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Cattell’s data box
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Cross-sectional research: A single snapshot
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Panel research: A few snapshots
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Time series data: Looking at the movie
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Time series data: Looking at the movie
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What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics,
seismology, meteorology, control engineering, and signal processing.

Main characteristics:

® N=1 technique
e T is large (say >50)

® concerned with trends, cycles and autocorrelation structure (i.e., serial
dependency)

goal: forecasting (# prediction)
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TSA in the social and medical sciences

In sociology:
® quarterly unemployment numbers
e effect of alcohol consumption per capita on criminal violence rates

e effect of suicide news on suicide rates

In medical research:
o effect of safety warnings on antidepressants use
® effects of pain control strategies

e effect of 9/11 attacks on weekly psychiatric patient admissions

In psychology:
® network of symptoms in depressive patient
o effect of feedback on academic performance

® effect of an intervention on the relationship between stress and affect
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Intensive longitudinal data

Intensive longitudinal data are gathered using:

daily diary with end-of-day-measurements (self-report)
experience sampling method (self-report)

ecological momentary assessment (self-report)
ambulatory assessment (including physiological variables)
event contingency (self-report)

observational measurements (expert rater)

For more info on methodology, check out:

Tamlin Conner (e.g., her seminar with Joshua Smyth on YouTube)
Society for Ambulatory Assessment

Trull and Ebner-Priemer (2013)
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It’s a revolution!

Number of publications

Publications on experience sampling, ambulatory assessment,
ecological momentary assessment, or daily diary

450
400
350
300
250
200
150
100
50
0

1990

1995

2000

Year

2005

2010

2015

Py CINFO

e—— P bMed

18/62



A fundamental problem in a nutshell

Cross-sectional relationship Within-person relationship Between-person relationship

Percentage of typos
Percentage of typos
Percentage of typos

Number of words per minute Number of words per minute Number of words per minute

Taken from Hamaker (2012).
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Three perspectives on data

Cross-sectional Within Between
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Interindividual differences in intraindividual variation
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Taken from Hamaker and Grasman (2014).
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Cross-sectional correlations: A blend

Schmitz (2000):
Tcs:7727'b+(1_772)rw J

where
® 7., is the cross-sectional correlation
® 1, is the between-person correlation
® r, is the within-person correlation

e 1) is the proportion of between-person variance of the total variability

Consequences:

® cross-sectional and panel research may result in an “uninterpretable blend” of
within-person and between-person relationships (cf. Raudenbush and Bryk, 2002)

® in N=1 time series analysis there is only within-person variance
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Lags
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Autocorrelation function (ACF)

The ACF and the PACF can be used as diagnostic tools to determine the
nature of the underlying process.

Variance (or: auto-covariance at lag 0):

_\2
Yo = % Zthl(l/t - yt)

Auto-covariance at lag k:

T = T Skt (e — 9e) (Ye—k — Be)

Autocorrelation at lag k:

_
Pk = %
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Partial autocorrelation function (PACF)

Partial autocorrelation at lag k is the correlation between y; and y;_; after
removing the effect of the intermediate observations (i.e., y;_; to

ytkarl)-
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For instance: Is there a relationship between yesterday's positive affect
and tomorrow’s positive affect above and beyond their relationship to

today’s positive affect?
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Sequence, ACF and PACF
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AR(1): yr = dr1yi—1 + w

> Vi Yea Yt Yerr >

Example with ¢1 = 0.7 and ¢; = —0.7:
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AR(2): yi = d1ys—1 + Payi—2 + w

Example with ¢; = 1.2 and ¢35 = —0.7 and with ¢; = 0.2 and ¢ = 0.7:
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MA(].) Yt = U — Hlut_l
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MA(2) Yt = U — Hlut_l - qut_g

Examples with 6; = 1.2 and 6, = —0.7, and with 8; = 0.2 and 0, = 0.7:
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ARMA(].,].) Yy = bet—l 4+ up — Orupq
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Pure AR, pure MA, or an ARMA(p, ¢)?

In general:
® an AR(p) can always be written as an MA(oc0)

® an MA(g) can always be written as an AR(0)

Other (rather unexpected) results found by Granger and Morris (1976):
e AR(1) + WN — ARMA(1,1)
e AR(1) + AR(1) — ARMA(2,1)
e MA(1) + WN — MA(1)

You may consider:
® interpretation (social sciences)
® forecasting (econometrics)

® parsimony
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Stationarity

Stationarity is an important concept in time series analysis:

® is based on using backshift operators and the unit root circle (as all introductory
texts on time series analysis do!)

e implies that all moments (i.e., means, variances, covariances, lagged covariances,
etc.) are independent of time

For instance:
® mean is constant over time

® -, depends on the lag &, not on ¢ (i.e., the occasion itself)

Stationary AR(1) process Random walk

Two typical examples of
nonstationary processes:

ARL
ARL

e trends over time (including cycles?) “1

® random walk: y; = y: + e; e S

Time. Time
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Stationarity of an

AR(p)

For an AR(1) to be stationary, |¢| < 1.

For an AR(2) to be stationary we need:

o oo — 1 <1
o o+ <1
® [p2| <1

which leads to the following triangle:

Explosive; Non-Oscillatory

[ (1,0) /Non-Explosive;

[

1
O Exptosive; Non-Osciltory

Won-Oscillatory\_ (1, 0)

©,
Non-Explosive;

)

Oscillatory

Explosive; Oscillatory

0,1
€Y £ypiosive; Oscillatory

(Check out: http://freakonometrics.hypotheses.org/12081)
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Rocket science

State space model with known
parameters:

e Kalman filter predicts the future state
(e.g., the location of your space rocket),
based on current and previous observations
(on-line procedure)

® Kalman smoother predicts the state based
on previous, current and future
observations (off-line procedure)

Often, the parameter values are NOT known.

