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Propensity Scores

𝑒 𝐗𝒊 = 𝑃𝑟 𝑍𝑖 = 𝑡 𝐗𝒊)

1. Conditional probability that participant i is assigned to 
treatment group (t) given 𝐗𝒊.

2. Coarsest function (one variable summary) of 𝐗𝒊 to 
equate the distributions of 𝐗𝒊 between treatment and 
control groups.
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Propensity Scores : Properties
1. In practice, propensity score is unknown and needs 

to be estimated.

2. Incorrect propensity score estimation model 
produces biased average treatment effect (ATE) or 
average treatment effect on the treated (ATT) 
estimates (Drake, 1993).

3. We might not have a sufficient theoretical or 
empirical basis to specify the propensity score 
estimation model.
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Using Random Forests to 
Estimate Propensity Scores

1. Random Forests is an automatic and nonparametric 
method to deal with regression problem with (1) 
many covariates, and (2) complex nonlinear and 
interaction effects of the covariates.

2. Austin (2012) and Lee, Stuart, and Lessler (2010) 
have investigated the performance of Random 
Forests for propensity score analysis.
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Goal of Study
1. Austin (2012) and Lee et al. (2010) did not 

systematically investigate the effects of different 
Random Forests model specifications.

2. Here, we investigate the effects of different random 
forests model specifications on propensity score 
analysis.
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Step 1: 
Draw Multiple Random Samples

Strobl, Boulesteix, Zeileis, et al. 
(2007) suggest: 

1. Sampling without replacement 

2. Random samples which are 
0.632 times the sample size of 
the original data 

This specification reduces the 
covariate selection bias towards 
covariates with many categories 
and continuous covariates in 
Random Forests.
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Original 
Sample Data

Random 
Sample #1

Random 
Sample #2

Random 
Sample #3

…

Random 
Sample #500

N = 2000

N = 2000 × 0.632 = 1264
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Step 2: 
Estimate Classification Tree Model In Each Sample

Node of covariate that classifies 
students into two levels bottom-
down

Covariate Value 
that classifies 
students:
Left: ≤ 0.5
Right: > 0.5

Propensity 
Scores:
Proportion of 
retained students 
(dark bar) in the 
node

Depth of this tree = 3

Terminal Node Size 
(n = 108)

Terminal 
nodes at 
the 
bottom of 
the tree



Step 3: 
Average All Classification Tree Propensity Scores Sets
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Propensity Scores 
Set #1

Propensity Scores 
Set #2

Propensity Scores 
Set #3

Propensity Scores 
Set #500

…

Random Forests 
Propensity Scores 

Set

Averaging 
(taking the means)



Model Specifications
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#1: Decision rule to select the 
covariate and its value
(1) Gini Index
(2) Conditional Significance Test

(2) is advantageous relative to 
(1) for reducing selection bias 
towards continuous and 
categorical covariates with many 
levels.



Model Specifications
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#2: Random subset of covariates
Random subset is advantageous 
relative to all covariates for
(a) Reducing sampling 

uncertainty of Random 
Forests propensity scores

(b) Selecting covariates that are 
relatively less associated with 
grade retention but more 
associated with other 
covariates and the outcome

All 67 
Covariates

Random 
Subset #1

Random 
Subset #2



Model Specifications
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#3: Data to calculate 
Classification Tree 
propensity scores
(1) Full Sample Data 

(Original Data)
(2) Data NOT in Random Sample 

(Out-of-bag sample)

Out-of-bag sample maybe 
advantageous relative to full 
sample for less biased average 
treatment effect estimate.

Original 
Sample Data

Random Sample 
#1

NOT in 
Random Sample 

#1
(Out-of-bag)



Summary
1. Conditional Significance Test (vs. Gini Index)

2. Random Subset of Covariates (vs. All Covariates / No 
Sampling)

3. Out-of-bag Sample (vs. Original Sample / Full Sample) 

 Specifications in red produce less biased average 
treatment effect of the treated (ATT) estimates.

 The combination of these specifications in red will be
optimal to produce the least biased ATT estimate.
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Simulation Study Design (1)
Constructed loosely based on Im, Hughes, Kwok, Puckett, and Cerda (2013)

1. Covariates

a) Covariate Types: 16 binary, 40 standard normal, 8 ordered-categorical (0 to 6) 

b) Covariate Correlations: Low and High 

2. Propensity Score Model (Logistic Regression)

a) Linear (in the logit metric) and Nonlinear (added interaction and quadratic effects)

b) Magnitude of Regression Coefficients: Low and High

3. Treatment-Outcome Model (Linear Regression)

a) Magnitude of ATT: Zero and Non-zero (moderate effect size)

b) Magnitude of Regression Coefficients: Low and High

4. Sample Sizes : 600 and 2000
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Simulation Study Design (2)
4. Benchmark Methods

◦ Uncorrected, ANCOVA (True), Logistic Regression Propensity Score (True)

5. Decision Rule to Select Covariate and its Value 
◦ Gini Index, Conditional Significance Test (Sig)

6. Random Sampling of Covariates for Selection
◦ No Sampling (NS; All Covariates), 8 Covariates (S8), 4 Covariates (S4)

7. Methods for Estimating Propensity Scores
◦ Full Sample (F; Original Sample), Out-of-bag Sample (O)

8. Methods of Equating Groups on Propensity Scores: 
◦ Nearest Neighbor Matching (Matching), Weighting by Odds (Weighting)

