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Cross-sectional research: A single snapshot
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Panel research: A few snapshots
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Time series data: Looking at the movie
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Time series data: Looking at the movie
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What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics,
seismology, meteorology, control engineering, and signal processing.

Main characteristics:
• N=1 technique
• T is large (say >50)
• concerned with trends, cycles and autocorrelation structure (i.e., serial

dependency)
• goal: forecasting (6= prediction)
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TSA in the social and medical sciences

In sociology:
• quarterly unemployment numbers
• effect of alcohol consumption per capita on criminal violence rates
• effect of suicide news on suicide rates

In medical research:
• effect of safety warnings on antidepressants use
• effects of pain control strategies
• effect of 9/11 attacks on weekly psychiatric patient admissions

In psychology:
• network of symptoms in depressive patient
• effect of feedback on academic performance
• effect of an intervention on the relationship between stress and affect
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Intensive longitudinal data

Intensive longitudinal data are gathered using:
• daily diary with end-of-day-measurements (self-report)
• experience sampling method (self-report)
• ecological momentary assessment (self-report)
• ambulatory assessment (including physiological variables)
• event contingency (self-report)
• observational measurements (expert rater)

For more info on methodology, check out:
• Tamlin Conner (e.g., her seminar with Joshua Smyth on YouTube)
• Society for Ambulatory Assessment
• Trull and Ebner-Priemer (2013)
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It’s a revolution!

 

18 / 62



A fundamental problem in a nutshell
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Taken from Hamaker (2012).
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Three perspectives on data
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Taken from Hamaker (2012).
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Interindividual differences in intraindividual variation
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Taken from Hamaker and Grasman (2014).
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Cross-sectional correlations: A blend

Schmitz (2000):
rcs = η2rb + (1− η2)rw

where
• rcs is the cross-sectional correlation
• rb is the between-person correlation
• rw is the within-person correlation
• η2 is the proportion of between-person variance of the total variability

Consequences:
• cross-sectional and panel research may result in an “uninterpretable blend” of

within-person and between-person relationships (cf. Raudenbush and Bryk, 2002)
• in N=1 time series analysis there is only within-person variance
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Lags
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Autocorrelation function (ACF)

The ACF and the PACF can be used as diagnostic tools to determine the
nature of the underlying process.

Variance (or: auto-covariance at lag 0):

γ0 = 1
T
∑T

t=1
(
yt − ȳt

)2

Auto-covariance at lag k:
γk = 1

T−k
∑T

t=k+1
(
yt − ȳt

)(
yt−k − ȳt

)

Autocorrelation at lag k:
ρk = γk

γ0
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Partial autocorrelation function (PACF)

Partial autocorrelation at lag k is the correlation between yt and yt−k after
removing the effect of the intermediate observations (i.e., yt−1 to
yt−k+1).
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For instance: Is there a relationship between yesterday’s positive affect
and tomorrow’s positive affect above and beyond their relationship to
today’s positive affect?
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Sequence, ACF and PACF
White Noise process
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AR(1): yt = φ1yt−1 + ut

Example with φ1 = 0.7 and φ1 = −0.7:
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AR(2): yt = φ1yt−1 + φ2yt−2 + ut

Example with φ1 = 1.2 and φ2 = −0.7 and with φ1 = 0.2 and φ2 = 0.7:
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MA(1): yt = ut − θ1ut−1

Examples with θ1 = 0.7 and with θ1 = −0.7:
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MA(2): yt = ut − θ1ut−1 − θ2ut−2

Examples with θ1 = 1.2 and θ2 = −0.7, and with θ1 = 0.2 and θ2 = 0.7:
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ARMA(1,1): yt = φyt−1 + ut − θ1ut−1

Example with φ1 = .8 and θ1 = 0.8, and with φ1 = −0.8 and θ1 = −0.8:
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Pure AR, pure MA, or an ARMA(p, q)?

