MODERN MODELING METHODS 2016, 2016/05/23-26 University of Connecticut, Storrs CT, USA

The matching effect of intra-class correlation (ICC) on the estimation of contextual effect: A Bayesian approach of multilevel modeling

Hawjeng Chiou

Professor of College of Management, National Taiwan Normal University Associate Vice President of General Affairs

邱皓政/國立臺灣師範大學管理學院教授兼副總務長

hawjeng@ntnu.edu.tw

Agenda

Introduction to this study

Contextual variables and contextual effects in MLM

Issues of ICCs in MLM

Estimation methods for MLM

A simulation pilot study

An empirical application

Conclusions and further study

Introduction

Organizations are multilevel in nature

Many topics in organization are related to hierarchical issues, such as

- Leadership
- Teamwork/Group Dynamic
- Communication/Conflict
- Organizational effectiveness
- Organizational climate and culture

•

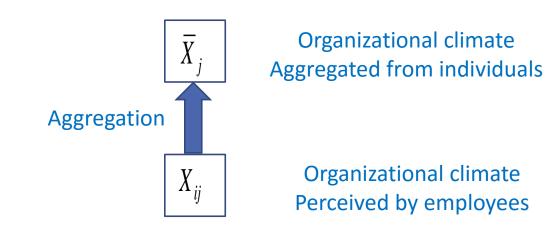
The organization researchers always concern about the **context** of organization with its influences on the organizational behaviors

Example also goes for the **big-fish-little-pond effect (BFLPE)** (Marsh, 2007) in education field that achievement at the individual student level has a positive effect on academic self-concept, but school- or classroom-average achievement has a negative effect on academic self-concept.

Contextual Variable

A group-level characteristic (such as the organizational climate) that is measured by an individual-level variable (such as the perceived climate) is treated as an level-2 explanatory variable.

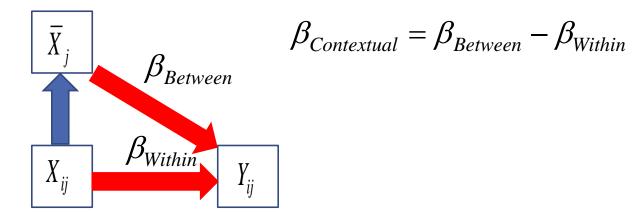
The cluster-mean of the individual-level variable (\overline{X}_j) is used as the proxy of the group-level characteristic to predict Y_{ij} .



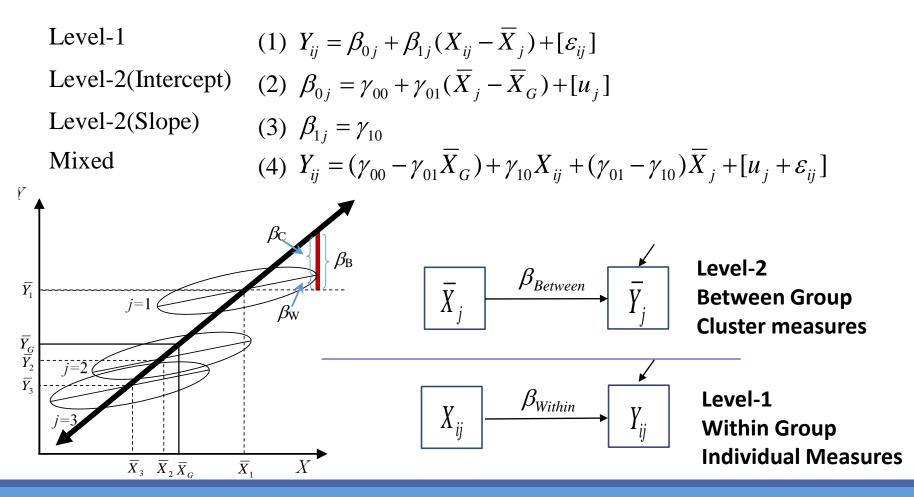
Contextual Effect (CE)

CE is defined as the partial effect of the contextual variable (\overline{X}_j) on the outcome (Y_{ij}) after removing the impact of the explanatory variable at individual level (X_{ij}).