Then, certain by-products of the Kalman filter/smoother can be used in a
likelihood function (see later).
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The basic framework

Measurement equation
Y = ¢t + Zrag + e with er ~ MN(O, GGt) J

® ¢, is the vector with intercepts in the measurement equation
® 7, is the matrix with factor loadings

® (G(, is the covariance matrix of the measurement errors

Transition equation
ar = dy + Traz_1 + up with U ~ MN(O, HHt) J

d; is the vector with intercepts in the transition equation

T is the matrix with cross- and auto-regressive coefficients

HH, is the covariance matrix of the dynamic errors

In a more basic version these model matrices are fixed over time.
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Measurement equation: regressing y; on a;

Yyt = c+Zar + e
er ~ MN(0, GG)
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Transition equation: Regressing a; on a;

ar=d+Tar_1 + w
g ~ MN(0, HH)
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State-space model = Latent VAR(1) model

yr = c+ Zay + e
e, ~ MN(0,GG)

ar=d+ Ta—1 + w
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State-space model versus SEM

Two ways in which SEM can be use to do TSA:

Toeplitz method, based on making lagged

variables
Y1
Y2 Y1
Y3 Y2
Ya Ys
yr Yyr-1

Advantage: easy

Disadvantage: violates assumption of
independent cases (=rows); no true ML
estimates (and wrong fit measures)

(cf. Hamaker, Dolan & Molenaar, 2002)

Raw maximum likelihood estimation,
based on N=1

v Y2 Y ... YT

Advantage: gives ML estimates

Disadvantage: requires inversion of (at
least) a T' x T matrix (computationally
troublesome)

(cf. Hamaker, Dolan and Molenaar, 2003)

See Chow, Ho, Hamaker and Dolan (2010) for further comparison of state-space

modeling and SEM.
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Kalman filter for parameter estimation

The Kalman filter can be used to predict future states when the
parameters are known.

In practice, the parameter values are often unknown.

In that case, by-products of the Kalman filter can be used to estimate
the parameters:

® the one-step-ahead-prediction error ¢,;_1 = y: — yy¢—1

® the covariance matrix of e,;,_1 (i.e., F})

These are plugged into a likelihood function, which is then optimized
with respect to the unknown parameters.

Hence, for each set of possible parameter values, the entire Kalman
filter isrun fromt=1tot = T.
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Kalman filter for parameter estimation

Choose 4 and
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Just a latent vector AR(1) model?

At first sight the state-space model seems to be just a latent VAR(1)
model.

However, it is actually a very flexible framework for all sorts of time
series models:

e all ARIMA models
® multivariate extensions

® dynamic factor analysis

Extensions may consist of:

® predictors (e.g., time, intervention, weather conditions) in the measurement
and/or transition equation

® time-varying parameters

® regime switches (through combination with a hidden Markov process)
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AR(1) in state-space format

Measurement equation:
Yyt =c+ag J

® c is a vector containing the unknown mean
® 7 is a1l by 1 matrix containing 1
® (GG is a zero matrix

Transition equation:
ag = Tay—1 + uy J

® ( is a zero vector
® T is a1l by 1 matrix containing the autoregressive parameter

® HH is a1l by 1 covariance matrix containing the variance of the innovations
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AR(1) with measurement error

Measurement equation:
Yt =Cc+ ar+ et J

® c is a vector containing the unknown mean
® 7 is al by 1 matrix containing 1
® (GG is a1l by 1 covariance matrix with the variance of the measurement error

Transition equation:
ap = Tay_1 + uy }

® ( is a zero vector
® T is al by 1 matrix containing the autoregressive parameter

® HH is a1 by 1 covariance matrix containing the variance of the innovations
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AR(2) in state-space format

Measurement equation:

we=ct [l [] et

where GG is a zero matrix.

Transition equation:
ar | |P1 d2| |a—1 ug| _ |P1as—1 + p2ai—2 + u
= i =
Ap—1 1 0] |a—9 0 at—1

® ( is a zero vector

® HH is a 2 by 2 covariance matrix containing only the variance of the innovations
(element 1,1)
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Bivariate VAR(1) in state-space format

1 0 aj.t
0 1 az ¢

The measurement equation:
Y1t _ C1
Y2,t C2

_l’_

where GG is a zero matrix.

The transition equation:

are| _ (P11 P2 a1 4 || = $11a1,4-1 + P21a2,4—1 + U1t
azt 12 Pa2| |a2,4-1 ug, ¢ $2202,1—1 + P12a1,4—1 + Ut

e ( is a zero vector

e HH is a 2 by 2 covariance matrix of u1 ; and up ¢

53/62



Graphical representations
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Applications of VAR models

VAR models are of interest, because

® they allow you to study Granger causality: Can you predict Y from X, after
controlling for previous levels of Y?

® they allow you to determine which variable is “causally dominant” when there are
reciprocal effects

® they can be interpreted as networks (alternative to latent variable approach)

Some interesting replicated VAR applications

Schmitz and Skinner (1994): Perceived control, effort and academic performance

Rosmalen et al. (2012): Depression and physical activity

Snippe et al. (2014): Mindfulness, repetitive thinking and depressive symptoms

Van Gils et al. (2014): Stress and functional somatic symptoms

In all these studies they find important differences across individuals.
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Dynamic factor model

Dynamic factor analysis is used for time series data consisting of multiple
indicators of an underlying construct.

