_k depends on the lag k, not on t (i.e., the occasion itself)

Two typical examples of nonstationary processes:

- trends over time (including cycles?)
- random walk: $y_t = y_t + e_t$

Stationarity of an AR(p)

For an AR(1) to be stationary, $|\phi| < 1$.

For an AR(2) to be stationary we need:

- $\phi_2 \phi_1 < 1$
- $\phi_2 + \phi_1 < 1$
- $|\phi_2| < 1$

which leads to the following triangle:

(Check out: http://freakonometrics.hypotheses.org/12081)

Outline

- Why time series analysis?
- Autocorrelation
- ARMA models
- Stationarity
- The state-space model
- Kalman filter and parameter estimation
- Diverse models in state-space format
- Miscellaneous

Rocket science

State space model with **known parameters**:

- Kalman filter predicts the future state (e.g., the location of your space rocket), based on current and previous observations (on-line procedure)
- Kalman smoother predicts the state based on previous, current and future observations (off-line procedure)

Often, the parameter values are NOT known.

Then, certain **by-products** of the Kalman filter/smoother can be used in a **likelihood function** (see later).

The basic framework

Measurement equation

 $y_t = c_t + Z_t a_t + e_t$ with

 $e_t \sim MN(0, GG_t)$

- c_t is the vector with intercepts in the measurement equation
- Z_t is the matrix with factor loadings
- *GG_t* is the covariance matrix of the measurement errors

Transition equation

 $a_t = d_t + T_t a_{t-1} + u_t$ with $u_t \sim MN(0, HH_t)$

- d_t is the vector with intercepts in the transition equation
- T_t is the matrix with cross- and auto-regressive coefficients
- *HH_t* is the covariance matrix of the dynamic errors

In a more basic version these model matrices are fixed over time.

Measurement equation: regressing y_t on a_t

 $y_t = c + \mathbf{Z}a_t + e_t$ $e_t \sim MN(0, \mathbf{GG})$

Transition equation: Regressing a_t **on** a_{t-1}

$$a_t = d + \mathbf{T}a_{t-1} + u_t$$
$$u_t \sim MN(0, \mathbf{HH})$$

State-space model = Latent VAR(1) model

 $y_t = c + \mathbf{Z}a_t + e_t$ $e_t \sim MN(0, \mathbf{GG})$

 $a_t = d + \mathbf{T}a_{t-1} + u_t$ $u_t \sim MN(0, \mathbf{HH})$

Outline

- Why time series analysis?
- Autocorrelation
- ARMA models
- Stationarity
- The state-space model
- Kalman filter and parameter estimation
- Diverse univariate models in state-space format
- Miscellaneous

State-space model versus SEM

Two ways in which SEM can be use to do TSA:

Toeplitz method, based on making lagged variables

 $\begin{array}{cccc} y_1 & & \\ y_2 & y_1 & \\ y_3 & y_2 & \\ y_4 & y_3 & \\ \cdots & \\ y_T & y_{T-1} & \end{array}$

Advantage: easy

Disadvantage: violates assumption of independent cases (=rows); no true ML estimates (and wrong fit measures)

(cf. Hamaker, Dolan & Molenaar, 2002)

Raw maximum likelihood estimation, based on $N{=}1$

 $y_1 \quad y_2 \quad y_3 \quad \dots \quad y_T$

Advantage: gives ML estimates

Disadvantage: requires inversion of (at least) a $T \times T$ matrix (computationally troublesome)

(cf. Hamaker, Dolan and Molenaar, 2003)

See Chow, Ho, Hamaker and Dolan (2010) for further comparison of state-space modeling and SEM.

Kalman filter for parameter estimation

The Kalman filter can be used to **predict future states** when the **parameters are known**.

In practice, the parameter values are often unknown.

In that case, **by-products** of the Kalman filter can be used to **estimate the parameters**:

- the one-step-ahead-prediction error $e_{t|t-1} = y_t y_{t|t-1}$
- the covariance matrix of $e_{t|t-1}$ (i.e., F_t)

These are **plugged into a likelihood function**, which is then **optimized** with respect to the unknown parameters.

Hence, for each set of possible parameter values, the entire Kalman filter is run from t = 1 to t = T.

Kalman filter for parameter estimation

Outline

- Why time series analysis?
- Autocorrelation
- ARMA models
- Stationarity
- The state-space model
- Kalman filter and parameter estimation
- Diverse models in state-space format
- Miscellaneous

Just a latent vector AR(1) model?

At first sight the state-space model **seems to be** just a latent VAR(1) model.

However, it is actually a **very flexible framework** for all sorts of time series models:

- all ARIMA models
- multivariate extensions
- dynamic factor analysis

Extensions may consist of:

- predictors (e.g., time, intervention, weather conditions) in the measurement and/or transition equation
- time-varying parameters
- regime switches (through combination with a hidden Markov process)

AR(1) in state-space format

Measurement equation:

 $y_t = c + a_t$

- c is a vector containing the unknown mean
- Z is a 1 by 1 matrix containing 1
- GG is a zero matrix

Transition equation:

$$a_t = Ta_{t-1} + u_t$$

- d is a zero vector
- T is a 1 by 1 matrix containing the autoregressive parameter
- HH is a 1 by 1 covariance matrix containing the variance of the innovations

AR(1) with measurement error

Measurement equation:

 $y_t = c + a_t + e_t$

- c is a vector containing the unknown mean
- Z is a 1 by 1 matrix containing 1
- GG is a 1 by 1 covariance matrix with the variance of the measurement error

Transition equation:

$$a_t = Ta_{t-1} + u_t$$

- d is a zero vector
- T is a 1 by 1 matrix containing the autoregressive parameter
- HH is a 1 by 1 covariance matrix containing the variance of the innovations

AR(2) in state-space format

Measurement equation:

$$y_t = c + \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} a_t \\ a_{t-1} \end{bmatrix} = c + a_t$$

where GG is a zero matrix.

Transition equation:

$$\begin{bmatrix} a_t \\ a_{t-1} \end{bmatrix} = \begin{bmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{t-1} \\ a_{t-2} \end{bmatrix} + \begin{bmatrix} u_t \\ 0 \end{bmatrix} = \begin{bmatrix} \phi_1 a_{t-1} + \phi_2 a_{t-2} + u_t \\ a_{t-1} \end{bmatrix}$$

- d is a zero vector
- *HH* is a 2 by 2 covariance matrix containing only the variance of the innovations (element 1,1)

Bivariate VAR(1) in state-space format

The measurement equation:

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{1,t} \\ a_{2,t} \end{bmatrix}$$

where GG is a zero matrix.