CE could be evaluated by the difference between regression coefficients for between-sluster and within-cluster in terms of the hierarchical linear model (HLM) framework (Raudenbush & Bryk, 1986; Raudenbush & Willms, 1995; Algina & Swaminathan, 2011)



MLM notation



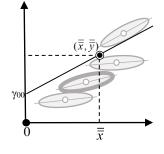
Centering issues in MLM

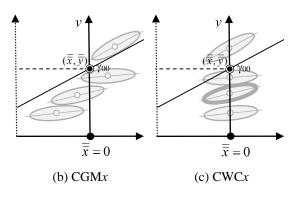
Two approaches for centering the predictors (Enders & Tofighi, 2007; Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002; Yang & Cai, 2014)

• Centering at the Grand Mean; CGM

(1)
$$Y_{ij} = \beta_{0j} + \beta_{1j}(X_{ij} - \overline{X}_G) + [\varepsilon_{ij}]$$

(2) $\beta_{0j} = \gamma_{00} + \gamma_{01}(\overline{X}_j - \overline{X}_G) + [u_j]$
(3) $\beta_{1j} = \gamma_{10}$
(4) $Y_{ij} = (\gamma_{00} - \gamma_{01}\overline{X}_G - \gamma_{10}\overline{X}_G) + \gamma_{10}X_{ij} + \gamma_{01}\overline{X}_j + [u_j + \varepsilon_{ij}]$
(5) $\beta_{\rm B} = \gamma_{01} + \gamma_{10} = \beta_{\rm C} + \beta_{\rm W}$





• Centering Within the Cluster; CWC

(1)
$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \overline{X}_j) + [\mathcal{E}_{ij}]$$

(2) $\beta_{0j} = \gamma_{00} + \gamma_{01} (\overline{X}_j - \overline{X}_G) + [u_j]$
(3) $\beta_{1j} = \gamma_{10}$
(4) $Y_{ij} = (\gamma_{00} - \gamma_{01} \overline{X}_G) + \gamma_{10} X_{ij} + (\gamma_{01} - \gamma_{10}) \overline{X}_j + [u_j + \mathcal{E}_{ij}]$
(5) $\beta_C = \gamma_{01} - \gamma_{10}$

Intra-Class Correlation (ICC)

ICC(1)

- The percent of the total variance in the outcome that is between groups (Bryk & Raudenbush, 1992).
- indicates the amount of variance that could potentially be explained by the Level-2 predictors (Hofmann, 1997)

ICC(2)

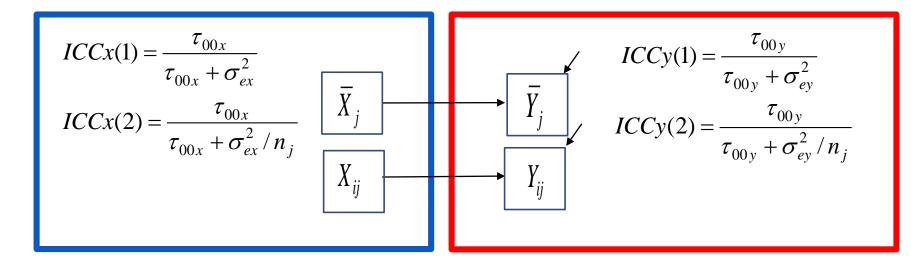
- The precision of a group-average score (Bryk & Raudenbush, 1992).
- determine the reliability of aggregated individual-level data in terms of sampling only a finite number of L1 units from each L2 unit. (Bliese, 2000; LeBreton & Senter, 2008)

$$ICC(1) = \rho = \frac{\tau_{00}}{\tau_{00} + \sigma_e^2} \qquad ICC(2) = \frac{\tau_{00}}{\tau_{00} + \sigma_e^2 / n_j} = \frac{n_j \times ICC(1)}{1 + (n_j - 1)ICC(1)}$$

While looking at contextual effects We need both *ICCx* and *ICCy*

 Y_i group-average score of the outcome; Key of HLM \overline{X}_{i}

group-average score of the predictor; Key of Context



Research questions

If both the ICCx and ICCy can affect the estimation of contextual effects? And how?