There are two popular versions:

o at the latent level there is a VARMA model; the factor loadings only
appear at lag 0

e at the latent level there is white noise; the factor loadings appear at
different lags (e.g., EEG data)
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Covariance matrix of the series

2
For a univariate AR(1), we have: o} = ;7%;.

Similarly, for a (latent) VAR model we can express the covariance
matrix of y; in terms of

® lagged regression parameters ¢

® covariance matrix of the innovations I' (i.e., HH in the state-space model)

Specifically (from Kim and Nelson, 1999):
Yy=mat|(I -P® q))_lvec(F)

where

® yec() implies you put all the matrix elements in a vector

e mat() implies you place all the vector elements in a square matrix
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Model fit

Despite the similar appearance, state-space modeling and SEM are not
the same: For a time series there is no saturated model against which
we can test other models.

We can compare our model to other models, including the white noise
model (independence model), using

® |og likelihood ratio test (for nested models)
e AIC, BIC, DIC, etc. (for all models)

Fit may be less interesting to econometricians and meteorologists: Their
primary interest is forecasting.
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To

conclude

time series analysis is a large class of diverse techniques to analyze
N=1 data

ARMA models are only a small (but basic) part of this
time series models may be extended with cycles or trends over time

in psychology we typically have N>1; there are different ways of
handling this
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Intensive longitudinal data

Two approaches we can take when T is large and N>1:

1. Top-down approach (i.e., dynamic multilevel modeling):
® use time series models as level 1
® allow for quantitative individual differences in model dynamics at level 2

® can be used with relative small T (say 20), but requires at least moderate N (say
>30)

2. Bottom-up approach (i.e., replicated time series analysis)
® use time series models to model N=1 data
® allow for quantitative and qualitative differences between persons

® can be used with small N (say 2), but requires relative large T (say >50)

Alternative approach: pooled time series analysis (requires N*T>50).
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QOutline

1. Top-down approach:
¢ Univariate multilevel AR(1) model
e Multiple indicator multilevel AR(1) model
e Multilevel VAR(1) model

2. Bottom-up approach:

e Comparison of linear models and regime-switching models

3. Discussion
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Univariate multilevel AR(1) model: Random mean

Centering part:
PAy = p; + PAG,

where
® ,; is the individual's mean (i.e., baseline, trait, equilibrium) of positive affect

® PAj} is the within-person centered (cluster-mean centered) score

__Af\.‘\ P/

‘YLNU“V/\’V XW/\&VM UA mr
NS

A
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Univariate multilevel AR(1) model: Random inertia

Autoregressive part:
zt—@PAztl"‘Czt J

where

® ¢; is the autoregressive parameter (i.e., inertia, carry-over, or regulatory
weakness)

® (;: is the innovation (residual, disturbance, dynamic error) (with (i ~ N(0,0¢))
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Univariate multilevel AR(1) model: Level 1

Putting these together we can write:

Level 1: Random mean and inertia
PAy = pi + ¢iPAT ;1 + Cat J

where (i ~ N(0,02).

Level 2:

i = [+ Yog
i = ¢+ vi5

o )1

where
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Intermezzo: Centering level 1 predictors?

There are three ways in which we can include level 1 predictors:
® non-centered (NC)
® grand mean centered (GMC)

® cluster mean centered (CMC)

NC and GMC are equivalent (i.e., alternative parametrizations).

CMC is equivalent under some circumstances (i.e., no random slopes,
and predictor means included as level 2 predictor of random intercept), but
not always.

Converging consensus: The slope from NC/GMC can be an

“uninterpretable blend"” of the within and between relationship
(Raudenbush & Bryck, 2002).
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Intermezzo: Centering the lagged predictor?

Hamaker and Grasman (2015) compared four ways of centering the

lagged predictor in a multilevel AR(1) model:

® NC: no centering

® CMC(y.;): cluster mean centering using the sample mean

® CMC(fi;): cluster mean centering using the multilevel estimate

® CMC(p;): cluster mean centering using the true mean

Table 4 | Bias and coverage rates for fixed autoregressive parameter ¢ in multilevel autoregressive model under diverse scenarios.

AR parameter Sample size Bias CRy.s5
N T NC Cly.,) Clje;) Clyef) NC Cly.,;) Cljt;) Clpei)
@ ~ N(0.3,0.1) 20 20 0.002 —0.072 —0.069 —0.068 0.928 0.762 0.785 0.787
50 0.000 -0.027 -0.027 —0.026 0.940 0.900 0.901 0.898
100 0.000 —0.013 —0.013 —0.013 0.932 0.932 0.932 0.932
50 20 0.005 -0.07 —-0.069 —0.067 0.893 0.480 0.512 0.518
50 0.001 -0.027 -0.026 —0.026 0.936 0.800 0.804 0.805
100 0.000 —0.013 —0.013 -0.013 0.946 0.902 0.902 0.903
100 20 0.006 -0.070 —-0.068 —0.066 0.892 0.196 0.227 0.242
50 0.001 —0.027 —0.027 —0.027 0.930 0.623 0.630 0.637
100 0.000 -0.013 —0.013 —0.013 0.930 0.851 0.854 0.851
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Intermezzo: Centering the lagged predictor?

Conclusion (from Hamaker & Grasman, 2015):

® CMC leads to a downward bias in the estimation of the AR parameter

® CMC is better when interest is in a level 2 predictor of the AR parameter

Note that when N=1, the OLS estimate of the AR parameter is known to
be biased (e.g., Marriott & Pope, 1954).

BUT: CMC in Mplus is not associated with this bias (nor is it in
WinBUGS, see Jongerling et al., 2015), probably because the same
(individual) parameter is used as the intercept and for CMC of the
lagged predictor.