In general:
• an AR(p) can always be written as an MA(∞)
• an MA(q) can always be written as an AR(∞)

Other (rather unexpected) results found by Granger and Morris (1976):
• AR(1) + WN → ARMA(1,1)
• AR(1) + AR(1) → ARMA(2,1)
• MA(1) + WN → MA(1)

You may consider:
• interpretation (social sciences)
• forecasting (econometrics)
• parsimony
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Stationarity

Stationarity is an important concept in time series analysis:
• is based on using backshift operators and the unit root circle (as all introductory

texts on time series analysis do!)
• implies that all moments (i.e., means, variances, covariances, lagged covariances,

etc.) are independent of time

For instance:
• mean is constant over time
• γk depends on the lag k, not on t (i.e., the occasion itself)

Two typical examples of
nonstationary processes:

• trends over time (including cycles?)
• random walk: yt = yt + et

Stationary AR(1) process
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Stationarity of an AR(p)

For an AR(1) to be stationary, |φ| < 1.

For an AR(2) to be stationary we need:
• φ2 − φ1 < 1
• φ2 + φ1 < 1
• |φ2| < 1

which leads to the following triangle:

(Check out: http://freakonometrics.hypotheses.org/12081)
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Rocket science

State space model with known
parameters:

• Kalman filter predicts the future state
(e.g., the location of your space rocket),
based on current and previous observations
(on-line procedure)

• Kalman smoother predicts the state based
on previous, current and future
observations (off-line procedure)

Often, the parameter values are NOT known.

Then, certain by-products of the Kalman filter/smoother can be used in a
likelihood function (see later).
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The basic framework
Measurement equation

yt = ct + Ztat + et with et ∼ MN (0,GGt)

• ct is the vector with intercepts in the measurement equation
• Zt is the matrix with factor loadings
• GGt is the covariance matrix of the measurement errors

Transition equation
at = dt + Ttat−1 + ut with ut ∼ MN (0,HHt)

• dt is the vector with intercepts in the transition equation
• Tt is the matrix with cross- and auto-regressive coefficients
• HHt is the covariance matrix of the dynamic errors

In a more basic version these model matrices are fixed over time.
40 / 62



Measurement equation: regressing yt on at

yt = c + Zat + et
et ∼ MN (0,GG)

a2,t 

y5,t y4,t y6,t 

a1,t 

y2,t y1,t y3,t 

e2,t e1,t e3,t 

e5,t e4,t e6,t 
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Transition equation: Regressing at on at−1

at = d + Tat−1 + ut
ut ∼ MN (0,HH)

a2,t-1 a2,t a2,t+1 

a1,t-1 a1,t a1,t+1 

u1,t-1 

u2,t-1 

u1,t-1 

u2,t-1 

u1,t-1 

u2,t-1 
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State-space model = Latent VAR(1) model

yt = c + Zat + et
et ∼ MN (0,GG)

at = d + Tat−1 + ut
ut ∼ MN (0,HH)
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State-space model versus SEM
Two ways in which SEM can be use to do TSA:

Toeplitz method, based on making lagged
variables

y1
y2 y1
y3 y2
y4 y3
. . .
yT yT−1

Advantage: easy
Disadvantage: violates assumption of
independent cases (=rows); no true ML
estimates (and wrong fit measures)
(cf. Hamaker, Dolan & Molenaar, 2002)

Raw maximum likelihood estimation,
based on N=1

y1 y2 y3 . . . yT

Advantage: gives ML estimates
Disadvantage: requires inversion of (at
least) a T × T matrix (computationally
troublesome)
(cf. Hamaker, Dolan and Molenaar, 2003)

See Chow, Ho, Hamaker and Dolan (2010) for further comparison of state-space
modeling and SEM.
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Kalman filter for parameter estimation

The Kalman filter can be used to predict future states when the
parameters are known.

In practice, the parameter values are often unknown.

In that case, by-products of the Kalman filter can be used to estimate
the parameters:

• the one-step-ahead-prediction error et|t−1 = yt − yt|t−1

• the covariance matrix of et|t−1 (i.e., Ft)

These are plugged into a likelihood function, which is then optimized
with respect to the unknown parameters.

Hence, for each set of possible parameter values, the entire Kalman
filter is run from t = 1 to t = T .
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Kalman filter for parameter estimation
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Just a latent vector AR(1) model?
At first sight the state-space model seems to be just a latent VAR(1)
model.