- 1. In terms of the definition of ICC(1), the magnitudes of variances of $\overline{X}_j \& \overline{Y}_j$ are the focus
- 2. In terms of the definition of ICC(2), the sample size of level-1 and level-2 are the focus
- 3. For the cases of limited unit at level-1 and level-2, whether the Bayesian estimation is good alternative for traditional ML methods or not?

Methods of parameter estimation

Frequentist inferences

based on point estimates and hypothesis tests of significance for the measurement and latent variable parameters

• Full/Restriction information maximum likelihood estimation $L(\theta_1, \theta_2)$

$$=\prod_{i=1}^{n}\frac{1}{\sqrt{2\pi\theta_{2}}}\exp\left[-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2\theta_{2}}\right]$$

Generalized least squares procedures

Bayesian inferences

treat parameters as random or variable across a range of possible values. Parameters are estimated by a stimulation procedure for creating a confidence interval for a central value.

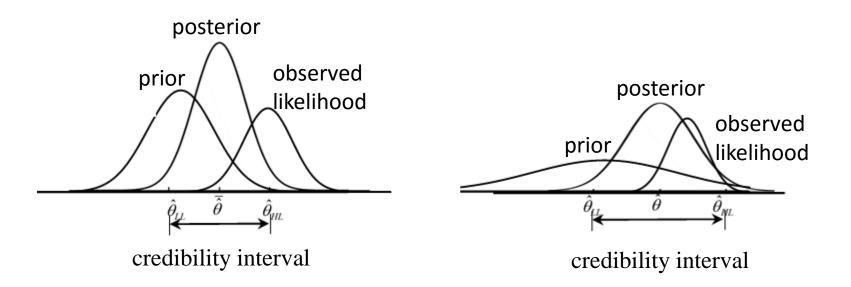
- requires the specification of prior distributions for the estimated parameters
- simulation techniques (Markov chain Monte Carlo, MCMC) could be used to implement Bayesian analysis in multilevel data (Dunson, 2000; Jedidi and Ansari, 2001)
- data from small-sample studies is less problematic

As the sample size increases, the posterior distribution will be driven less by the prior, and frequentist and Bayesian estimates will tend to agree closely

Probability density function in Bayesian estimation

Estimated parameter θ is defined as a random variable

 $P(\theta|z) \propto P(z|\theta)P(\theta)$



MCMC methods

Gibbs Sampler Metropolis-Hastings algorithm *Z*(1) is a draw from a target distribution *f*(*Z*)

 $Z(1) {\rightarrow} Z(2) {\rightarrow} ... {\rightarrow} Z(t)$

Trace plots of can be very useful in assessing convergence whether the chain is mixing well

trace and autocorrelation plots

1.5										1	-									
1.3-												1								
1.1-	La se		. di	Lih,	L	dul			li le le s	الحد	lak		l.s	IN	المراد	LL.	Lu	mini	n ^{al} l	
0.9-	1																			
0.7-	1 1 ,4	hila			LU II.			Nyr	-		a, in					H.		ų,	i i i	ų
0.5-1	P M			n y	t t		-			41 11	r ifie				Mind	HAM				1H
0.3-																				
0.1-	<u>11</u>	d a	n III	W/	^l lh,	"T ¹	n-h-l	n	-1-1	hy	M IN	e¶1	φ <i>i</i> th	MIL	<mark>n</mark>	n'ife	h	nlie	4mh	1
-0.1 -																				
-0.3-		b	ur	n-	in	pł	าลร	se												
-0.5	500-	1000-	1500-	2000-	2500-	3000-	3500-	4000-	4500-	5000-	5500-	6000-	6500-	-0002	7500-	8000-	8500-	-0006	9500-	100001

Simulation study

- The explanatory and outcome variables have a normal distribution
- Contextual effect (CE)= $\beta_W \beta_B$ =.75-.50=.25
- The ICCx and ICCy are set to [.1,.1], [.1,.5], [.5,.1], [.5,.5].
 - $^\circ~$ The variances of cluster means are set to .1111 or 1.0
- $^\circ~$ The variances of level-1 variables are set to 1.0
- ICC=.1111/(.1111+1)=.1; ICC=1/(1+1)=.5
- *N_{cluster}*: small(10), medium(30), large(100).
- N_i: small(10), medium(30), large(100).
- Prior distributions of random components: inverse Gamma IG(-1,0), IG(.001,.001), and uniform U(0,1000) (Muthén, 2010, Table25-29, pp.21-22)
- replications: 1000