NOTE: CMC is the default in Mplus when creating lagged variables.
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Daily diary data on positive affect (PA)

Data: 89 females measured for 42 days (see Jongerling, Laurenceau &
Hamaker, 2015).

subj 1001
0 5 10 15
L

subj 1003
o 5 10 15
L1

subj 1007
0 5 10 15
L1

subj 1009
0 5 10 15
L1
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Input: Create an observed lagged variable

TITLE: Multilevel AR(l) with random mean

DATA: file is fem.dact;

VARIABLE:
names=subj couple day dhappy
dexcited denerget denthusi BR:

cluster=subj;

usecbs are

(subj .ne. 1003) .and.
{subj .nme. 1107) .and.
(subj .ne. 1223) .and.
{subj .ne. 1233) .and.
(subj .ne. 1249) .and.
{subj .ne. 1327) .and.
(subj .ne. 1425);

MISSING = all(9%99):
TUSEVAR are PA;

LAGVAR = PR(1): ! CREATE AN OESERVED LAGGED VARIAELE

NOTE: Using LAGVAR = PA(1); gives a lagged variable based on
lagging the observed variable PA by one.
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Input: Random AR parameter and random mean

ANALYSIS: TYPE IS TWOLEVEL random;
estimator=bayes;
fbiter=10000;
bseed = 7487;
proc = 2;

MODEL:

SWITHIN%
phi | PA on PA&l; ! AUTOREGRESSION IS RANDCM

%BETWEEN%
PA with phi; ! CORRELATED RANDOM MEAN AND AR

NOTE: The lagged variable (created by LAGVAR = PA(1);) is referred
to as PA&1.
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Path diagram of the multilevel AR(1) model
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Results: Parameter estimates

MODEL RESULTS

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance

Within Level

Residual Variances
PA 4.563 0.109 0.000 4.357 4.784 *

Between Level

PA WITH
PHI -0.053 0.049 0.129 -0.152 0.039

Means
PA 7.393 0.231 0.000 6.933 7.842 *
PHI 0.263 0.021 0.000 0.221 0.304 *

Variances
PA 4.470 0.752 0.000 3.316 ©.260 *
PHI 0.010 0.005 0.000 0.002 0.022 *

Testing whether a random effect is significant is problematic; instead we
can compare two models (with and without a random effect).
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Input: Fixed AR parameter and random mean

RANRLYSIS: TYPE IS5 TWCOLEVEL random:
estimator=bayes;
fhiter=10000;
bseed = 6186;

MCLDEL:

TWITHIN%
PZ on PR&1 (phi); ! AUTOREGRESSICH

$BETWEEN%
BA; ! BRANDCM MEAN

OUTPUT: TECH8 TECHI1;

FLOT: TYPE = PLOTZ:;

In this model there is no random AR parameter; only a random mean.
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Random AR parameter?

Warning: Make sure the DIC is stable (this may take many more
iterations than apparent from trace plots).

To ensure the DIC is stable, run the model at least twice with a different
seed: This should give the same DIC and pD.

Here we compare the model with a fixed AR parameter (¢) to a model
with a random AR parameter (¢;).

Model | DIC  pD
[0 16501 192
o; 16498 216

Only slight preference for model with random AR parameter.
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Literature on inertia

Affective inertia has been empirically related to
® neuroticism (+) and agreeableness (-) (Suls, Green & Hillis, 1998)

® concurrent depression (+) (Kuppens, Allen & Sheeber, 2010, Psychological
Science)

e future depression (4) (Kuppens, Sheeber, Yap, Whittle, Simmons & Allen, 2012)
e rumination (+) (Koval, Kuppens, Allen & Sheeber, 2012)

® self-esteem (-) (Houben, Van den Noortgate & Kuppens, 20150)

e |Jife-satisfaction (-) (Houben et al., 2015)

PA (-) and NA (+) (Houben et al., 2015)

Note that inertia in positive affects seems also maladaptive.

Autoregressive parameter in daily drinking behavior has been positively
related to being female (Rovine & Walls, 2006); however, the average was
close to zero.
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Extension 1: Random innovation variance

Level 1: Random mean, inertia, and innovation variance

PAy = pi + ¢i PAY_1 ; + 0iCui

where (; ~ N(0,1).

Level 2:
i = b+ Yoi
¢i = ¢+ vi5
O; = 0 + Uy
where
Ui 0 |¥n
vii| ~ MN | |0], |21
V24 0 [¥a1

()
Y32

P33
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Why random innovation variance? Statistical
For N=1 we have: y; = p+ ¢(y;—1 — p) + (i, such that:
Var(y:) = E[{yt - u}Q} = E[{u +O(ye—1 — ) + G — #}2}
= B[{sm-1-w +6)’]

= ¢2E|:{yt_1 - M}Q] + 02

where E[{yt - ,u}ﬂ = E[{yt_l - ,u}ﬂ =0

o§:¢205+02
2 2 2 2
oy —¢ o, =0
(1- )02 = o
2 _ o?
y_17¢2

Hence, individual differences in 0% can come from individual differences

in ¢ and/or o2.
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Why random innovation variance? Substantive

Level 1: Random mean, inertia, and innovation variance
PAy = pi + ¢iPAY_1 ; + 0iCui J

where (; ~ N(0,1).