The transition equation:

$$\begin{bmatrix} a_{1,t} \\ a_{2,t} \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{bmatrix} \begin{bmatrix} a_{1,t-1} \\ a_{2,t-1} \end{bmatrix} + \begin{bmatrix} u_{1,t} \\ u_{2,t} \end{bmatrix} = \begin{bmatrix} \phi_{11}a_{1,t-1} + \phi_{21}a_{2,t-1} + u_{1,t} \\ \phi_{22}a_{2,t-1} + \phi_{12}a_{1,t-1} + u_{2,t} \end{bmatrix}$$

- d is a zero vector
- HH is a 2 by 2 covariance matrix of $u_{1,t}$ and $u_{2,t}$

Graphical representations

Applications of VAR models

VAR models are of interest, because

- they allow you to study **Granger causality**: Can you predict Y from X, after controlling for previous levels of Y?
- they allow you to determine which variable is "causally dominant" when there are reciprocal effects
- they can be interpreted as **networks** (alternative to latent variable approach)

Some interesting replicated VAR applications

- Schmitz and Skinner (1994): Perceived control, effort and academic performance
- Rosmalen et al. (2012): Depression and physical activity
- Snippe et al. (2014): Mindfulness, repetitive thinking and depressive symptoms
- Van Gils et al. (2014): Stress and functional somatic symptoms

In all these studies they find important differences across individuals.

Dynamic factor model

Dynamic factor analysis is used for time series data consisting of **multiple indicators** of an underlying construct.

There are two popular versions:

- at the latent level there is a VARMA model; the factor loadings only appear at lag $\mathbf{0}$
- at the latent level there is **white noise**; the factor loadings appear at **different lags** (e.g., EEG data)

Outline

- Why time series analysis?
- Autocorrelation
- ARMA models
- Stationarity
- The state-space model
- Kalman filter and parameter estimation
- Diverse univariate models in state-space format
- Miscellaneous

Covariance matrix of the series

For a **univariate AR(1)**, we have: $\sigma_y^2 = \frac{\sigma_u^2}{1-\phi^2}$.

Similarly, for a (latent) VAR model we can express the covariance matrix of y_t in terms of

- lagged regression parameters Φ
- covariance matrix of the innovations Γ (i.e., HH in the state-space model)

Specifically (from Kim and Nelson, 1999):

$$\Sigma_y = mat \Big[(I - \Phi \otimes \Phi)^{-1} vec(\Gamma) \Big]$$

- vec() implies you put all the matrix elements in a vector
- mat() implies you place all the vector elements in a square matrix

Model fit

Despite the **similar appearance**, state-space modeling and SEM are **not the same**: For a time series there is **no saturated model** against which we can test other models.

We can **compare our model to other models**, including the white noise model (independence model), using

- log likelihood ratio test (for nested models)
- AIC, BIC, DIC, etc. (for all models)

Fit may be **less interesting** to econometricians and meteorologists: Their primary interest is **forecasting**.

To conclude

- time series analysis is a large class of diverse techniques to analyze $N{=}1\ {\rm data}$
- ARMA models are only a small (but basic) part of this
- time series models may be extended with cycles or trends over time
- in psychology we typically have N>1; there are different ways of handling this

References and suggested readings

- Chow, S.-M., Ho, M-H. R., Hamaker, E. L., & Dolan, C. V.(2010). Equivalence and Differences Between Structural Equation Modeling and State-Space Modeling Techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17, 303-332.
- Granger & Morris (1976). Time series modelling and interpretation. *Journal of the Royal Statistical Society, 139,* 246-257.
- Hamaker (2012). Why researchers should think within-person: A paradigmatic rationale. In Mehl & Conner (Eds.), *Handbook of research methods for studying daily life.* (pp. 43-61). New York, NY: The Guilford Press.
- Hamaker, E. L., & Dolan, C. V. (2009). Idiographic data analysis: Quantitative methods from simple to advanced. In J. Valsiner, P. C. M. Molenaar, M. C. D. P. Lyra and N. Chaudhary (Eds). *Dynamic Process Methodology in the Social and Developmental Sciences*, 191-216. New York: Springer-Verlag.
- Hamaker, E. L. and Dolan, C. V. and Molenaar, P. C. M. (2003). ARMA-based SEM when the number of time points T exceeds the number of cases N: Raw data maximum likelihood. Structural Equation Modeling, 10, 352-379
- Hamaker, E. L. and Dolan, C. V. and Molenaar, P. C. M. (2002). On the nature of SEM estimates of ARMA parameters. Structural Equation Modeling, 9, 347-368.
- Hamaker, & Grasman (2014). To center or not to center? Investigating inertia with a multilevel autoregressive model. *Frontiers in Psychology*, *5*, 1492. doi:10.3389/fpsyg.2014.01492
- Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

References and suggested readings

- Kim, C-J, and Nelson, C. R. (1999). *State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications*. Cambridge, MA: The MIT Press.
- Raudenbush S.W. & Bryk, A.S. (2002). *Hierarchical linear models: Applications and data analysis methods (Second Edition)*. Thousand Oaks, CA: Sage Publications.
- Rosmalen, Wenting, Roest, de Jonge & Bos (2012). Reveaing causal heterogeneity using time series analysis of ambulatory assessments: Application to the association between depression and physical activity after myocardial infarction. *Psychosomatic Medicine*, 74, 377-389.
- Schmitz (2000). Auf der Suche nach dem verlorenen Individuum: Vier Theoreme zur Aggregation von Prozessen. *Psychologische Rundschau, 51,* 83-92.
- Schmitz & Skinner (1994). Perceived control, effort, and academic performance: Interindividual, intraindividual, and multivariate time-series analyses. *Journal of Personality and Social Psychology, 64*, 1010-1028.
- Snippe, Bos, van der Ploeg, Sanderman, Fleer & Schroevers (2014). Time-series analysis of daily changed in mindfulness, repetitive thinking, and depressive symptoms during mindfulness-based treatment. *Mindfulness*, doi:10.1007/s12671-014-0354-7.
- van Gils, Burton, Bos, Janssens, Schoevers, & Rosmalen (2014). Individual variation in temporal relationships between stress and functional somatic symptoms. *Journal of Psychosomatic Research*, 77(1), 34-39.

Mplus 8: Dynamic SEM

Applications

Ellen L. Hamaker Utrecht University

Tihomir Asparouhov & Bengt Muthén Muthén & Muthén

May 23, 2016

Intensive longitudinal data

Two approaches we can take when T is large and N>1:

1. Top-down approach (i.e., dynamic multilevel modeling):

- $\bullet\,$ use time series models as level 1
- allow for quantitative individual differences in model dynamics at level 2
- can be used with relative small T (say 20), but requires at least moderate N (say ${>}30)$

2. Bottom-up approach (i.e., replicated time series analysis)

- $\bullet\,$ use time series models to model N=1 data
- allow for quantitative and qualitative differences between persons
- can be used with small N (say 2), but requires relative large T (say >50)

Alternative approach: **pooled time series analysis** (requires N*T>50).

