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Excessive flexibility makes a model “so weak that there is no way 
to find evidence either for or against it.” (Wexler, 1978, p. 346)



Definition: The ability of a model to fit a wide 
range of data patterns (Myung, Pitt, & Kim, 2005)

• Affected by number of parameters & functional 
form (e.g., Collyer, 1985)

• y = x + b   vs.  y = exb

In latent variable modeling, complexity is 
typically gauged by counting parameters

• Model evaluation metrics like AIC, BIC, DIC 
penalize for complexity

• Minimum description length (Rissanen, 1978) also 
accounts for the functional form of the model

Complexity



A baseline for model fit can be established by 
fitting models to random data (Cutting et al., 1992)

Fitting propensity: A model’s ability to fit 
diverse patterns of data, all else being equal

• Models with same number of parameters but 
different structures may exhibit different 
fitting propensities (Preacher, 2006)

Herein, we investigate the fitting propensities of 
5 popular item response theory (IRT) models

Fitting Propensity



(a) EFA

(b) Bifactor

(c) DINA

(d) DINO

(e) Uni 3PL

20 free 
parameters

21 free 
parameters

Measurement Models



Hypothesis 1: The EFA model will exhibit, 
on average, the highest fitting propensity

Hypothesis 2: The bifactor model will 
display higher fitting propensity than the 
DINA and DINO models

Unidimensional 3PL model?

Hypotheses



Data generation: 

Sampling from a unit simplex (Smith 
& Tromble, 2004) 

• Generate all possible item response 
patterns for a small number of binary 
response items

27 = 128 possible patterns

• Assign to each a random weight 
representing the number of simulees 
(of N = 10,000) who supplied that 
particular pattern

1,000 random data sets to represent 
the complete data space 

Example data set:

0 0 0 0 0 0 0 20.348

0 0 0 0 0 0 1 60.367

0 0 0 0 0 1 0 27.676

0 0 0 0 0 1 1 7.983

0 0 0 0 1 0 0 3.714

0 0 0 0 1 0 1 10.517

0 0 0 0 1 1 0 47.091

⋮
1 1 1 1 0 0 1 4.961

1 1 1 1 0 1 0 30.693

1 1 1 1 0 1 1 14.663

1 1 1 1 1 0 0 1.993

1 1 1 1 1 0 1 2.673

1 1 1 1 1 1 0 67.551

1 1 1 1 1 1 1 40.919

Method



Evaluation measure: Y2/N statistic (Bartholomew & 

Leung, 2002; Cai et al., 2006):

Y2/N = 

Y2

Method













Local dependence LD X2 (Chen & Thissen, 1997)



Hypotheses: confirmed

The importance of functional form:

• Arrangement of the variables in a model affects 
ability to fit well

• More complex models (EFA & bifactor) displayed 
high propensity to fit any data

• DINA & DINO models had low fitting propensity; 
theoretical difference →models fit different patterns

• Unidimensional model had an additional free 
parameter, but much lower fitting propensity!

• Strong implications re: model evaluation via 
goodness of fit

Discussion
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