Substantive interpretation of random innovation variance:

® individual differences in exposure

® individual differences in reactivity

Level 1: Reactivity to Positive Events (PE)
PAti = Ui + (biPA?;_l,i + 6ZPE2; + Cti J

Some results for stress sensitivity and reward experience:

® Suls et al. (1998)

® Wichers: relationship with depression and effect of therapy
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Extension 2: Measurement error

Level 1: Measurement equation
PAy = pi + mit + €3t J

where
® ,i; is the individual's mean
® 7, is the individual's true score at occasion ¢

® ¢; is the individual's measurement error at occasion ¢ (could also consider
individual differences in its variance)

Level 1: Transition equation
Nit = GiNi,t—1 + 03t J

where (;; ~ N(0,1).

Some thoughts about measurement error in a multilevel AR(1) model:
® advantage: separate signal from noise
® advantage: reliability per person
® disadvantage: AR-effects in error end up in signal
® disadvantage: not identified when ¢ = 0
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QOutline

1. Top-down approach:
¢ Univariate multilevel AR(1) model
¢ Multiple indicator multilevel AR(1) model
e Multilevel VAR(1) model

2. Bottom-up approach:

e Comparison of linear models and regime-switching models

3. Discussion
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Multiple indicator AR(1) model for PA

We have three indicators: excited (EXC), energetic (ENE), and
enthusiastic (ENT).

Level 1: Within-person factor model

EXCy WEXC,i 1 €EEXC,it
ENEy| = |uenE,i| + |Xew | PAWs + |€unE,it
ENTy MENT,i Asw €ENT, it

where
® .'s are the individual's means
® )\'s are the within-person factor loadings

® PAW; is the individual's latent score at occasion ¢t

€’'s are the individual’'s measurement errors at occasion ¢
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Multiple indicator AR(1) model for PA

Note that PAW;; has a mean of zero for each person (hence no
within-person means here).

Level 1: Within-person latent AR(1)
PAWy = ¢i PAW; 41 + 0iCat J

where
® ¢; is the individual's autoregressive parameter

® (i is the individual's innovation at occasion ¢ (with var({)=1)
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Multiple indicator AR(1) model for PA

Level 2: Between-person factor model

WEXC,i KEXC 1 €EEXC,i
MENE:| = |MENE| + |XeB| PAB; + |€gNE,;
MENT,; HENT A3B €ENT,i

Level 2: Fixed and random effects

PAB{ = Vo5
s = ¢+ vig
Ci = (¢ + wy
where
Ui o |¥n

vig| ~ MN | |0, [¥21 %22
V2 O [v¥31 v¥32 33
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Input: Multiple indicator AR(1) model

Allowing for:

® random means
® random autoregression

® random innovation SD

ALLOW FOR A RANDOM LOADING: INDIVIDUAL SD OF THE INNOVATION
AUTOREGRESSION IS RANDOM

sigma | PA on zeta;
phi | PA on PA&l;

MODEL:
$WITHINS
PA BY excited energet enthusi (&1);! FACTOR MODEL AND LAGGED LATENT VARIABLE
PRARO; ! FIX THE RESIDUAL TO ZERO
zeta BY; ! CREATE AN INNOVATION TERM
PA with zetalO; ! FIX COVARIANCE BETWEEN PA AND ZETA TO ZERO
zetall; ! FIX VARIANCE OF THIS TERM TO 1
!
1

$BETWEEN%

PAB BY excited energet enthusi;
PAB with sigma;

PAB with phi:

phi with sigma;

[phi*0.2]; phi*0.03;
[sigma*1.2]; sigma*0.1;

FACTOR MODEL

ALLOW FOR CORRELATED RANDOM EFFECTS
ALLOW FOR CORRELATED RANDOM EFFECTS
ALLOW FOR CORRELATED RANDOM EFFECTS
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Path diagram

Within level: Between level:
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Results: Parameter estimates (within)

MODEL RESULTS

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance
Within Level
PA BY
EXCITED 1.000 ©.000 ©0.000 1.000 1.000
ENERGET 0.953 0.029 ©0.0008 0.898 1.012 *
ENTHUSI 1.049 ©0.029 ©.000 0.993 1.108 *
PA WITH
ZETA ©0.000 ©.000 1.000 0.000 ©0.000
Variances
ZETA 1.000 ©.000 9.000 1.000 1.000
Residual Variances
EXCITED 6.431 0.014 ©.0006 @.46e4 9.459 *
ENERGET 9.323 0.012 ©.000 0.300 0.346 *
ENTHUSI 0.318 9.012 9.000 0.294 0.343 *
PA 0.001 9.000 0.000 0.001 0.001
o2
Remember: Var(PA;) = yo—
i
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Results: Parameter estimates (between)

PAB BY
EXCITED 1.000 0.000 0.000 1.000 1.e00
ENERGET 1.069 0.069 ©.000 ©9.945 1.218 *
ENTHUSI 1.835 0.067 0.000 9.915 1.178 *
PAB WITH
SIGMA 0.038 0.022 0.032 -0.002 ©0.085
PHI -9.033 0.022 ©.056 -9.080 0.008
PHI WITH
SIGMA -0.825 0.009 ©.000 -0.046 -0.010 *
Means
SIGMA 0.562 9.031 0.000 9.502 0.623 *
PHI 0.393 0.029 9.000 9.336 0.450 *
Intercepts
EXCITED 2.404 0.082 ©.000 2.242 2.565 *
ENERGET 2.513 0.083 0.000 2.349 2.676 *
ENTHUSI 2.470 0.081 0.000 2.311 2.629 *
Variances
PAB 0.470 0.095 0.000 0.321 0.692 *
SIGMA 0.859 0.012 0.000 9.041 0.087 *
PHI 0.025 0.011 0.000 9.009 0.051 *
Residual Variances
EXCITED 0.086 0.019 0.000 0.056 0.130 *
ENERGET 0.837 0.014 ©.000 9.012 0.069 *
ENTHUSI 0.035 0.013 0.000 9.011 0.064 *

NOTE: Means are the fixed effects, variances are the random

effects.