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Univariate multilevel AR(1) model: Random mean

Centering part:

$$PA_{it} = \mu_i + PA_{it}^*$$

- μ_i is the individual's mean (i.e., baseline, trait, equilibrium) of positive affect
- *PA*^{*}_{it} is the within-person centered (cluster-mean centered) score

Univariate multilevel AR(1) model: Random inertia

Autoregressive part:

 $PA_{it}^* = \phi_i PA_{i,t-1}^* + \zeta_{it}$

- ϕ_i is the **autoregressive parameter** (i.e., inertia, carry-over, or regulatory weakness)
- ζ_{ii} is the innovation (residual, disturbance, dynamic error) (with $\zeta_{ii} \sim N(0, \sigma_{\zeta}^2)$)

Univariate multilevel AR(1) model: Level 1

Putting these together we can write:

Level 1: Random mean and inertia

 $PA_{it} = \mu_i + \phi_i PA_{i,t-1}^* + \zeta_{it}$

where $\zeta_{it} \sim N(0, \sigma^2)$.

Level 2:

$$\mu_i = \mu + v_{0i}$$
$$\phi_i = \phi + v_{1i}$$

$$\begin{bmatrix} v_{0i} \\ v_{1i} \end{bmatrix} \sim MN \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} & \psi_{22} \end{bmatrix} \end{bmatrix}$$

Intermezzo: Centering level 1 predictors?

There are three ways in which we can include level 1 predictors:

- non-centered (NC)
- grand mean centered (GMC)
- cluster mean centered (CMC)

NC and GMC are **equivalent** (i.e., alternative parametrizations).

CMC is **equivalent under some circumstances** (i.e., no random slopes, and predictor means included as level 2 predictor of random intercept), but not always.

Converging consensus: The slope from NC/GMC can be an "**uninterpretable blend**" of the within and between relationship (Raudenbush & Bryck, 2002).

Intermezzo: Centering the lagged predictor?

Hamaker and Grasman (2015) compared four ways of centering the **lagged predictor** in a multilevel AR(1) model:

- NC: no centering
- $CMC(\bar{y}_{.i})$: cluster mean centering using the sample mean
- CMC($\hat{\mu}_i$): cluster mean centering using the multilevel estimate
- $CMC(\mu_i)$: cluster mean centering using the true mean

AR parameter	Sample size		Bias				CR _{0.95}			
	N	т	NC	C(y.,)	$C(\hat{\mu}_i)$	C (μ _i)	NC	$C(\bar{y}_{\cdot i})$	$C(\hat{\mu}_i)$	C (μ _i)
$\phi_i \sim N(0.3, 0.1)$	20	20	0.002	-0.072	-0.069	-0.068	0.928	0.762	0.785	0.787
		50	0.000	-0.027	-0.027	-0.026	0.940	0.900	0.901	0.898
		100	0.000	-0.013	-0.013	-0.013	0.932	0.932	0.932	0.932
	50	20	0.005	-0.071	-0.069	-0.067	0.893	0.480	0.512	0.518
		50	0.001	-0.027	-0.026	-0.026	0.936	0.800	0.804	0.805
		100	0.000	-0.013	-0.013	-0.013	0.946	0.902	0.902	0.903
	100	20	0.006	-0.070	-0.068	-0.066	0.892	0.196	0.227	0.242
		50	0.001	-0.027	-0.027	-0.027	0.930	0.623	0.630	0.637
		100	0.000	-0.013	-0.013	-0.013	0.930	0.851	0.854	0.851

Table 4 | Bias and coverage rates for fixed autoregressive parameter ϕ in multilevel autoregressive model under diverse scenarios.

Intermezzo: Centering the lagged predictor?

Conclusion (from Hamaker & Grasman, 2015):

- CMC leads to a downward bias in the estimation of the AR parameter
- CMC is better when interest is in a level 2 predictor of the AR parameter

Note that when N=1, the OLS estimate of the AR parameter is known to be biased (e.g., Marriott & Pope, 1954).

BUT: CMC in Mplus is not associated with this bias (nor is it in WinBUGS, see Jongerling et al., 2015), probably because the **same (individual) parameter** is used as the intercept and for CMC of the lagged predictor.

NOTE: CMC is the default in Mplus when creating lagged variables.

Daily diary data on positive affect (PA)

Data: 89 females measured for 42 days (see Jongerling, Laurenceau & Hamaker, 2015).

Input: Create an observed lagged variable

```
TITLE: Multilevel AR(1) with random mean
DATA: file is fem.dat:
VARIABLE:
names=subj couple day dhappy
dexcited denerget denthusi
                                  PA:
cluster=subi:
useobs are
(subj .ne. 1003) .and.
(subj .ne. 1107) .and.
(subj .ne. 1223) .and.
(subi .ne. 1233) .and.
(subi .ne. 1249) .and.
(subi .ne. 1327) .and.
(subj .ne. 1425);
MISSING = all(999);
USEVAR are PA:
LAGVAR = PA(1): CREATE AN OBSERVED LAGGED VARIABLE
```

NOTE: Using LAGVAR = PA(1); gives a lagged variable based on lagging the observed variable PA by one.

Input: Random AR parameter and random mean

ANALYSIS: TYPE IS TWOLEVEL random; estimator=bayes; fbiter=10000; bseed = 7487; proc = 2;

MODEL:

%WITHIN%
phi | PA on PA&1; ! AUTOREGRESSION IS RANDOM
%BETWEEN%
PA with phi; ! CORRELATED RANDOM MEAN AND AR

NOTE: The lagged variable (created by LAGVAR = PA(1);) is referred to as PA&1.

Path diagram of the multilevel AR(1) model

Results: Trace plots (10,000 iterations)

Level 1 residual variance:

Trace plot of: Parameter 1, %WITHIN%: PA 📃 📼 💌
⁵ where define an example a state of the state have been defined as
a y men har beren en beren en ander en en en en beren en beren en er en er en en en beren her en en en en en en
4.5- Indextana universitativa daniva daniva da hida peneruhak sena hauturka kateka parter
* + + × × × + + × × × × × × × × × × × ×

AR parameter:

Trace plot of: Parameter 2, %BETWEEN%: [PHI]				
0.3 - Linkaliya B. Maamata, a de string a ship ya mba Manasaka I dag ya ku kisha ya watiki da ya shiki da ya sh				
0.2 ar yeller and a standard of the standard of				
0.1-				
0 0 0 0 0 0 0 0 0 0 0 0 0 0				

Average mean:

Trace plot of: Parameter 3, %BETWEEN%: [PA]						
8.4 And the state of the state						
7.9 hadulatali da da Not Alanak I (Aldulak da Nuda da Nuda da Nuda da Santa da Santa da Santa da Santa da Sant						
7.4- o o transmission of the stability is a stability of the stability of the stability of the stability of the stab						
0.8 - Sherker alla da a mata da a sa a sa a sa angara a sa ang						
* ~ * % % % % % % % % % % % % % % % % %						

Variance of AR parameter:

Cov. mean and AR parameter:

Variance of mean:

Results: Parameter estimates

MODEL RESULTS

	Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
Within Level						
Residual Variances PA	4.563	0.109	0.000	4.357	4.784	*
Between Level						
PA WITH PHI	-0.053	0.049	0.129	-0.152	0.039	
Means PA PHI	7.393 0.263	0.231	0.000	6.933 0.221	7.842 0.304	* *
Variances PA PHI	4.470 0.010	0.752 0.005	0.000	3.316 0.002	6.260 0.022	* *

Testing whether a random effect is significant is problematic; instead we can compare two models (with and without a random effect).