However, it is actually a very flexible framework for all sorts of time
series models:

• all ARIMA models
• multivariate extensions
• dynamic factor analysis

Extensions may consist of:
• predictors (e.g., time, intervention, weather conditions) in the measurement

and/or transition equation
• time-varying parameters
• regime switches (through combination with a hidden Markov process)
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AR(1) in state-space format

Measurement equation:
yt = c + at

• c is a vector containing the unknown mean
• Z is a 1 by 1 matrix containing 1
• GG is a zero matrix

Transition equation:
at = Tat−1 + ut

• d is a zero vector
• T is a 1 by 1 matrix containing the autoregressive parameter
• HH is a 1 by 1 covariance matrix containing the variance of the innovations
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AR(1) with measurement error

Measurement equation:
yt = c + at + et

• c is a vector containing the unknown mean
• Z is a 1 by 1 matrix containing 1
• GG is a 1 by 1 covariance matrix with the variance of the measurement error

Transition equation:
at = Tat−1 + ut

• d is a zero vector
• T is a 1 by 1 matrix containing the autoregressive parameter
• HH is a 1 by 1 covariance matrix containing the variance of the innovations
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AR(2) in state-space format

Measurement equation:

yt = c +
[
1 0

] [ at
at−1

]
= c + at

where GG is a zero matrix.

Transition equation:[
at

at−1

]
=
[
φ1 φ2
1 0

] [
at−1
at−2

]
+
[
ut
0

]
=
[
φ1at−1 + φ2at−2 + ut

at−1

]

• d is a zero vector
• HH is a 2 by 2 covariance matrix containing only the variance of the innovations

(element 1,1)
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Bivariate VAR(1) in state-space format

The measurement equation:[
y1,t
y2,t

]
=
[
c1
c2

]
+
[
1 0
0 1

] [
a1,t
a2,t

]

where GG is a zero matrix.

The transition equation:[
a1,t
a2,t

]
=
[
φ11 φ21
φ12 φ22

] [
a1,t−1
a2,t−1

]
+
[
u1,t
u2,t

]
=
[
φ11a1,t−1 + φ21a2,t−1 + u1,t
φ22a2,t−1 + φ12a1,t−1 + u2,t

]

• d is a zero vector
• HH is a 2 by 2 covariance matrix of u1,t and u2,t
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Graphical representations
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Applications of VAR models

VAR models are of interest, because
• they allow you to study Granger causality: Can you predict Y from X, after

controlling for previous levels of Y?
• they allow you to determine which variable is “causally dominant” when there are

reciprocal effects
• they can be interpreted as networks (alternative to latent variable approach)

Some interesting replicated VAR applications
• Schmitz and Skinner (1994): Perceived control, effort and academic performance
• Rosmalen et al. (2012): Depression and physical activity
• Snippe et al. (2014): Mindfulness, repetitive thinking and depressive symptoms
• Van Gils et al. (2014): Stress and functional somatic symptoms

In all these studies they find important differences across individuals.
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Dynamic factor model
Dynamic factor analysis is used for time series data consisting of multiple
indicators of an underlying construct.

There are two popular versions:
• at the latent level there is a VARMA model; the factor loadings only
appear at lag 0

• at the latent level there is white noise; the factor loadings appear at
different lags (e.g., EEG data)

y2,t-1 

at-1 at at+1 

y1,t-1 y3,t-1 y2,t y1,t y3,t y2,t+1 y1,t+1 y3,t+1 

e2,t-1 e1,t-1 e3,t-1 e2,t e1,t e3,t e2,t+1 e1,t+1 e3,t+1 

y2,t-1 

at-1 at at+1 

y1,t-1 y3,t-1 y2,t y1,t y3,t y2,t+1 y1,t+1 y3,t+1 

e2,t-1 e1,t-1 e3,t-1 e2,t e1,t e3,t e2,t+1 e1,t+1 e3,t+1 
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Covariance matrix of the series

For a univariate AR(1), we have: σ2
y = σ2

u
1−φ2 .

Similarly, for a (latent) VAR model we can express the covariance
matrix of yt in terms of

• lagged regression parameters Φ
• covariance matrix of the innovations Γ (i.e., HH in the state-space model)

Specifically (from Kim and Nelson, 1999):

Σy = mat
[(

I − Φ⊗ Φ
)−1vec(Γ)

]
where

• vec() implies you put all the matrix elements in a vector
• mat() implies you place all the vector elements in a square matrix
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Model fit

Despite the similar appearance, state-space modeling and SEM are not
the same: For a time series there is no saturated model against which
we can test other models.