◦ Both methods estimate ATT.
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Estimation results were consistent across 
• Linear and Nonlinear Propensity Score Model
• Magnitude of Average Treatment Effect (Zero and Non-zero)

ANCOVA produced unbiased ATT, unbiased and smallest Standard Error

Logistic Regression Propensity Scores produced unbiased ATT estimate
Matching: Standard Error was overestimated
Weighting: Standard Error was underestimated

Gini < Significance Test
No Sampling (Sig) was least biased

Gini < Significance Test
No Sampling (Sig) was least biased

Gini ~ Significance Test
4 covariates (Sig) was least biased

Gini < Significance Test
8 covariates (Sig) was unbiased
Sig.O.S8 had unbiased Standard Error
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Gini > Significance Test
No Sampling (Sig) was least biased
Gini.F.NS had unbiased ATT, underestimated Standard Error

Gini < Significance Test
No sampling (Sig) was unbiased
Sig.F.NS had unbiased Standard Error

Gini ~ Significance Test
4 covariates (Sig) was least biased

Gini < Significance Test
4 covariates (Sig) was unbiased
Sig.O.S4 had unbiased Standard Error

N = 600 : Sig.O.S8 (Weighting)
N = 2000 : Gini.F.NS (Matching), Sig.F.NS (Weighting), 

Sig.O.S4 (Weighting)
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1. N = 600 : Sig.O.S8 (Weighting) had slightly inflated α. 

2. N = 2000 : Gini.F.NS (Matching) had inflated α.

Sig.F.NS and Sig.O.S4 (Weighting) had correct α.

N = 600, Linear Coverage Rate α Power

ANCOVA 0.942 0.041 1.000

Logistic (Matching) 0.983 0.025 1.000

Logistic (Weighting) 0.803 0.187 0.783

Sig.O.S8 (Weighting) 0.922 0.087 0.869

N = 2000, Linear Coverage Rate α Power

ANCOVA 0.949 0.053 1.000

Logistic (Matching) 0.905 0.073 1.000

Gini.F.NS (Matching) 0.863 0.142 1.000

Logistic (Weighting) 0.900 0.115 0.902

Sig.F.NS (Weighting) 0.964 0.035 0.996

Sig.O.S4 (Weighting) 0.950 0.040 0.962

Correct

Conservative

Inflated

Slightly Inflated



Discussion (1)
Nearest Neighbor Matching – Hypotheses NOT supported. 

Some Explanations:

1. Model specifications were NOT optimal for matching.

2. Matching setting is sensitive to propensity score model 
misspecifications (Zhao, 2008).

◦ Especially with matching without replacement of control 
group participants.
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Discussion (2)
Weighting by Odds – More hypotheses supported.

1. The optimal specification:
◦ (a) Conditional Significance Test
◦ (b) Random Covariates Subset
◦ (c) Out-of-bag Sample

2. Number of covariates in subset was SENSITIVE to sample size.

3. Lee et al.’s (2010) results showed specification was insensitive 
to number of covariates in subset

◦ Their model had fewer covariates, and more covariate pairs 
were uncorrelated. 

4. ↑ Total Number of Covariates, ↑ Sensitivity of Number of 
Covariates in Subset
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Discussion (3)
Austin (2012) found Random Forests had biased estimates. 

Some Explanations:

1. Austin investigated a different the weighting for to 
estimate average treatment effect (ATE), not ATT

2. When estimating ATE, random forests may require 
different specifications to produce optimal specifications.

3. Weighting method is sensitive to propensity score model 
specification.
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Follow-up Question: 
Can Absolute Standardized Mean Difference 
(ASMD) search the optimal model specification?

ASMD =  |  𝑋𝑡 −  𝑋𝑐| 𝑠𝑡
𝑏

↑ standardized mean difference between different 
propensity scores, did not necessarily relate to ↓ bias of 
ATT estimate.

1. Between different random forests model specifications, 
does standardized mean difference of covariates relate to 
the magnitude of bias of ATT estimates?

2. Within a random forests model specification across 
repeated samples, does standardized mean difference of 
covariates relate to the magnitude of bias of ATT
estimates?
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Summary of Results (1) 
Between different propensity score estimations:

1. Logistic Regression

Weighting ASMDs > Matching ASMDs
◦ Both had satisfactory ASMDs

◦ Suggested that ASMDs should NOT be compared 
between equating methods
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Summary of Results (1) 
Between different propensity score estimations:

2. Random Forests
◦ Optimal specifications had small and satisfactory ASMDs 

◦ Specifications produced VERY biased ATEs (> 60%) had 
large ASMDs 

◦ But, specifications produced biased ATEs (10 – 60%) had 
small and satisfactory ASMDs 
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Summary of Results (2) 
Within a Random Forests specification across 
replications

1. NO substantial correlations between ASMDs and the 
magnitude of ATT bias (< 0.3)

2. Potential reason: Reduction in range, ATT bias and 
ASMDs are reduced, severely attenuating the 
correlations.

Implications: NEW Procedures to determine the 
optimal Random Forests specifications are needed.
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Concluding Remarks: A Dilemma
1. In our abstract, we hypothesized that the 

equating methods which are less dependent on 
misspecified propensity score estimation models 
produced unbiased ATT.

2. Our preliminary analyses show that these 
equating methods work.

3. BUT, if it is so, what is the point of using random 
forests to estimate propensity scores?

26



Appendix
FIGURES OF RESULTS
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Mean ASMD
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Mean ASMD
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