Design based on

Hox, J. J., van de Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. *Survey Research Methods*, 6(2), 87-93. Muthén, B. (2010). Bayesian analysis in Mplus: A brief introduction. Retrieved from http://www.statmodel.com/download/IntroBayesVersion%203.pdf

Outputs of simulation

- Software: Mplus7.3
- average of the parameter estimates
- standard deviation of the parameter estimates
- average of the estimated standard errors
- mean square error for each parameter (M.S.E.)
- $^\circ\,$ the variance of the estimates across the replications plus the square of the bias.
- 95% coverage rate:
 - the proportion of the replications where the 95% Bayesian credibility interval covers the true value.

Design summary

	True	values	S ML Bayes						
Parameter	ICC=.1	ICC=.5		Bayes(1)	Bayes(2)	Bayes(3)			
Level-1									
$lpha_W$	0.00	0.00	-	$N(0, 10^{10})$	$N(0, 10^{10})$	$N(0, 10^{10})$			
β_W	0.50	0.50	-	$N(0, 10^{10})$	$N(0, 10^{10})$	$N(0, 10^{10})$			
Var(y)	1.00	1.00	-	IG(.001,.001)	IG(-1,0)	U(0,1000)			
Var(x)	1.00	1.00	-	IG(.001,.001)	IG(-1,0)	U(0,1000)			
Level-2									
μ_X	0.00	0.00	-	IG(.001,.001)	IG(-1,0)	U(0,1000)			
α_B	0.00	0.00		$N(0, 10^{10})$	$N(0, 10^{10})$	$N(0, 10^{10})$			
β_B	0.75	0.75	-	$N(0, 10^{10})$	$N(0, 10^{10})$	$N(0, 10^{10})$			
$Var(\overline{Y})$.1111	1.00	-	IG(.001,.001)	IG(-1,0)	U(0,1000)			
$Var(\overline{X})$.1111	1.00	-	IG(.001,.001)	IG(-1,0)	U(0,1000)			

Specification of parameters and true value

Note. Contextural effect (CE)= $\beta_W - \beta_B = .25$. ICC specification: variance of \overline{X} and \overline{Y} set to .1111 and the variance of X and Y set to 1.0, ICC=.1111/(.1111+1)=.1; variance of \overline{X} and \overline{Y} set to 1.0 and the variance of X and Y set to 1.0, ICC=.1111/(.1111+1)=.1, ICC=1/(1+1)=.5 \circ Baye(1): N refers to normal; IG refers to inverse Gamma; U refers to uniform.

An example of Mplus 7.3 syntax

```
BAYES ICCX=.5 ICCY=.1 IG(.001,.001) [30,30]
TITLE:
                                                               MODEL:
MONTECARLO:
                                                                   %within%
   NAMES ARE Y X W;
                                                                   Y on X *.5 (gamma10);
   NOBS = 900; NREP = 1000; NCsizes = 1; CSIZES = 30 (30);
                                                                   X*1 (AX);
                                                                  Y*1 (AY);
   !REPSAUE = 1; SAUE = M6ICC.1BAYESIG.001*.dat;
    WITHIN = X;
                                                                   %between%
    BETWEEN= W;
                                                                   Y on W *.75 (gamma01);
                                                                   W*1 (BW);
MODEL POPULATION:
                                                                   !X*.11111 (BX); !ICCX
    %within%
                                                                   Y*.11111 (BY); !ICCY
    X*1;
    Y*1;
                                                               Model constraint:
   Y on X*.5;
                                                                   NEW(ICCY*.1);
    %between%
                                                                   ICCY = BY/(AY+BY);
    ₩*1:
    Y on ₩*.75;
                                                                   new(CONTEXT*.25);
    X* 1; ICCX = 1/2 = 0.5
                                                                   CONTEXT=gamma01-gamma10;
   Y* 0.11111; !ICCY = 0.11111/1.11111 = 0.1
                                                               Model priors:
ANALYSIS:
                                                                   AX~IG(.001,.001);
    type = twolevel;
                                                                   AY~IG(.001,.001);
   !estimator = ml;
                                                                   BW~IG(.001,.001);
   estimator = bayes;
                                                                   BY~IG(.001,.001);
   fbiter = 100;
   process = 2;
                                                               PLOT: TYPE = PLOT2;
                                                               OUTPUT: Tech8 TECH9;
                                                                      !STANDARDIZED;
```