Input: Fixed AR parameter and random mean

```
ANALYSIS: TYPE IS TWOLEVEL random;
            estimator=baves;
            fbiter=10000:
            bseed = 6186;
MODEL:
  %WITHIN%
 PA on PA&1 (phi); ! AUTOREGRESSION
  %BETWEEN%
 PA:
                   ! RANDOM MEAN
OUTPUT: TECH8 TECH1;
PLOT: TYPE = PLOT2:
```

In this model there is no random AR parameter; only a random mean.

Random AR parameter?

Warning: Make sure the DIC is **stable** (this may take *many more iterations* than apparent from trace plots).

To ensure the DIC is stable, run the model at least **twice with a different seed**: This should give the same DIC and pD.

Here we compare the model with a fixed AR parameter (ϕ) to a model with a random AR parameter (ϕ_i).

Model	DIC	рD		
ϕ	16501	192		
ϕ_i	16498	216		

Only slight preference for model with random AR parameter.
Literature on inertia

Affective inertia has been empirically related to

- neuroticism (+) and agreeableness (-) (Suls, Green & Hillis, 1998)
- concurrent depression (+) (Kuppens, Allen & Sheeber, 2010, *Psychological Science*)
- future depression (+) (Kuppens, Sheeber, Yap, Whittle, Simmons & Allen, 2012)
- rumination (+) (Koval, Kuppens, Allen & Sheeber, 2012)
- self-esteem (-) (Houben, Van den Noortgate & Kuppens, 20150)
- life-satisfaction (-) (Houben et al., 2015)
- PA (-) and NA (+) (Houben et al., 2015)

Note that inertia in positive affects seems also maladaptive.

Autoregressive parameter in **daily drinking behavior** has been positively related to being female (Rovine & Walls, 2006); however, the **average** was close to **zero**.

Extension 1: Random innovation variance

Level 1: Random mean, inertia, and innovation variance

 $PA_{ti} = \mu_i + \phi_i PA_{t-1,i}^* + \sigma_i \zeta_{ti}$

where $\zeta_{ti} \sim N(0, 1)$.

Level 2:

$$\mu_i = \mu + v_{0i}$$

$$\phi_i = \phi + v_{1i}$$

$$\sigma_i = \sigma + v_{2i}$$

$$\begin{bmatrix} v_{0i} \\ v_{1i} \\ v_{2i} \end{bmatrix} \sim MN \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} & & \\ \psi_{21} & \psi_{22} & \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix}$$

Why random innovation variance? Statistical

For N=1 we have: $y_t = \mu + \phi(y_{t-1} - \mu) + \zeta_t$, such that:

$$Var(y_t) = E\left[\left\{y_t - \mu\right\}^2\right] = E\left[\left\{\mu + \phi(y_{t-1} - \mu) + \zeta_t - \mu\right\}^2\right]$$
$$= E\left[\left\{\phi(y_{t-1} - \mu) + \zeta_t\right\}^2\right]$$
$$= \phi^2 E\left[\left\{y_{t-1} - \mu\right\}^2\right] + \sigma^2$$

where
$$E[{y_t - \mu}^2] = E[{y_{t-1} - \mu}^2] = \sigma_y^2$$

$$\begin{split} \sigma_y^2 &= \phi^2 \sigma_y^2 + \sigma^2 \\ \sigma_y^2 - \phi^2 \sigma_y^2 &= \sigma^2 \\ (1 - \phi^2) \sigma_y^2 &= \sigma^2 \\ \sigma_y^2 &= \frac{\sigma^2}{1 - \phi^2} \end{split}$$

Hence, individual differences in σ_y^2 can come from individual differences in ϕ and/or σ^2 .

Why random innovation variance? Substantive

Level 1: Random mean, inertia, and innovation variance

 $PA_{ti} = \mu_i + \phi_i PA_{t-1,i}^* + \sigma_i \zeta_{ti}$

where $\zeta_{ti} \sim N(0, 1)$.

Substantive interpretation of random innovation variance:

- individual differences in exposure
- individual differences in reactivity

Level 1: Reactivity to Positive Events (PE)

 $PA_{ti} = \mu_i + \phi_i PA_{t-1,i}^* + \beta_i PE_{ti}^* + \zeta_{ti}$

Some results for stress sensitivity and reward experience:

- Suls et al. (1998)
- Wichers: relationship with depression and effect of therapy

Extension 2: Measurement error

Level 1: Measurement equation

 $PA_{it} = \mu_i + \eta_{it} + \epsilon_{it}$

where

- μ_i is the individual's mean
- η_{it} is the individual's true score at occasion t
- ϵ_{it} is the individual's measurement error at occasion t (could also consider individual differences in its variance)

Level 1: Transition equation

 $\eta_{it} = \phi_i \eta_{i,t-1} + \sigma_i \zeta_{it}$

where $\zeta_{it} \sim N(0, 1)$.

Some thoughts about measurement error in a multilevel AR(1) model:

- advantage: separate signal from noise
- advantage: reliability per person
- disadvantage: AR-effects in error end up in signal
- disadvantage: not identified when $\phi = 0$

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Multiple indicator AR(1) model for PA

We have three indicators: excited (EXC), energetic (ENE), and enthusiastic (ENT).

Level 1: Within-person factor model

$$\begin{bmatrix} EXC_{it} \\ ENE_{it} \\ ENT_{it} \end{bmatrix} = \begin{bmatrix} \mu_{EXC,i} \\ \mu_{ENE,i} \\ \mu_{ENT,i} \end{bmatrix} + \begin{bmatrix} 1 \\ \lambda_{2W} \\ \lambda_{3W} \end{bmatrix} PAW_{it} + \begin{bmatrix} \epsilon_{EXC,it} \\ \epsilon_{ENE,it} \\ \epsilon_{ENT,it} \end{bmatrix}$$

- μ 's are the individual's means
- λ 's are the within-person factor loadings
- PAW_{it} is the individual's latent score at occasion t
- ϵ 's are the individual's measurement errors at occasion t

Multiple indicator AR(1) model for PA

Note that PAW_{it} has a mean of zero for each person (hence no within-person means here).