We can compare our model to other models, including the white noise
model (independence model), using

• log likelihood ratio test (for nested models)
• AIC, BIC, DIC, etc. (for all models)

Fit may be less interesting to econometricians and meteorologists: Their
primary interest is forecasting.
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To conclude

• time series analysis is a large class of diverse techniques to analyze
N=1 data

• ARMA models are only a small (but basic) part of this
• time series models may be extended with cycles or trends over time
• in psychology we typically have N>1; there are different ways of
handling this
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Intensive longitudinal data

Two approaches we can take when T is large and N>1:

1. Top-down approach (i.e., dynamic multilevel modeling):
• use time series models as level 1
• allow for quantitative individual differences in model dynamics at level 2
• can be used with relative small T (say 20), but requires at least moderate N (say

>30)

2. Bottom-up approach (i.e., replicated time series analysis)
• use time series models to model N=1 data
• allow for quantitative and qualitative differences between persons
• can be used with small N (say 2), but requires relative large T (say >50)

Alternative approach: pooled time series analysis (requires N*T>50).
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Outline

1. Top-down approach:
• Univariate multilevel AR(1) model
• Multiple indicator multilevel AR(1) model
• Multilevel VAR(1) model

2. Bottom-up approach:
• Comparison of linear models and regime-switching models

3. Discussion
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Univariate multilevel AR(1) model: Random mean

Centering part:
PAit = µi + PA∗it

where
• µi is the individual’s mean (i.e., baseline, trait, equilibrium) of positive affect
• PA∗

it is the within-person centered (cluster-mean centered) score
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Univariate multilevel AR(1) model: Random inertia
Autoregressive part:

PA∗it = φiPA∗i,t−1 + ζit

where
• φi is the autoregressive parameter (i.e., inertia, carry-over, or regulatory

weakness)
• ζit is the innovation (residual, disturbance, dynamic error) (with ζit ∼ N (0, σ2

ζ))
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Univariate multilevel AR(1) model: Level 1

Putting these together we can write:

Level 1: Random mean and inertia
PAit = µi + φiPA∗i,t−1 + ζit

where ζit ∼ N (0, σ2).

Level 2:
µi = µ+ v0i
φi = φ+ v1i

where [
v0i
v1i

]
∼ MN

[[
0
0

]
,

[
ψ11
ψ21 ψ22

]]
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Intermezzo: Centering level 1 predictors?

There are three ways in which we can include level 1 predictors:
• non-centered (NC)
• grand mean centered (GMC)
• cluster mean centered (CMC)

NC and GMC are equivalent (i.e., alternative parametrizations).

CMC is equivalent under some circumstances (i.e., no random slopes,
and predictor means included as level 2 predictor of random intercept), but
not always.

Converging consensus: The slope from NC/GMC can be an
“uninterpretable blend” of the within and between relationship
(Raudenbush & Bryck, 2002).
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Intermezzo: Centering the lagged predictor?
Hamaker and Grasman (2015) compared four ways of centering the
lagged predictor in a multilevel AR(1) model:

• NC: no centering
• CMC(ȳ.i): cluster mean centering using the sample mean
• CMC(µ̂i): cluster mean centering using the multilevel estimate
• CMC(µi): cluster mean centering using the true mean
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Intermezzo: Centering the lagged predictor?

Conclusion (from Hamaker & Grasman, 2015):
• CMC leads to a downward bias in the estimation of the AR parameter
• CMC is better when interest is in a level 2 predictor of the AR parameter

Note that when N=1, the OLS estimate of the AR parameter is known to
be biased (e.g., Marriott & Pope, 1954).

BUT: CMC in Mplus is not associated with this bias (nor is it in
WinBUGS, see Jongerling et al., 2015), probably because the same
(individual) parameter is used as the intercept and for CMC of the
lagged predictor.

NOTE: CMC is the default in Mplus when creating lagged variables.
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Daily diary data on positive affect (PA)
Data: 89 females measured for 42 days (see Jongerling, Laurenceau &
Hamaker, 2015).
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Input: Create an observed lagged variable

NOTE: Using LAGVAR = PA(1); gives a lagged variable based on
lagging the observed variable PA by one.
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Input: Random AR parameter and random mean

NOTE: The lagged variable (created by LAGVAR = PA(1);) is referred
to as PA&1.
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Path diagram of the multilevel AR(1) model

13 / 66



Results: Trace plots (10,000 iterations)

Level 1 residual variance:

AR parameter:

Average mean:

Variance of AR parameter:

Cov. mean and AR parameter:

Variance of mean:
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Results: Parameter estimates

Testing whether a random effect is significant is problematic; instead we
can compare two models (with and without a random effect).
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Input: Fixed AR parameter and random mean

In this model there is no random AR parameter; only a random mean.
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Random AR parameter?