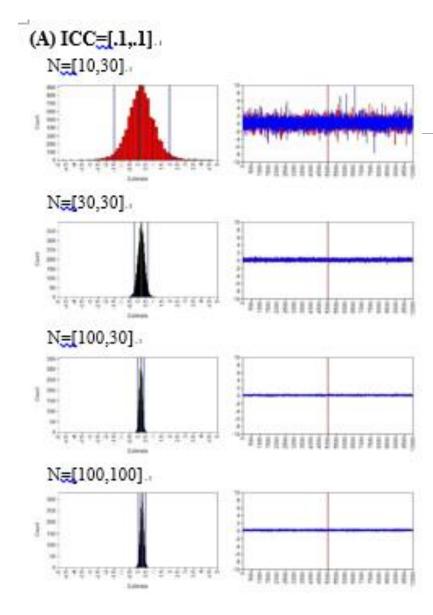

	True		Aver				andard	deviatio			М	ISE		95% cover rate			
ICCX=		.10	.50	.10	.50	.10	.50	.10	.50	.10	.50	.10	.50	.10	.50	.10	.50
ICCY=		.10	.10	.50	.50	.10	.10	.50	.50	.10	.10	.50	.50	.10	.10	.50	.50
								Â	. [NClust	ter,Nj]=[]	10, <u>30]</u> ,	Cases=3	300				
β_W	.50																
ML		.496	.496	.496	.496	.056	.056	.056	.056	.003	.003	.003	.003	.962	.962	.962	.962
Bayes(1)		.503	.503	.502	.502	.060	.060	.059	.060	.004	.004	.004	.004	.950	.950	.953	.953
Bayes(2)		.502	.502	.502	.502	.060	.060	.060	.060	.004	.004	.004	.004	.956	.956	.955	.955
Bayes(3)		.503	.503	.502	.502	.060	.060	.060	.060	.004	.004	.004	.004	.948	.950	.951	.955
β_B	.75					_				_							
ML		.750	.750	.755	.752	.436	.145	1.154	.385	.190	.021	1.331	.148	.903	.903	.896	.896
Bayes(1)		.738	.746	.714	.738	.434	.145	1.157	.386	.189	.021	1.338	.149	.918	.918	.939	.939
Bayes(2)		.738	.746	.714	.738	.435	.145	1.158	.386	.189	.021	1.341	.149	.972	.972	.974	.974
Bayes(3)		.737	.746	.714	.738	.435	.145	1.617	.387	.189	.021	1.350	.150	.963	.968	.972	.971
CE	.25																
ML		.254	.254	.259	.256	.439	.156	.155	.388	.193	.024	1.334	.151	.900	.916	.900	.906
Bayes(1)		.236	.244	.211	.235	.440	.158	.141	.392	.194	.025	1.347	.154	.916	.931	.940	.937
Bayes(2)		.236	.244	.211	.236	.440	.158	.162	.393	.194	.025	1.349	.154	.970	.970	.974	.972
Bayes(3)		.235	.243	.211	.235	.440	.158	.165	.394	.193	.025	1.358	.155	.962	.966	.971	.966
								В	: [NClust	er,Nj]=[.	30, 30],	Cases=9	000				
β_W	.50																
ML		.500	.500	500	.500	.033	.033	.033	.033	.001	.001	.001	.001	.957	.957	.960	.960
Bayes(1)		.500	.500	.500	.500	.035	.035	.035	.035	.001	.001	.001	.001	.938	.947	.938	.943
Bayes(2)		.500	.500	.500	.500	.035	.035	.035	.035	.001	.001	.001	.001	.941	.941	.941	.941
Bayes(3)		.500	.500	.500	.500	.035	.035	.035	.035	.001	.001	.001	.001	.940	.941	.941	.940
β_B	.75					_				_							
ML		.735	.745	.719	.740	.218	.073	.590	.197	.048	.005	.349	.039	.927	.927	.923	.923
Bayes(1)		.747	.749	.750	.750	.217	.072	.583	.194	.047	.005	.340	.038	.948	.948	.962	.962
Bayes(2)		.747	.749	.749	.750	.217	.073	.585	.195	.047	.005	.342	.038	.960	.960	.965	.965
Bayes(3)		.747	.749	.749	.750	.217	.072	.584	.195	.047	.005	.341	.038	.963	.960	.967	.969
CE	.25																
ML		.236	.246	.220	.240	.220	.079	.591	.200	.049	.001	.350	.040	.926	.933	.921	.923
Bayes(1)		.247	.249	.250	.250	.218	.079	.583	.196	.048	.006	.340	.039	.945	.955	.958	.954
Bayes(2)		.247	.249	.249	.250	.219	.079	.585	.197	.048	.006	.341	.039	.961	.960	.965	.966
Bayes(3)		.247	.249	.249	.250	.218	.079	.585	.197	.048	.006	.341	.039	.968	.962	.966	.963