Level 1: Within-person latent AR(1) $PAW_{it} = \phi_i PAW_{i,t-1} + \sigma_i \zeta_{it}$

- ϕ_i is the individual's autoregressive parameter
- $\sigma_i \zeta_{it}$ is the individual's innovation at occasion t (with var(ζ)=1)

Multiple indicator AR(1) model for PA

Level 2: Between-person factor model

$$\begin{bmatrix} \mu_{EXC,i} \\ \mu_{ENE,i} \\ \mu_{ENT,i} \end{bmatrix} = \begin{bmatrix} \mu_{EXC} \\ \mu_{ENE} \\ \mu_{ENT} \end{bmatrix} + \begin{bmatrix} 1 \\ \lambda_{2B} \\ \lambda_{3B} \end{bmatrix} PAB_i + \begin{bmatrix} \epsilon_{EXC,i} \\ \epsilon_{ENE,i} \\ \epsilon_{ENT,i} \end{bmatrix}$$

Level 2: Fixed and random effects

$$PAB_i = v_{0i}$$

$$\phi_i = \phi + v_{1i}$$

$$\zeta_i = \zeta + v_{2i}$$

$$\begin{bmatrix} v_{0i} \\ v_{1i} \\ v_{2i} \end{bmatrix} \sim MN \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} \\ \psi_{21} \\ \psi_{31} \\ \psi_{32} \\ \psi_{33} \end{bmatrix}$$

Input: Multiple indicator AR(1) model

Allowing for:

- random means
- random autoregression
- random innovation SD

MODEL:

```
      %WITHIN%

      PA BY excited energet enthusi (&1);! FACTOR MODEL AND LAGGED LATENT VARIABLE

      PA@0;
      ! FIX THE RESIDUAL TO ZERO

      zeta BY;
      ! CREATE AN INNOVATION TERM

      PA with zeta@0;
      ! FIX COVARIANCE BETWEEN PA AND ZETA TO ZERO

      zeta@1;
      ! FIX VARIANCE OF THIS TERM TO 1

      sigma | PA on zeta;
      ! ALLOW FOR A RANDOM LOADING: INDIVIDUAL SD OF THE INNOVATION

      phi | PA on PA&1;
      ! AUTOREGRESSION IS RANDOM
```

%BETWEEN%

! FACTOR MODEL ! ALLOW FOR CORRELATED RANDOM EFFECTS ! ALLOW FOR CORRELATED RANDOM EFFECTS ! ALLOW FOR CORRELATED RANDOM EFFECTS

Path diagram

Within level:

Between level:

BETHNEEN	- <u>8</u>		
	(PAS)E	Jac ()	B
1	Age Ag	55	
(Exc)	ENE	T T	
(EB,)	EB2	EB	

Results: Parameter estimates (within)

MODEL RESULTS

		Posterior	One-Tailed	95%	C.I.	
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Within Level						
PA BY						
EXCITED	1.000	0.000	0.000	1.000	1.000	
ENERGET	0.953	0.029	0.000	0.898	1.012	*
ENTHUSI	1.049	0.029	0.000	0.993	1.108	*
PA WITH						
ZETA	0.000	0.000	1.000	0.000	0.000	
Variances						
ZETA	1.000	0.000	0.000	1.000	1.000	
Residual Variances	5					
EXCITED	0.431	0.014	0.000	0.404	0.459	*
ENERGET	0.323	0.012	0.000	0.300	0.346	*
ENTHUSI	0.318	0.012	0.000	0.294	0.343	*
PA	0.001	0.000	0.000	0.001	0.001	

Remember: $Var(PA_i) = \frac{\sigma_i^2}{1-\phi_i^2}$

Results: Parameter estimates (between)

PAB BY						
EXCITED	1.000	0.000	0.000	1.000	1.000	
ENERGET	1.069	0.069	0.000	0.945	1.218	*
ENTHUSI	1.035	0.067	0.000	0.915	1.178	*
PAB WITH						
SIGMA	0.038	0.022	0.032	-0.002	0.085	
PHI	-0.033	0.022	0.056	-0.080	0.008	
PHI WITH						
SIGMA	-0.025	0.009	0.000	-0.046	-0.010	*
Maana						
means	0.560	0.001	0.000	0 500	0 600	*
SIGMA	0.562	0.031	0.000	0.502	0.623	
PHI	0.393	0.029	0.000	0.336	0.450	*
Intercepts						
EXCITED	2.404	0.082	0.000	2.242	2.565	*
ENERGET	2.513	0.083	0.000	2.349	2.676	*
ENTHUSI	2.470	0.081	0.000	2.311	2.629	*
Variances						
PAR	0 470	0 095	0 000	0 321	0 692	*
STGMA	0.470	0.000	0.000	0.021	0.092	*
DUT	0.035	0.012	0.000	0.041	0.007	*
FILL	0.025	0.011	0.000	0.009	0.051	
Residual Variance	S					
EXCITED	0.086	0.019	0.000	0.056	0.130	*
ENERGET	0.037	0.014	0.000	0.012	0.069	*
ENTHUSI	0.035	0.013	0.000	0.011	0.064	*

NOTE: Means are the fixed effects, variances are the random effects.

Factorial invariance across levels

Within Lovel

Are the factor loadings for PA identical across levels?

within rev	-1						
PA I	BY						
EXCITE	C	1.000	0.000	0.000	1.000	1.000	
ENERGE	г	0.953	0.029	0.000	0.898	1.012	*
ENTHUS	I	1.049	0.029	0.000	0.993	1.108	*
Between Le	vel						
PAB I	BY						
EXCITE	D	1.000	0.000	0.000	1.000	1.000	
ENERGE	г	1.069	0.069	0.000	0.945	1.218	*
ENTHUS	I	1.035	0.067	0.000	0.915	1.178	*

If $\lambda_w = \lambda_b$, this implies that DICs using 500,000 iterations within-person, state-like fluctuations $\lambda_w = \lambda_h$ $\lambda_w \neq \lambda_b$ 22355 22364 are situated on the same 22349 22358 underlying dimension as stable 22353 22360 between-person, trait-like differences. 22361 Average: 22352

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Multilevel VAR(1) model

In a vector autoregressive (VAR) model, a vector is regressed on preceding versions of itself.

VAR(1):

 $oldsymbol{y}_t = oldsymbol{c} + oldsymbol{\Phi} oldsymbol{y}_{t-1} + oldsymbol{\zeta}_t \qquad ext{with} \quad oldsymbol{\mu} = (oldsymbol{I} - oldsymbol{\Phi})^{-1}oldsymbol{c}$

Alternative expression of a VAR(1):

$$oldsymbol{y}_t = oldsymbol{\mu} + oldsymbol{\Phi}(oldsymbol{y}_{t-1} - oldsymbol{\mu}) + oldsymbol{\zeta}_t$$

When considering a multilevel extension, we want to allow for individual differences in:

- μ : the trait scores of individuals
- Φ : the inertias and cross-lagged relationships

NOTE: We write $y_{t-1}^* = y_{t-1} - \mu$.

Example of a multilevel VAR(1) model

We make use of bivariate data from Emilio Ferrer: Positive Affect and Rumination (see Schuurman, Grasman & Hamaker, 2016).

Six days of ESM data with N=129 and T about 45.

