# **Problems and Solutions with Many Indicators and Latent Variables in CFA-SEM Models** An Empirical Study of Marketing Research Effectiveness in the Enterprises Piotr Tarka, Poznan University of Economics and Business

## Introduction

The problems that appear in practice of measurement (CFA) and structural equation modeling (SEM) pertain to exceeding:

- \* number of indicators per factor,
- \* number of parameters per factor and in model
- \* number of latent variables in CFA-SEM models.

Large number of indicators cause also problems associated with:

the strength of association between the indicators and latent variables (Bandalos, 1997; Boomsma, 1982; Gerbing & Anderson, 1985; MacCallum et al., 1999; Velicer & Fava, 1998) - the degree of multivariate normality of latent variables (Anderson, 1996; West, Finch, & Curran, 1995)

- the estimation method (Fan, Thompson, & Wang, &Wang, 1998; Tanaka, Fan 1999; 1987)

## Method

#### **PROPOSED SOLUTION:**

In the present study, in order to obtain satisfying solution in the model fit and parameter estimates, author reduced a number of indicators for each latent variable by adding particular indicators in data set.

The other alternatives: index reliability, parceling strategy, submodels (Kenny & McCoach, 2003).

#### **SUBJECT OF EMPIRICAL STUDY:**

The author's research objective was to diagnose the relationships between two general conditions (organizational and methodological determinants) which affect the level of the marketing research effectiveness in the enterprises.

#### **DATA:**

Survey (through the two social networking sites: LinkedIn and Golden Line) was conducted, with a direct link to the online questionnaire which was sent via personal emails. *Empirical research*: March 1 - August 31 in 2014 in Poland Sample structure:

- Marketing Directors (45%), Product Managers (27%), Managing Directors, CEO (20%), Marketing Executives (8%) in the Enterprises.

- Employment levels: less than 15 (9%), 16-99 (17%),

- Employment levels: less than 15 (9%), 16-99 (17%), 100-249 (16%), 250-490 (8%), above 499 (50%).

#### **MEASURES:**

Latent variables were operationalized by items which were expressed in the form of statements, and measured on Likert 7-point scale.

### **CFA-SEM MODEL STRUCTURE**

F\_1 - General factor - **organizational determinants**: Factor 1: Decision makers' personal attitudes to marketing research and its results (items: 111, 112, 113) Factor 2: Benefits of wide communication in structural organization on the basis of marketing research (items: 122, 131, 132, 134)

Factor 3 - Informational culture and firm' identity derived from marketing research (items: 133, 141, 142).

## F\_2AF\_2 - General factor - **methodological determinants**:

Factor 4: Orientation on models, methods and techniques resulting from scientific norms (items: 211, 212) Factor 5: Methodological pragmatism during the ongoing *marketing research* (items: 213, 214) Factor 6: Proper conditions of defining the research problem (items: 221, 222, 224)

Factor 7: Predisposition of researchers to identify important research questions and articulate decision makers' *information needs* (items: 223, 225)