Warning: Make sure the DIC is stable (this may take many more
iterations than apparent from trace plots).

To ensure the DIC is stable, run the model at least twice with a different
seed: This should give the same DIC and pD.

Here we compare the model with a fixed AR parameter (φ) to a model
with a random AR parameter (φi).

Model DIC pD
φ 16501 192
φi 16498 216

Only slight preference for model with random AR parameter.
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Literature on inertia
Affective inertia has been empirically related to

• neuroticism (+) and agreeableness (-) (Suls, Green & Hillis, 1998)
• concurrent depression (+) (Kuppens, Allen & Sheeber, 2010, Psychological

Science)
• future depression (+) (Kuppens, Sheeber, Yap, Whittle, Simmons & Allen, 2012)
• rumination (+) (Koval, Kuppens, Allen & Sheeber, 2012)
• self-esteem (-) (Houben, Van den Noortgate & Kuppens, 20150)
• life-satisfaction (-) (Houben et al., 2015)
• PA (-) and NA (+) (Houben et al., 2015)

Note that inertia in positive affects seems also maladaptive.

Autoregressive parameter in daily drinking behavior has been positively
related to being female (Rovine & Walls, 2006); however, the average was
close to zero.
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Extension 1: Random innovation variance

Level 1: Random mean, inertia, and innovation variance
PAti = µi + φiPA∗t−1,i + σiζti

where ζti ∼ N (0, 1).

Level 2:
µi = µ+ v0i
φi = φ+ v1i
σi = σ + v2i

where v0i
v1i
v2i

 ∼ MN


0

0
0

 ,
ψ11
ψ21 ψ22
ψ31 ψ32 ψ33



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Why random innovation variance? Statistical
For N=1 we have: yt = µ+ φ(yt−1 − µ) + ζt , such that:

Var(yt) = E
[{

yt − µ
}2
]

= E
[{
µ+ φ(yt−1 − µ) + ζt − µ

}2
]

= E
[{
φ(yt−1 − µ) + ζt

}2
]

= φ2E
[{

yt−1 − µ
}2
]

+ σ2

where E
[{

yt − µ
}2] = E

[{
yt−1 − µ

}2] = σ2
y

σ2
y = φ2σ2

y + σ2

σ2
y − φ2σ2

y = σ2

(1− φ2)σ2
y = σ2

σ2
y =

σ2

1− φ2

Hence, individual differences in σ2
y can come from individual differences

in φ and/or σ2.
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Why random innovation variance? Substantive
Level 1: Random mean, inertia, and innovation variance

PAti = µi + φiPA∗t−1,i + σiζti

where ζti ∼ N (0, 1).

Substantive interpretation of random innovation variance:
• individual differences in exposure
• individual differences in reactivity

Level 1: Reactivity to Positive Events (PE)
PAti = µi + φiPA∗t−1,i + βiPE∗ti + ζti

Some results for stress sensitivity and reward experience:
• Suls et al. (1998)
• Wichers: relationship with depression and effect of therapy
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Extension 2: Measurement error
Level 1: Measurement equation

PAit = µi + ηit + εit

where
• µi is the individual’s mean
• ηit is the individual’s true score at occasion t
• εit is the individual’s measurement error at occasion t (could also consider

individual differences in its variance)

Level 1: Transition equation
ηit = φiηi,t−1 + σiζit

where ζit ∼ N (0, 1).

Some thoughts about measurement error in a multilevel AR(1) model:
• advantage: separate signal from noise
• advantage: reliability per person
• disadvantage: AR-effects in error end up in signal
• disadvantage: not identified when φ = 0
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Outline

1. Top-down approach:
• Univariate multilevel AR(1) model
• Multiple indicator multilevel AR(1) model
• Multilevel VAR(1) model

2. Bottom-up approach:
• Comparison of linear models and regime-switching models

3. Discussion
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Multiple indicator AR(1) model for PA

We have three indicators: excited (EXC), energetic (ENE), and
enthusiastic (ENT).