Within level:

$$\begin{bmatrix} PA_{it} \\ RU_{it} \end{bmatrix} = \begin{bmatrix} \mu_{PA,i} \\ \mu_{RU,i} \end{bmatrix} + \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} PA_{it-1}^* \\ RU_{it-1}^* \end{bmatrix} + \begin{bmatrix} \zeta_{PA,it} \\ \zeta_{RU,it} \end{bmatrix}$$
$$= \begin{bmatrix} \mu_{PA,i} + \phi_{11}PA_{it-1}^* + \phi_{12}RU_{it-1}^* + \zeta_{PA,it} \\ \mu_{RU,i} + \phi_{21}PA_{it-1}^* + \phi_{22}RU_{it-1}^* + \zeta_{RU,it} \end{bmatrix}$$

Model specification

MODEL:

```
%WITHIN%
E1 BY PA@1 (&1);
PA@0.01;
E2 BY pieker@1(&1);
pieker@0.01;
E1 with E2;
E1;
E2;
phi11 | E1 on E1&1;
phi22 | E2 on E2&1;
phi12 | E1 on E2&1;
phi21 | E2 on E1&1;
```

At the between level the means and lagged effects are all allowed to correlate.

Results within level

Within	Level						
E1 PA	BY	1.000	0.000	0.000	1.000	1.000	
E2 PI	BY EKER	1.000	0.000	0.000	1.000	1.000	
E1 E2	WITH	0.496	0.047	0.000	0.413	0.593	*
Resid PA PI	lual Variances EKER	0.010 0.010	0.000 0.000	0.000 0.000	0.010 0.010	0.010 0.010	
E1		1.961	0.046	0.000	1.890	2.063	*
E2		2.640	0.062	0.000	2.518	2.759	*

Note that the measurement error variances **fixed at 0.01** are **negligibly small** compared to the total variances.

Results between level

Between Level

PA	WITH						
PHI1	1	0.025	0.007	0.000	0.014	0.040	*
PHI1	2	0.015	0.008	0.035	0.000	0.034	
PHI2	1	-0.033	0.011	0.000	-0.052	-0.010	*
PHI2	2	-0.028	0.011	0.000	-0.056	-0.009	*
PIEKER	WITH						
PHI1	1	-0.028	0.008	0.000	-0.046	-0.015	*
PHI1	2	-0.012	0.010	0.110	-0.034	0.006	
PHI2	1	0.045	0.013	0.000	0.020	0.074	*
PHI2	2	0.067	0.015	0.000	0.041	0.103	*
PHI11	WITH						
PHI1	2	-0.002	0.002	0.040	-0.006	0.000	
PHI2	1	-0.006	0.002	0.000	-0.010	-0.003	*
PHI2	2	-0.002	0.002	0.070	-0.005	0.001	
PHI12	WITH						
PHI2	1	0.000	0.001	0.435	-0.003	0.003	
PHI2	2	-0.004	0.003	0.055	-0.010	0.001	
PHI21	WITH						
PHI2	2	-0.002	0.003	0.280	-0.008	0.003	
PA	WITH						
PIEK	ER	-0.070	0.048	0.085	-0.169	0.018	

Results between level (continued)

Means						
PA	2.244	0.063	0.000	2.117	2.357	*
PIEKER	1.752	0.069	0.000	1.599	1.872	*
PHI11	0.620	0.008	0.000	0.605	0.635	*
PHI22	0.356	0.017	0.000	0.318	0.392	*
PHI12	0.140	0.011	0.000	0.117	0.160	*
PHI21	0.265	0.014	0.000	0.236	0.292	*
Variances						
PA	0.382	0.055	0.000	0.291	0.496	*
PIEKER	0.624	0.092	0.000	0.446	0.811	*
PHI11	0.006	0.001	0.000	0.003	0.009	*
PHI22	0.020	0.004	0.000	0.013	0.030	*
PHI12	0.006	0.002	0.000	0.003	0.010	*
PHI21	0.014	0.003	0.000	0.008	0.022	*

Means are the fixed effects; variances are for the random effects.

Standardizing the cross-lagged parameters

Schuurman et al. (2016) presents three forms of **standardization in multilevel models**:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it parallels standardizing when N=1.

Standardized fixed effect should be the **average standardized within-person effect**.

Does it make a difference?

From Schuurman et al. (2016)

Networks based on multilevel VAR models

Borsboom has used the idea of **networks as an alternative to latent variables** (in the context of psychopathology).

Dynamical networks are often based on a VAR(1) model.

Bringmann et al. (2013) analyzed the lagged relationships between the following variables:

- cheerful (C)
- pleasant event (E)
- worry (W)
- fearful (F)
- sad (S)
- relaxed (R)

NOTE: They performed **separate multilevel regression analyses** on each of these variables, using all (lagged) variables as predictors.

Results at the population level

C=cheerful; E=pleasant event; W=worry; F=fearful; S=sad; and R=relaxed; red solid lines represent positive relationships; green dashed lines represent negative relationship. From Bringmann et al. (2013)

Results at the individual level (2 individuals)

C=cheerful; E=pleasant event; W=worry; F=fearful; S=sad; and R=relaxed From Bringmann et al. (2013)

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Bottom-up: Replicated time series analysis

Characteristics of TSA include:

- N=1
- T is large
- observations are ordered (in time)

Goals of TSA include:

- prediction and forecasting: weather, currency, earthquakes, epidemic
- signal estimation (Kalman filter): e.g. to control your spacecraft
- identify the nature of the process

Example considered here is based on Hamaker, Grasman and Kamphuis (2016).

Bipolar disorder (BD)

Bipolar disorder is characterized by severe changes in affect and activity: Bipolar patients suffer from **manic** and **depressed episodes**.

BAS dysregulation in BD

BAS may play a crucial role:

- active BAS: expecting reward; difficulty inhibiting behavior when approaching a goal; hope
- inactive BAS: not expecting reward; difficulty to be motivated; despair

Two forms of BAS dysregulation:

Slow return to baseline

Switches between distinct states

Slow-return-to-baseline model 1: AR(1)

AR(1) $y_t = c + \phi y_{t-1} + u_t$

Carry-over. In the AR(1) model today's mood is influenced by yesterday's mood, and the higher ϕ , the more yesterday's mood carries over to today's mood.

Slow-return-to-baseline model 2: ARIMA(0,1,1)

ARIMA(0,1,1)

$$y_t = y_{t-1} - \theta u_{t-1} + u_t$$

Balancing preservation and adaption: The closer θ is to 1, the stronger preservation is; if θ is zero, the system fully adapts to perturbations.

$$E[y_t | y_{t-1}] = y_{t-1} - \theta e_{t-1}$$

$$= \mathbf{E}[y_{t-1}|y_{t-2}] + e_{t-1} - \theta e_{t-1}$$

The parameter θ is considered to indicate the balance between **preservation** and **adaption**.

Slow-return-to-baseline model 2: ARIMA(0,1,1)

ARIMA(0,1,1) $y_t = y_{t-1} - \theta u_{t-1} + u_t$

Balancing preservation and adaption: The closer θ is to 1, the stronger preservation is; if θ is zero, the system fully adapts to perturbations.

Regime-switching model 1: HM model

HMM

$$y_t = \mu_{S_t} + \sigma_{S_t} u_t$$

Switching: In the HMM model the system switches between two different WN processes (different means and variances). For each state, there is a probability to stay in it ($\pi_{1|1}$ and $\pi_{2|2}$) and a probabilities to switch ($\pi_{1|2}$ and $\pi_{2|1}$).