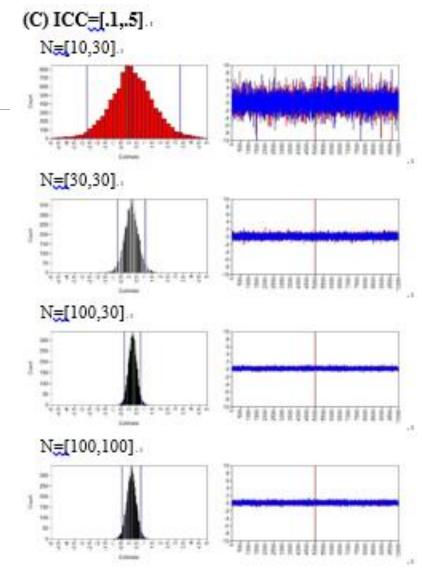
Results of Monte Carlo Simulation

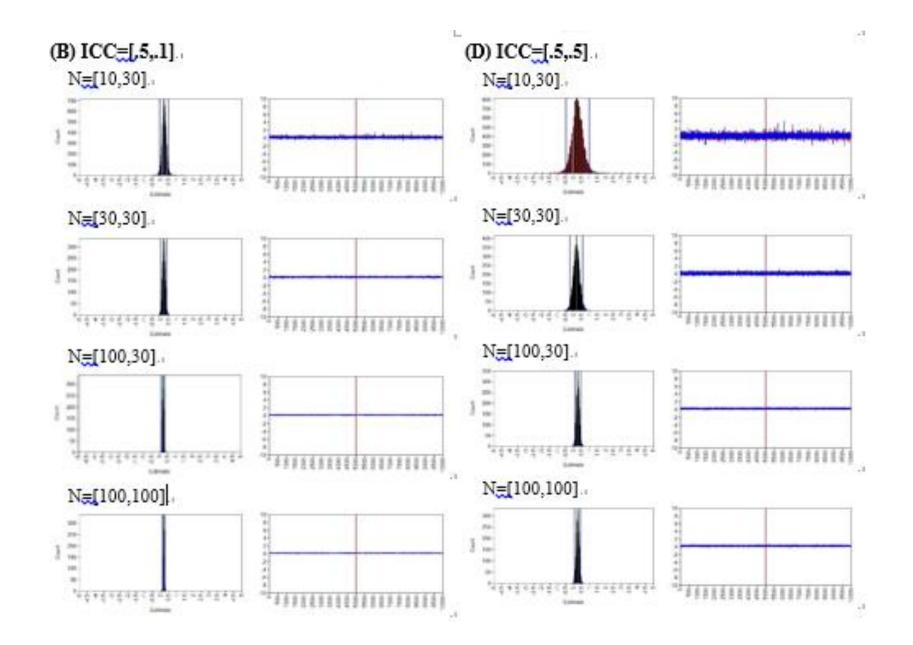
[continued]