30/66



Factorial invariance across levels

Are the factor loadings for PA identical across levels?

Within Level

PA BY
EXCITED 1.000
ENERGET 9.953
ENTHUSI 1.04¢

Between Level

PAB BY
EXCITED 1.000
ENERGET 1.069
ENTHUSI 1.835

If Ay = Ap, this implies that

(]

[

.000
.029
.29

.000

.067

within-person, state-like fluctuations

are situated on the same

underlying dimension as stable

between-person, trait-like differences.

9.000
.000
©.600

®

©.600

® ®
@
I3
@

.000

DICs using 500,000 iterations

o

@

.000
.898
.993

.000

.915

B

B e

.000
.012
.1e8

.000
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QOutline

1. Top-down approach:
¢ Univariate multilevel AR(1) model
e Multiple indicator multilevel AR(1) model
¢ Multilevel VAR(1) model

2. Bottom-up approach:

e Comparison of linear models and regime-switching models

3. Discussion
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Multilevel VAR(1) model

In a vector autoregressive (VAR) model, a vector is regressed on preceding
versions of itself.

VAR(1):
y=c+ Py _1+ ¢ with pu=(I—-®) ¢

Alternative expression of a VAR(1):
Yye=p+®(y—1 — p) + ¢

When considering a multilevel extension, we want to allow for individual
differences in:

e pu: the trait scores of individuals

e ®: the inertias and cross-lagged relationships

NOTE: We write y; | = y1—1 — 1.
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Example of a multilevel VAR(1) model

We make use of bivariate data from Emilio Ferrer: Positive Affect and
Rumination (see Schuurman, Grasman & Hamaker, 2016).

Six days of ESM data with N=129 and T about 45.

Within level:

PA;|
RU:|

M PA,i
MRU,i

+ d11 ¢i2| | PA%_, n CPa, it

$21 ¢22| |RU;_4 CRU, it
ppa + $11PAG 1 + ¢12RUG 4 + Cpaa
LRU,: + ¢21PAY_1 + 022 RU;_1 + Cruit
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Model specification

At the between level the means and lagged effects are all allowed to

correlate.

MODEL :

ZWITHIN

E1 BY PAE1 (8&1);
PA@e.01;

E2 BY pieker@l(&1);
pieker@e.o1;

E1 with E2;

E1;

E2;

phill | E1 on E181;
phi22 | E2 on E281;
phil2 | E1 on E281;
phi2l | E2 on E181;
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Results within level

Within Level

E1l BY
PA 1.000 0.000 0.000 1.000 1.000
E2 BY
PIEKER 1.000 0.000 0.000 1.000 1.000
E1l WITH
E2 0.496 0.047 0.000 0.413 ©9.593 *

Residual variances

PA 0.0l10 0.000 0.000 0.010 9.010
PIEKER 0.010 0.000 0.000 0.010 ©.010
El 1.961 0.046 0.000 1.890 2.063 *
E2 2.640 0.062 0.000 2.518 2.759 *

Note that the measurement error variances fixed at 0.01 are negligibly
small compared to the total variances.
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Results between level

Between Le
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Results between level (continued)

Means
PA
PIEKER
PHI11
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Variances
PA
PIEKER
PHI11
PHI22
PHI12
PHI21

OO0 0N

OO0 0000

.244
.752

620

.356
.140

265

.382
.624

606

.020
.06
.014

OO0 06

OO0 0000

063

.069

0e8

.e17
.e11

014

.@55
.092

ool

.ee4
.002
.003

OO0 OO

OO0 0000

600
o0
000
000
600
600

000
600
600
000
o0
000

Means are the fixed effects; variances are for the

OO0 KRN

OO0 0000

117

.599

605

.318
117

236

.291
.446

003

.e13
.ee3
.008

random effects.

OO0 E

OO RrN

357

.872

635

.392
.160

292

.496
.811
.009
.030
.01e
.022

EE I

* Ok X OF % ¥

38/66



Standardizing the cross-lagged parameters

Schuurman et al. (2016) presents three forms of standardization in
multilevel models:

® total variance (i.e., grand standardization)
® between-person variance (i.e., between standardization)
® average within-person variance

® within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it parallels standardizing
when N=1.

Standardized fixed effect should be the average standardized
within-person effect.
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Does it make a difference?

grand variance
r —

av. WP | BP variance I:D

wn ©
S S A\ o
b
o
]
o~ o
e o
=]
S
2
° 9 T T T T T T T T T T 1T
0.0 0.1 02 03 04 05 0.0 0.2 0.4 0.6
¢21 ¢21
GS random GS fixed + WPS random WPS fixed BPS random PS fixed
parameters effects parameters effects parameters effects

From Schuurman et al. (2016)
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Networks based on multilevel VAR models

Borsboom has used the idea of networks as an alternative to latent
variables (in the context of psychopathology).

Dynamical networks are often based on a VAR(1) model.