Regime-switching model 2: MSAR(1) model

MSAR(1) $y_{t} = c_{S_{t}} + \phi_{S_{t}}y_{t-1} + \sigma_{S_{t}}u_{t} \xrightarrow{\psi_{S_{t}}} y_{t} \xrightarrow{\psi_{S_{t}}} y_{t-1} \xrightarrow{\psi_{S_{t$

Switching with carry-over. The MSAR model is characterized by switches between two different AR(1) processes (different constant c, AR parameter ϕ and variance). Switches are smoother than in the HMM, due to the carry-over.

VAR(1) model and results

model: y1 with y2; y1 y2 on y1&1 y2&1;

MODEL RESULTS

Note we make use of observed lagged variables y1&1 and y2&1.

Posterior One-Tailed 95% C.T. Estimate S. D. P-Value Lower 2.5% Upper 2.5% Significance Y1 ON 0.881 0.079 0.000 0.717 1.042 × Y1&1 Y2&1 0.041 0.140 0.379 -0.2340.312 Y2 ON Y1&1 -0.1010.072 0.066 -0.2460.037 Y2&1 0.476 0.124 0.000 0.236 0.709 × Y1 WITH Y2 -15.4383.366 0.000 -23.886-10.165× Intercepts Υ1 2,439 3.873 0.242 -4.87510.487 Ŷ2 9,931 3.443 0.004 3.565 17.121× Residual Variances Υ1 26.481 4.307 0.000 19,982 36.577 × ¥2 22,405 3.674 0.000 17.120 31.582 ×
VARIMA(0,1,1) model

```
model:
    el with e2;
    y1-y2@0.5; [y1-y2@0];
    el by y1@1 (&1);
    e2 by y2@1 (&1);
    y1 on y1&1@1 e1&1;
    y2 on y2&1@1 e2&1;
```

where:

- e1 by y1@1; defines e1 as the innovation of the process y1
- e1 by (&1); defines a lagged version of e1 (i.e., innovation at previous time point)
- y1 on y1&1@1; defines the I(1) part (random walk)
- y1 on e1&1; defines the MA(1) part (moving average process)

and:

- y1@0.5; sets the measurement error variance to a negligible small number
- and [y1@0]; sets the mean of the process to zero (because it is a unit root process; mean is not identified)

VARIMA(0,1,1) results

MODEL RESULTS

		Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
E1 Y1	ВҮ	1.000	0.000	0.000	1.000	1.000	
E2 Y2	BY	1.000	0.000	0.000	1.000	1.000	
Y1 E1&1	ON	-0.200	0.098	0.025	-0.384	-0.000	*
Y2 E2&1	ON	-0.483	0.098	0.000	-0.658	-0.271	*
Y1 Y1&1	ON	1.000	0.000	0.000	1.000	1.000	
Y2 Y2&1	ON	1.000	0.000	0.000	1.000	1.000	
E1 E2	WITH	-17.078	3.639	0.000	-25.295	-11.432	ŵ
Intercep Y1 Y2	its	0.000 0.000	0.000	1.000 1.000	0.000	0.000	
Variance E1 E2	S	27.380 24.409	4.583 3.974	0.000 0.000	20.380 18.196	37.988 33.781	ŵ ŵ
Residual Y1 Y2	Variance	5 0.500 0.500	0.000	0.000 0.000	0.500 0.500	0.500 0.500	

HMM model

```
model:
    %overall%
    C on C&1:
    y1 with y2; y1-y2; [y1-y2];
model c:
     %C#1%
     y1 WITH y2*-0.12152 (v3);
      [ y1*2.02322 ];
[ y2*1.66623 ]:
     y1*0.40301 (v1);
     v2*0.27785 (v2):
     %C#2%
     v1 WITH v2*-0.12661 (w3);
      [ y1*2.05252 ];
[ y2*1.61515 ];
     y1*0.40550 (w1);
     v2*0.20074 (w2);
model prior:
v1~IW(2,2);
v2~IW(2,2);
v3~IW(0.2):
w1~IW(2,2);
w2~IW(2,2);
w3~IW(0,2);
```

The overall model part:

- C ON C&1; specifies hidden Markov model
- y1 with y2; ensures the variables are allowed to correlate

Rest is used for specifying starting values and priors

HMM results

MODEL RESULTS

	Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
Latent Class Patte	rn 1 1					-
Y1 WITH Y2	-29.667	8.942	0.000	-52.482	-16.570	ŵ
Means Y1 Y2	20.767 17.659	1.241 0.962	0.000 0.000	18.314 15.725	23.326 19.515	ŵ ŵ
Variances Y1 Y2	59.325 37.273	14.126 8.495	0.000	39.518 25.278	94.774 58.170	*
Latent Class Patte	rn 1 2					
Y1 WITH Y2	0.176	0.394	0.317	-0.618	0.936	
Means Y1 Y2	33.508 10.044	1.283 0.055	0.000	30.991 9.949	35.930 10.157	ŵ ŵ
Variances Y1 Y2	57.985 0.092	14.079 0.032	0.000	39.033 0.044	93.425 0.167	ŵ ŵ
Categorical Latent	Variables					
C#1 ON C&1#1 C&1#2	0.819 0.192	0.061 0.061	0.000	0.682 0.087	0.921 0.327	*
Class Proportions						
Class 1 Class 2 Class 3 Class 4	0.409 0.091 0.096 0.404	0.031 0.031 0.031 0.031	0.000 0.000 0.000 0.000	0.341 0.039 0.044 0.336	0.460 0.158 0.164 0.456	

MSVAR(1) model

```
model:
    %overall%
    c on c&1;
    y1 with y2; y1-y2; [y1-y2];
     y1 y2 on y1&1 y2&1;
MODEL C:
     %C#1%
     y1 y2 on y1&1 y2&1;
      [ y1*20.76743 ] (1);
[ y2*17.65870 ] (2);
     y1*59.32514 (v1);
     v2*37.27272 (v2):
     ý1 WITH y2 (v3):
     %C#2%
     v1 v2 on v1&1 v2&1;
      [ y1*33.50785 ] (6);
[ y2*10.04370 ] (7);
     v1*57.98539 (w1):
     y2*0.09211 (w2);
     v1 WITH v2*0 (w3);
model prior:
v1~IW(2,2);
v2~IW(2,2);
v3~IW(0,2);
w1~IW(2,2);
w2~IW(2,2);
w3~IW(0,2);
```

The overall model part:

- C ON C&1; specifies hidden Markov model
- y1 y2 on y1&1 y2&1; specifies a VAR(1) model
- y1 with y2; ensures the innovations are allowed to correlate