## **METHOD OF ESTIMATION: ML**

|            | SECOND-ORDER CFA MODEL |         |         |                                         | SECOND-ORDER CFA MODEL |         |              |                        | CFA MODEL (SINGLE INDEX METHOD) |        |         |                         | CFA MODEL (SINGLE INDEX METHOD) |                  |                 |                                | SEM MODEL (HIERARCHY)                               |                |                |                                | SEM MODEL (SINGLE INDEX METHOD) |                |                |                |
|------------|------------------------|---------|---------|-----------------------------------------|------------------------|---------|--------------|------------------------|---------------------------------|--------|---------|-------------------------|---------------------------------|------------------|-----------------|--------------------------------|-----------------------------------------------------|----------------|----------------|--------------------------------|---------------------------------|----------------|----------------|----------------|
|            | (LATENT VARIABLE – F1) |         |         | (LATENT VARIABLE – F2_A)                |                        |         |              | (LATENT VARIABLE – F1) |                                 |        |         | (LATENT VARIABLE – F2A) |                                 |                  |                 | (LATENT VARIABLES – F1 on F2A) |                                                     |                |                | (LATENT VARIABLES – F1 on F2A) |                                 |                |                |                |
| SAMPLE     | 347                    | 694     | 1388    | 2776                                    | 347                    | 694     | 1388         | 2776                   | 347                             | 694    | 1388    | 2776                    | 347                             | 694              | 1388            | 2776                           | 347                                                 | 694            | 1388           | 2776                           | 347                             | 694            | 1388           | 2776           |
| PARAMETERS | 23                     |         |         |                                         | 22                     |         |              |                        | 5                               |        |         |                         | Q                               |                  |                 | 46                             |                                                     |                |                | 16                             |                                 |                |                |                |
| DF         | 32                     |         |         | 23                                      |                        |         |              | 1                      |                                 |        |         | 1                       |                                 |                  |                 | 144                            |                                                     |                |                | 12                             |                                 |                |                |                |
|            | 245.27                 | 491.26  | 983.22  | 1967.15                                 | 246.01                 | 492.74  | 986.20       | 1973.10                | 2 67                            | 5 36   | 10.72   | 21 45                   | 2 39                            | 4 78             | 9.57            | 19.16                          | 1620.07                                             | 3244.82        | 6494.31        | 12993.31                       | 106.77                          | 213.85         | 428.01         | 856.32         |
| χ (p)      | p = .00                | p = .00 | p = .00 | p = .00                                 | p = .00                | p = .00 | p = .00      | $\rho = .00$           | n = 10                          | n = 02 | n = 00  | n = 00                  | n = 12                          | n = 03           | n = 00          | n = 00                         | <i>p</i> = .00                                      | <i>p</i> = .00 | <i>p</i> = .00 | <i>p</i> = .00                 | <i>p</i> = .00                  | <i>p</i> = .00 | <i>p</i> = .00 | <i>p</i> = .00 |
| γ / DF     | 7 66                   | 15 35   | 30.73   | 61 47                                   | 10 70                  | 21 42   | <u>47 88</u> | 85 79                  | 267                             | 5 26   | p = .00 | p = .00                 | p = .12                         | $\frac{p}{1.79}$ | ρ = .00<br>0 57 | p = .00                        | 11.25                                               | 22.53          | 45.10          | 90.23                          | 8.90                            | 17.82          | 35.67          | 71.36          |
|            | 1.00                   | 11      | 15      | 1                                       | 10.70                  | 21.72   | 17           | 05.75                  | 2.07                            | J.50   | 10.72   | 21.45                   | 2.59                            | 4.70             | 9.57            | 19.10                          | .17                                                 | .18            | .18            | .18                            | .15                             | .16            | .16            | .16            |
| RIVISEA    | .14 .14 .15 .15        |         |         |                                         | .1/                    |         |              |                        | .07 .08 .08 .09                 |        |         | .06 .07 .08 .08         |                                 |                  | .40             |                                |                                                     |                | .14            |                                |                                 |                |                |                |
| RMR        | .23                    |         |         | .26                                     |                        |         |              | .11                    |                                 |        |         | .04                     |                                 |                  |                 | .70                            |                                                     |                |                | .92                            |                                 |                |                |                |
| GFI        | .87                    |         |         | .87                                     |                        |         |              | .99                    |                                 |        |         | .99                     |                                 |                  |                 | 60                             |                                                     |                |                | 80                             |                                 |                |                |                |
| AGFI       | .77                    |         |         | .74                                     |                        |         |              | .97                    |                                 |        |         | .96                     |                                 |                  |                 | .00                            |                                                     |                |                |                                |                                 |                |                |                |
| NFI        | .77                    |         |         |                                         | .75                    |         |              | .99                    |                                 |        |         | .98                     |                                 |                  |                 | .49                            |                                                     |                | 10.            |                                |                                 |                |                |                |
| CEL        | 79                     | 78      | 77      | 77                                      | 77                     | 76      | 75           | 75                     |                                 |        | 99      |                         |                                 |                  | 99              |                                | .51                                                 | .50            | .4             | .9                             | .83                             | .82            |                | .81            |
|            |                        |         |         | .,, .,, .,, .,, .,, .,, .,, .,, .,, .,, |                        |         |              |                        |                                 |        | .55     |                         |                                 |                  | .41             |                                |                                                     |                | .46            |                                |                                 |                |                |                |
|            |                        |         |         | .40                                     |                        |         |              | .55                    |                                 |        |         | .10                     |                                 |                  |                 | .42                            |                                                     |                |                | .47                            |                                 |                |                |                |
| PCFI       | .55                    |         | 1       | .49 .48                                 |                        | .48     |              |                        | .33                             |        |         | .16                     |                                 |                  |                 | 1712.07                        | 3336.82                                             | 6586.31        | 13085.31       | 138.77                         | 245.85                          | 460.01         | 888.32         |                |
| AIC        | 291.27                 | 537.26  | 1029.22 | 2013.15                                 | 290.01                 | 536.74  | 1030.20      | 2017.10                | 12.67                           | 15.36  | 20.72   | 31.45                   | 20.39                           | 22.78            | 27.57           | 37.16                          | 1889.14                                             | 3545.77        | 6827.15        | 13358.03                       | 200.36                          | 318.53         | 543.78         | 983.18         |
| BIC        | 379.81                 | 641.73  | 1149.64 | 2149.51                                 | 374.40                 | 636.68  | 1145.38      | 2147.54                | 31.92                           | 38.07  | 46.90   | 61.09                   | 55.03                           | 63.67            | 74.70           | 90.52                          | 2016 Modern Modeling Methods Conference (Storrs CT) |                |                |                                |                                 |                |                |                |



Results

**Figure 1** SEM path diagram for the Marketing Research Effectivenes model - complex solution



- simplified solution single index strategy with parameter estimates



of constructed CFA-SEM "meta" Most models in a number of important modern applications (as social sciences research) due to high complexity level of the researched phenomena, are overloaded variables simultaneously and with parameters.

In consequence they generate: \*problems with models identification \*unacceptable levels of model fit \*misleading values of the parameter estimates and standard errors, \*unreliable and invalid research results.

An appropriate solution to prevent such problems comes along with strategies such as: single index, index reliability, parceling and construction of submodels.

Contact: piotr.tarka@ue.poznan.pl

#### plified solutions

2010 Modern Modering Methods Comerence (Storrs, CT)