Bringmann et al. (2013) analyzed the lagged relationships between the
following variables:

cheerful (C)
pleasant event (E)
worry (W)

fearful (F)

sad (S)

relaxed (R)

NOTE: They performed separate multilevel regression analyses on
each of these variables, using all (lagged) variables as predictors.
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Results at the population level

Average (fixed effects) network Individual differences network

C=cheerful; E=pleasant event; W=worry; F=fearful; S=sad; and R=relaxed; red solid
lines represent positive relationships; green dashed lines represent negative relationship.
From Bringmann et al. (2013)
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Results at the individual level (2 individuals)

© @

@ ‘@

C=cheerful; E=pleasant event; W=worry; F=fearful; S=sad; and R=relaxed
From Bringmann et al. (2013)
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QOutline

1. Top-down approach:
¢ Univariate multilevel AR(1) model
e Multiple indicator multilevel AR(1) model
e Multilevel VAR(1) model

2. Bottom-up approach:

e Comparison of linear models and regime-switching models

3. Discussion
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Bottom-up: Replicated time series analysis

Characteristics of TSA include:
o N=1
® T is large

® observations are ordered (in time)

Goals of TSA include:
® prediction and forecasting: weather, currency, earthquakes, epidemic

® signal estimation (Kalman filter): e.g. to control your spacecraft

® identify the nature of the process

Example considered here is based on Hamaker, Grasman and Kamphuis
(2016).
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Bipolar disorder (BD)

Bipolar disorder is characterized by severe changes in affect and activity:
Bipolar patients suffer from manic and depressed episodes.
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BAS dysregulation in BD

BAS may play a crucial role:

® active BAS: expecting reward; difficulty inhibiting behavior when approaching a
goal; hope

® inactive BAS: not expecting reward; difficulty to be motivated; despair

Two forms of BAS dysregulation:

Slow return to baseline

Switches between distinct states
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Slow-return-to-baseline model 1: AR(1)

. ® . LA Carry-over: In the AR(1) model

AR(1)

Y= C+@7H T,

=3)

x {phi

=9

x (phi

today’s mood is influenced by
yesterday’s mood, and the
higher ¢, the more yesterday’s
mood carries over to today’s

0 50 100 150 200

Time

mood.
N ’,fTITﬁﬁﬁﬁﬁﬁILﬁIELLIﬁﬁI
"o s w0 o5 ow
Lag
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Slow-return-to-baseline model 2: ARIMA(0,1,1)

ARIMA(0,1,1) Balancing preservation and

. adaption: The closer 6 isto 1,
Y, =y, —Ou_ +u, the stronger preservation is; if 6
is zero, the system fully adapts
to perturbations.
Elytlyi—1] = y1—1 — et

=E[yt—1|yt—2] + e1—1 — Oer1

The parameter 6 is considered to indicate the balance between
preservation and adaption.
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Slow-return-to-baseline model 2:

ARIMA(0,1,1)

Yo =V

= 55)

¥ (theta

=99
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ARIMA(0,1,1)

adaption: The closer 6 isto 1,
the stronger preservation is; if 6

is zero, the system fully adapts
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Regime-switching model 1: HM model

HMM

m
V= Hs TO U, | | |

Switching: In the HMM model
the system switches between
two different WN processes
(different means and variances).
For each state, there is a
probability to stay in it (m11 and
nzi2) and a probabilities to
switch (12 and nzj1) .
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Regime-switching model 2: MSAR(1) model

L= C +¢Syt1+cr ué é
' .

Switching with carry-over. The
MSAR model is characterized
by switches between two
different AR(1) processes
(different constant c, AR
parameter ¢ and variance).
Switches are smoother than in
the HMM, due to the carry-over.
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VAR(1) model and results

model :
vyl with y2:
vl y2 on yl&l y2&1;

Note we make use of observed lagged variables y1&1 and y2&1.

MODEL RESULTS

Posterior oOne-Tailed 95% C.I.
Estimate 5.D. P-value Lower 2.5% Upper 2.5% s3Significance

Y1 ON

Y1&1 0.881 0.079 0.000 0.717 1.042 #

Y2&1 0.041 0.140 0.379 -0.234 0.312
Y2 ON

Y1&1 -0.101 0.072 0.066 -0.246 0.037

Y2&1 0.476 0.124 0.000 0.236 0.709 #
Y1l WITH

Y2 -15.438 3. 366 0.000 -23.886 -10.165 #
Intercepts

Yl 2.439 3.873 0.242 -4.875 10.487

Y2 9.931 3.443 0.004 3.565 7.121 #
residual variances

Y1l 26.4B81 4,307 0.000 19.982 36.577 =

Y2 22.405 3.674 0.000 7.120 31.582 #
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VARIMA(0,1,1) model

mode] :
el with e2;
yl-y2@0.5; [yl-y2@0];
el by yl@l (&1);
e2 by y2@1 (&1);
vyl on yl&l@1 eldl;
y2 on y2&1@1 e2&l;

where:

® el by y1@1; defines el as the innovation of the process yl

® el by (&1); defines a lagged version of el (i.e., innovation at previous time point)
® yl on yl&1@1; defines the I(1) part (random walk)

® yl on el&]l; defines the MA(1) part (moving average process)

® y1@0.5; sets the measurement error variance to a negligible small number

® and [y1@0]; sets the mean of the process to zero (because it is a unit root process;
mean is not identified)
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VARIMA(0,1,1) results

MODEL RESULTS

E1l BY
Y1l

E2 BY
Y2

¥l ON
El&1

Y2 ON
E2&1

hgt ON
Y1&1

Y2 ON
Y2&1

El WITH
E2

Intercepts
¥l
Y2

variances
E1l
E2

residual variances
Y1

Y2

Estimate
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. 200
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. 000

. 000
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. 000
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18.
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HMM model

model :
%overal 1%
C on C&l1;
yl with y2; yl-y2; [yl-y2];

model c:
HC#1%
vyl WITH y2%-0.12152 (v3);

[ y1¥2.02322 1;
[ y2¥1.66623 ]1;

y1%0.40301 (v1);
y2%0.27785 (v2);

HCH2%
yl WITH y2%-0.12661 (w3);