Rest is used for starting values and priors

MSVAR(1) results

MODEL RESULTS

		Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
Latent Class Pattern 1 1							
Y1 Y1&1 Y2&1	ON	0.814 0.133	0.131 0.182	0.000 0.219	0.543	1.053 0.494	ŵ
Y2 Y1&1 Y2&1	ON	-0.096 0.370	0.126 0.184	0.224 0.026	-0.338 -0.001	0.159 0.732	
Y1 Y2	WITH	-21.215	5.869	0.000	-35.638	-12.993	*
Intercep Y1 Y2	ts	1.008 13.713	5.500 5.439	0.428 0.007	-9.502 2.799	11.979 24.266	ŵ
Residual Y1 Y2	Variances	27.773 29.673	6.527 6.904	0.000 0.000	18.603 20.094	43.894 46.646	ŵ ŵ
Latent Class Pattern 1 2							
Y1 Y1&1 Y2&1	ON	0.836 0.063	0.091 0.276	0.000 0.404	0.649 -0.477	1.009 0.611	×
Y2 Y1&1 Y2&1	ON	0.001 0.054	0.006 0.020	0.394 0.011	-0.010 0.014	0.013 0.091	×
Y1 Y2	WITH	-0.001	0.192	0.499	-0.368	0.407	
Intercep Y1 Y2	ts	5.076 9.401	5.182 0.341	0.155 0.000	-5.268 8.728	15.452 10.097	×
Residual Y1 Y2	Variances	17.086 0.063	4.395 0.024	0.000	11.082 0.038	27.990 0.130	*

MSVAR(1) results

Categorical Latent Variables

C#1 ON C&1#1 C&1#2	0.807 0.215	0.064 0.064	0.000	0.663 0.107	0.914 0.355	* *
Class Proportions						
Class 1 Class 2 Class 3 Class 4	0.404 0.096 0.107 0.393	0.032 0.032 0.032 0.032	0.000 0.000 0.000 0.000	0.332 0.043 0.054 0.322	0.457 0.168 0.177 0.446	

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Some other issues to consider

- data may be irregularly spaced (e.g., ESM data), which should be taken into account when estimating lagged effects
- time is treated as discrete here, but it might be more appropriate to consider it as continuous (Deboeck & Preacher, 2015; Voelkle et al., 2012)
- there may be trends and cycles present which should (or not?) be accounted for (Liu & West, 2015; Wang & Maxwell, 2015)
- random factor loadings (allowing for idiographic loadings)
- level 2 predictors for the individual differences in dynamics
- time-varying parameters
- multilevel extension of the regime-switching models
- fit measure that allows for all models to be compared...

References and suggested readings

- Bringmann, Vissers, Wichers, Geschwind, Kuppens, Peeters, Borsboom & Tuerlinckx (2013). A network approach to psychopathology: New insights into clinical longitudinal data. *PLoS ONE*, 8, e60188, 1-13.
- Deboeck & Preacher (2016). No need to be discrete: A method for continuous time mediation analysis. *Structural Equation Modeling*, *23*, 61-75.
- Geschwind, Peeters, Drukker, van Os & Wichers (2011). Mindfulness training increases momentary positive emotions and reward experience in adults vulnerable to depression: A randomized controlled trial. *Journal of Consulting and Clinical Psychology*, *79*, 618-628.
- De Haan-Rietdijk, Gottman, Bergeman & Hamaker (2014). Get over it! A multilevel threshold autoregressive model for state-dependent affect regulation. *Psychometika*. doi: 10.1007/s11336-014-9417-x
- Hamaker (2012). Why researchers should think within-person: A paradigmatic rationale. In Mehl & Conner (Eds.), *Handbook of research methods for studying daily life.* (pp. 43-61). New York, NY: The Guilford Press.
- Hamaker & Grasman (2014). To center or not to center? Investigating inertia with a multilevel autoregressive model. *Frontiers in Psychology*, *5*, 1492. doi:10.3389/fpsyg.2014.01492
- Hamaker, Grasman & Kamphuis (2016). Modeling BAS dysregulation in Bipolar Disorder: Illustrating the potential of time series analysis. *Assessment*.

References and suggested readings

- Houben, Van den Noortgate & Kuppens, (2015). The relation between short-term emotion dynamics and psychological well-being: A meta-analysis. *Psychological Bulletin*, *141*, 901-930.
- Jongerling, Laurenceay & Hamaker (2015). A Multilevel AR(1) Model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. *Multivariate Behavioral Research, 50*, 334-349.
- Koval, Kuppens, Allen & Sheeber (2012). Getting stuck in depression: The roles of rumination and emotional inertia. *Cognition & Emotion, 26*, 1412-1427.
- Kuppens, Allen & Sheeber (2010). Emotional inertia and psychological maladjustment. *Psychological Science*, *21*, 984-991.
- Kuppens, Sheeber, Yap, Whittle, Simmons & Allen (2012). Emotional inertia prospectively predicts the onset of depressive Multilevel AR(1) model 33 disorder in adolescence. *Emotion*, *12*, 283-289.
- Liu & West (2015). Weekly cycles in daily report data: An overlooked issue. *Journal of Personality*. doi: 10.1111/jopy.12182
- Marriott & Pope(1954). Bias in the estimation of autocorrelations. *Biometrika*, 41, 390âÅ\$402. doi:10.1093/biomet/41.3-4.390
- Rovine & Walls (2006). A multilevel autoregressive model to describe interindividual differences in the stability of a process. In Schafer & Walls (Eds.), *Models for intensive longitudinal data* (pp. 124-147). New York, NY: Oxford.

References and suggested readings

- Raudenbush S.W. & Bryk, A.S. (2002). *Hierarchical linear models: Applications and data analysis methods (Second Edition)*. Thousand Oaks, CA: Sage Publications.
- Schuurman, Ferrer, de Boer-Sonnenschein & Hamaker (2016). How to compare cross-lagged associations in a multilevel autoregressive model. *Psychological Methods*.
- Schuurman, Houtveen, & Hamaker (2015). Incorporating measurement error in n=1 psychological autoregressive modeling. *Frontiers in Psychology*, 6. doi: 10.3389/fpsyg.2015.01038
- Suls, Green & Hillis (1998). Emotional reactivity to everyday problems, affective inertia, and neuroticism. *Personality and Social Psychology Bulletin, 24*, 127-136.
- Voelkle, Oud, Davidov & Schmidt (2012). An SEM approach to continuous time modeling of panel data: relating authoritarianism and anomia. *Psychological Methods*, 17, 176-192. doi: 10.1037/a0027543
- Wang, Hamaker & Bergeman (2012). Investigating inter-individual differences in short-term intra-individual variability. *Psychological Methods*, *17*, 567-581.
- Wang & Maxwell (2015). On disaggregating between-person and within-person effects with longitudinal data using multilevel models. *Psychological Methods*, 20, 63-83. http://dx.doi.org/10.1037/met0000030
- Wichers, Barge-Schaapman, Nicolson, Peeters, de Vries, Mengelers & van Os (2009). Reduced stress-sensitivity or increased reward experience: The psychological mechanism of response to antidepressant medication. *Neuropsychopharmacology*, *34*, 923-931.

Thank you

e.l.hamaker@uu.nl