Feelings change. How can the dynamics of emotion be represented in a modeling framework? One model of emotion dynamics, the DynAffect model, (Kappen, Oravecz, & Tuerlinckx, 2010), uses an Ornstein-Uhlenbeck process model to describe affective dynamics with home base, intraindividual variability, and attractor strength parameters. DynAffect models affective dynamics:

- In continuous time
- With continuous measurement dimensions
- As a person-specific process (iSD)

The current study is an application of the DynAffect model to examine the relations of age, sex, and emotion regulation strategies to DynAffect's affective dynamic parameters.

Empirical Example

Participants: N=150 individuals from the Intraindividual Study of Affect Health and Interpersonal Behavior (SAIHEB) provided ratings on feelings and behaviors after social interactions lasting 5 minutes to 21 consecutive days via study-provided smartphone. Participants made 35-265 (M=145.46, SD=19.59) reports each. Demographically, 54% women, aged 18-89 years (M=47.10, SD=18.76). Participants were mostly well-educated (M(HU)=16.36, M(Or)=9.80), mostly white (91.5%, Caucasian), and mostly heterosexual (93%).

Measures:

- Core affect: Valence (“Unpleasant”-“Pleasant”), Arousal (“Activated/aroused”-“Stimulated/stimulated”), continuous, scaled 0-10
- Emotion regulation: Cognitive reappraisal (“I changed how I thought about the interaction”), Expressive suppression (“I kept my emotions to myself”), continuous, scaled 0-10

Data Analysis: 2-dimensional HOU model with uncorrelated affect dimensions was fitted in the Bayesian Hierarchical Ornstein-Uhlenbeck Modeling (BHOUM) Matlab toolbox (available from zitaoravecz.net). Age, sex (+female, +male), and iSDs of reappraisal and suppression engagement were included as person-specific covariates.

Conclusions

- Higher age was associated with:
 - Higher levels of arousal
 - Less intraindividual variability in arousal

Acknowledgments

This research was supported by R01 HD076994 and RC1 AG035645. Thanks to Zita Oravecz for analysis support. Thanks to Nilam Ram and Cy-Min Chow for their guidance on this project. Thanks to Mimi Brimberg, Allison Gray, Rachel Lydon, Allison Grey, Rachel Xiaoyang, Tim Brick, and David Lydon for providing comments on this poster.

Contact info: Julie Wood, jw2525@psu.edu