[ y1%2.05252 ];
[ ¥2*1.61515 1;

y1%0.40550 (wl);
y2%0.20074 (w2);

model prior:
v1i~IwW(2,2);
v2~IW(2,2);
v3~TW(0,2);

Wl-IwW(2,2);
wW2~IW(2,2);
wW3~IW(0,2);

The overall model part:

® C ON C&1,; specifies hidden Markov model

® y1 with y2; ensures the variables are allowed to
correlate

Rest is used for specifying starting values
and priors
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HMM results

MODEL RESULTS

Estimate
Latent Class Pattern 1 1

¥l WITH
Y2

-29. 667
Means
Y1 20.767
Y2 17.6539
variances
¥l 59.325
Y2 37.273

Latent Class Pattern 1 2

¥l WITH
Y2 0.176
Means
Y1 33.508
Y2 10.044
variances
Y1 57.985
Y2 0.092

Categorical Latent variables
c#l ON

C&1#1 0.819

C&1#2 0.192

Class Proportions

Class 1 0.409
class 2 0.091
class 3 0.096
class 4 0.404

Posterior

5.D

or

or

oo

coooo

942

241
962

.126
.495

394

283
055

079
032

061
061

031
031
031
031

[=Y=]

[=Y=1

[=Y=]

oo

[=Y=]

cooo

one-Tailed
P-value

. 000

000
000

000
000

000

- 000

000
000

000
000

000
000
000
000

-52.

18.
15.

39.
25.

[=Y=]

cooo

482

314
725

518
278

. 618

.991
.9489

-033
- 044

. 682
. 087

341
039
044
336

-16.

23.
19.

94
58.

35.
10.

=]

[=Y=]

cooo

. 936

930
157

-425
-167

.921
.327

4860
158
164
456

% C.I.
Lower 2.5% uUpper 2.5% significance

%
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MSVAR(1) model

model :
%overallx

C on C&1;

vl with y2; yl- yz, [yl v21;
yl y2 on yl&l y2&l

MODEL C:
SaC#1%
¥l y2 on yl&l y2&l;

[ y1¥20.76743 ] (1);
[ y2*17.65870 1 (2);

y1%59. 32514 (v1);
Y¥2%37.27272 (v2);
Y1 WITH y2 (v3);

JeCH#2%
vyl ¥2 on yl&l y2&l;

[ y1%¥33.50785 ] (6);
[ y2#10.04370 ] (7);

y1%57.98539 (wl);
y2%0.09211 (w2);
vl WITH y2*%0 (w3);

model prior:
vi~Iw(2,2);
v2~IW(2,2);
v3I~IW(0,2);

wl~Iw(2,2);
wW2~TIW(2,2);
wW3~IW(0,2);

The overall model part:

o C ON C&1; specifies hidden Markov model
e yl y2 on yl&1 y2&1; specifies a VAR(1) model

® y1 with y2; ensures the innovations are allowed
to correlate

Rest is used for starting values and priors
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MSVAR(1) results

MODEL RESULTS

pPosterior one-Tailed 95% C.I.
Estimate s.D. P-value Lower 2.5% upper 2.5% significance
Latent Class pattern 1 1
¥l ON
Yl&l 0.814 0.131 0.000 0.543 1.053 #
Y2&1 0.133 0.182 0.219 -0.220 0.494
¥2 ON
Yl&l -0.096 0.126 0.224 -0.338 0.159
Y2&1 0.370 0.184 0.026 -0.001 0.732
¥l WITH
Y2 -21.215 5.869 0.000 -35.638 -12.993 *
Inter(epts
vl 1.008 5.500 0.428 -9.502 11.979
Y2 13.713 5.439 0.007 2.799 24.266 *
Residual variances
Y1 7.773 6.527 0. 000 18.603 43.894 *
Y2 29.673 6.904 0. 000 20.094 46. 646 *
Latent Class Pattern 1 2
Yl ON
Y1&1 0.836 0.091 0. 000 0.649 1.009 =
Y2&1 0.063 0.276 0.404 -0.477 0.611
Y2 ON
Y1&1 0.001 0.006 0. 394 -0.010 0.013
Y2&1 0.054 0.020 0.011 0.014 0.091 #
Yl WITH
Y2 -0.001 0.192 0.499 -0.3268 0.407
Intercepts
Yl 5.076 5.182 0.155 -5.268 15.452
Y2 9.401 0.3241 0. 000 8.728 10.097 #
rResidual variances
Yl 17.086 4.395 0. 000 11.082 27.990 #
Y2 0.062 0.024 0. 000 0.038 0.120 #
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MSVAR(1) results

categorical Latent variables

C#L oN
C&1#1
C&1#2

class proportions

Class 1
Class 2
Class 3
Class 4

0. 807
0.215

oo

cooo

[=1=]

cooo

oo

cooo

oo

cooo

%
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QOutline

1. Top-down approach:
¢ Univariate multilevel AR(1) model
e Multiple indicator multilevel AR(1) model
e Multilevel VAR(1) model

2. Bottom-up approach:

e Comparison of linear models and regime-switching models

3. Discussion
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Some other issues to consider

e data may be irregularly spaced (e.g., ESM data), which should be
taken into account when estimating lagged effects

e time is treated as discrete here, but it might be more appropriate to
consider it as continuous (Deboeck & Preacher, 2015; Voelkle et al.,
2012)

e there may be trends and cycles present which should (or not?) be
accounted for (Liu & West, 2015; Wang & Maxwell, 2015)

e random factor loadings (allowing for idiographic loadings)
o level 2 predictors for the individual differences in dynamics
e time-varying parameters

e multilevel extension of the regime-switching models

o fit measure that allows for all models to be compared...
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