Level 1: Within-person factor model

EXCit
ENEit
ENTit

 =

µEXC ,i
µENE,i
µENT ,i

+

 1
λ2W
λ3W

PAWit +

εEXC ,it
εENE,it
εENT ,it



where
• µ’s are the individual’s means
• λ’s are the within-person factor loadings
• PAWit is the individual’s latent score at occasion t
• ε’s are the individual’s measurement errors at occasion t
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Multiple indicator AR(1) model for PA

Note that PAWit has a mean of zero for each person (hence no
within-person means here).

Level 1: Within-person latent AR(1)
PAWit = φiPAWi,t−1 + σiζit

where
• φi is the individual’s autoregressive parameter
• σiζit is the individual’s innovation at occasion t (with var(ζ)=1)
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Multiple indicator AR(1) model for PA
Level 2: Between-person factor model

µEXC ,i
µENE,i
µENT ,i

 =

µEXC
µENE
µENT

+

 1
λ2B
λ3B

PABi +

εEXC ,i
εENE,i
εENT ,i



Level 2: Fixed and random effects
PABi = v0i
φi = φ+ v1i
ζi = ζ + v2i

where v0i
v1i
v2i

 ∼ MN


0

0
0

 ,
ψ11
ψ21 ψ22
ψ31 ψ32 ψ33



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Input: Multiple indicator AR(1) model

Allowing for:
• random means
• random autoregression
• random innovation SD

27 / 66



Path diagram

Within level: Between level:
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Results: Parameter estimates (within)

Remember: Var(PAi) = σ2
i

1−φ2
i
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Results: Parameter estimates (between)

NOTE: Means are the fixed effects, variances are the random effects.
30 / 66



Factorial invariance across levels

Are the factor loadings for PA identical across levels?

If λw = λb, this implies that
within-person, state-like fluctuations
are situated on the same
underlying dimension as stable
between-person, trait-like differences.

DICs using 500,000 iterations
λw 6= λb λw = λb
22355 22364
22349 22358
22353 22360

Average: 22352 22361
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Outline

1. Top-down approach:
• Univariate multilevel AR(1) model
• Multiple indicator multilevel AR(1) model
• Multilevel VAR(1) model

2. Bottom-up approach:
• Comparison of linear models and regime-switching models

3. Discussion
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Multilevel VAR(1) model
In a vector autoregressive (VAR) model, a vector is regressed on preceding
versions of itself.

VAR(1):
yt = c + Φyt−1 + ζt with µ = (I −Φ)−1c

Alternative expression of a VAR(1):
yt = µ + Φ

(
yt−1 − µ

)
+ ζt

When considering a multilevel extension, we want to allow for individual
differences in:

• µ: the trait scores of individuals
• Φ: the inertias and cross-lagged relationships

NOTE: We write y∗t−1 = yt−1 − µ.
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Example of a multilevel VAR(1) model

We make use of bivariate data from Emilio Ferrer: Positive Affect and
Rumination (see Schuurman, Grasman & Hamaker, 2016).

Six days of ESM data with N=129 and T about 45.

Within level:

[
PAit
RUit

]
=
[
µPA,i
µRU ,i

]
+
[
φ11 φ12
φ21 φ22

] [
PA∗it−1
RU ∗it−1

]
+
[
ζPA,it
ζRU ,it

]

=
[
µPA,i + φ11PA∗it−1 + φ12RU ∗it−1 + ζPA,it
µRU ,i + φ21PA∗it−1 + φ22RU ∗it−1 + ζRU ,it

]
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Model specification

At the between level the means and lagged effects are all allowed to
correlate.
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Results within level

Note that the measurement error variances fixed at 0.01 are negligibly
small compared to the total variances.
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Results between level
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Results between level (continued)

Means are the fixed effects; variances are for the random effects.
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Standardizing the cross-lagged parameters

Schuurman et al. (2016) presents three forms of standardization in
multilevel models:

• total variance (i.e., grand standardization)
• between-person variance (i.e., between standardization)
• average within-person variance
• within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it parallels standardizing
when N=1.

Standardized fixed effect should be the average standardized
within-person effect.
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Does it make a difference?

From Schuurman et al. (2016)
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Networks based on multilevel VAR models
Borsboom has used the idea of networks as an alternative to latent
variables (in the context of psychopathology).

Dynamical networks are often based on a VAR(1) model.

Bringmann et al. (2013) analyzed the lagged relationships between the
following variables:

• cheerful (C)
• pleasant event (E)
• worry (W)
• fearful (F)
• sad (S)
• relaxed (R)

NOTE: They performed separate multilevel regression analyses on
each of these variables, using all (lagged) variables as predictors.
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Results at the population level

Average (fixed effects) network Individual differences network

C=cheerful; E=pleasant event; W=worry; F=fearful; S=sad; and R=relaxed; red solid
lines represent positive relationships; green dashed lines represent negative relationship.
From Bringmann et al. (2013)
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Results at the individual level (2 individuals)

C=cheerful; E=pleasant event; W=worry; F=fearful; S=sad; and R=relaxed
From Bringmann et al. (2013)
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Outline

1. Top-down approach:
• Univariate multilevel AR(1) model
• Multiple indicator multilevel AR(1) model
• Multilevel VAR(1) model

2. Bottom-up approach:
• Comparison of linear models and regime-switching models

3. Discussion
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Bottom-up: Replicated time series analysis

Characteristics of TSA include:
• N=1
• T is large
• observations are ordered (in time)

Goals of TSA include:
• prediction and forecasting: weather, currency, earthquakes, epidemic
• signal estimation (Kalman filter): e.g. to control your spacecraft
• identify the nature of the process

Example considered here is based on Hamaker, Grasman and Kamphuis
(2016).
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Bipolar disorder (BD)
Bipolar disorder is characterized by severe changes in affect and activity:
Bipolar patients suffer from manic and depressed episodes.
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BAS dysregulation in BD
BAS may play a crucial role:

• active BAS: expecting reward; difficulty inhibiting behavior when approaching a
goal; hope

• inactive BAS: not expecting reward; difficulty to be motivated; despair

Two forms of BAS dysregulation:

Slow return to baseline

Switches between distinct states
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Slow-return-to-baseline model 1: AR(1)
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Slow-return-to-baseline model 2: ARIMA(0,1,1)

E[yt |yt−1] = yt−1 − θet−1

= E[yt−1|yt−2] + et−1 − θet−1

The parameter θ is considered to indicate the balance between
preservation and adaption.
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Slow-return-to-baseline model 2: ARIMA(0,1,1)
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Regime-switching model 1: HM model
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Regime-switching model 2: MSAR(1) model
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VAR(1) model and results

Note we make use of observed lagged variables y1&1 and y2&1.
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VARIMA(0,1,1) model

where:
• e1 by y1@1; defines e1 as the innovation of the process y1
• e1 by (&1); defines a lagged version of e1 (i.e., innovation at previous time point)
• y1 on y1&1@1; defines the I(1) part (random walk)
• y1 on e1&1; defines the MA(1) part (moving average process)

and:
• y1@0.5; sets the measurement error variance to a negligible small number
• and [y1@0]; sets the mean of the process to zero (because it is a unit root process;

mean is not identified)
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VARIMA(0,1,1) results
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HMM model

The overall model part:
• C ON C&1; specifies hidden Markov model
• y1 with y2; ensures the variables are allowed to

correlate

Rest is used for specifying starting values
and priors
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HMM results
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MSVAR(1) model

The overall model part:
• C ON C&1; specifies hidden Markov model
• y1 y2 on y1&1 y2&1; specifies a VAR(1) model
• y1 with y2; ensures the innovations are allowed

to correlate

Rest is used for starting values and priors
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MSVAR(1) results
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MSVAR(1) results
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Outline

1. Top-down approach:
• Univariate multilevel AR(1) model
• Multiple indicator multilevel AR(1) model
• Multilevel VAR(1) model

2. Bottom-up approach:
• Comparison of linear models and regime-switching models

3. Discussion
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Some other issues to consider

• data may be irregularly spaced (e.g., ESM data), which should be
taken into account when estimating lagged effects

• time is treated as discrete here, but it might be more appropriate to
consider it as continuous (Deboeck & Preacher, 2015; Voelkle et al.,
2012)

• there may be trends and cycles present which should (or not?) be
accounted for (Liu & West, 2015; Wang & Maxwell, 2015)

• random factor loadings (allowing for idiographic loadings)
• level 2 predictors for the individual differences in dynamics
• time-varying parameters
• multilevel extension of the regime-switching models
• fit measure that allows for all models to be compared...
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