E 3	continued													0.500				
	rue		Aver					deviatio				SE		95% cover rate				
ICCX=		.10	.50	.10	.50	.10	.50	.10	.50	.10	.50	.10	.50	.10	.50	.10	.50	
ICCY=		.10	.10	.50	.50	.10	.10	.50	.50	.10	.10	.50	.50	.10	.10	.50	.50	
						C: [N _{cluster} ,N _j]=[100, 30], Cases=3000												
β_W	.50																	
ML		.500	.500	.500	.500	.018	.018	.018	.018	.0003	.0003	.0003	.0003	.957	.957	.956	.956	
Bayes(1)		.500	.500	.500	.500	.019	.018	.019	.019	.0003	.0003	.0003	.0003	.946	.944	.944	.944	
Bayes(2)		.500	.500	.500	.500	.019	.019	.019	.019	.0003	.0003	.0003	.0004	.945	.945	.945	.944	
Bayes(3)		.500	.500	.500	.500	.019	.019	.019	.019	.0003	.0003	.0004	.0004	.944	.944	.946	.944	
β_B	.75					_		-										
ML		.746	.749	.743	.748	.115	.038	.305	.102	.013	.002	.093	.010	.938	.938	.950	.950	
Bayes(1)		.750	.750	.754	.752	.119	.040	.311	.106	.014	.002	.101	.011	.937	.939	.938	.938	
Bayes(2)		.750	.750	.755	.752	.119	.039	.318	.106	.014	.002	.101	.011	.946	.942	.946	.942	
Bayes(3)		.750	.750	.754	.752	.120	.040	.317	.106	.014	.002	.101	.011	.941	.947	.946	.942	
CE	.25													L				
ML		.247	.249	.244	.248	.116	.042	.305	.103	.013	.002	.093	.011	.939	.939	.939	.950	
Bayes(1)		.250	.250	.254	.251	.120	.043	.317	.107	.014	.002	.101	.011	.940	.946	.941	.942	
Bayes(2)		.250	.250	.254	.251	.120	.043	.318	.107	.014	.002	.101	.011	.945	.950	.950	.944	
Bayes(3)		.250	.250	.254	.251	.120	.043	.317	.106	.015	.002	.100	.011	.943	.951	.947	.943	
								D: [/	VCluster,	N_{j}]=[10	0, 100], 0	Cases=1(0000	L				
β_W	.50									-								
ML		.500	.500	.500	.500	.010	.010	.010	.010	.0001	.0001	.0001	.0001	.963	.963	.963	.963	
Bayes(1)		.500	.500	.500	.500	.010	.010	.010	.010	.0001	.0001	.0001	.0001	.952	.952	.951	.951	
Bayes(2)		.500	.500	.500	.500	.010	.010	.010	.010	.0001	.0001	.0001	.0001	.954	.954	.953	.953	
Bayes(3)		.500	.500	.500	.500	.010	.010	.010	.010	.0001	.0001	.0001	.0001	.957	.957	.953	.954	
β_B	.75					_			_									
ML		.747	.749	.742	.747	.109	.036	.313	.105	.012	.001	.098	.011	.937	.937	.943	.943	
Bayes(1)		.744	.748	.731	.744	.104	.035	.301	.100	.011	.001	.091	.010	.949	.949	.953	.953	
Bayes(2)		.744	.748	.731	.744	.104	.035	.301	.100	.011	.001	.091	.010	.953	.953	.952	.952	
Bayes(3)		.744	.748	.731	.744	.100	.035	.301	.100	.011	.001	.091	.010	.959	.953	.954	.959	
ĊĔ	.25																	
ML		.247	.249	.241	.247	.109	.038	.313	.105	.012	.001	.098	.011	.936	.944	.942	.941	
Bayes(1)		.245	.248	.241	.244	.104	.036	.301	.100	.011	.001	.091	.010	.943	.955	.953	.954	
Bayes(2)		.244	.248	.231	.244	.104	.036	.301	.100	.011	.001	.091	.010	.953	.954	.953	.953	
Bayes(3)		.244	.248	.231	.244	.104	.035	.301	.100	.011	.001	.091	.010	.958	.960	.956	.955	
Note CE: C														.,				

Note. CE: Contextual effect= $\beta_W - \beta_B = .25$. Bayes(1)(2)(3) refers to IG(.001,.001) \cdot IG(-1,0) \cdot U(0,1000).







Results of simulation

The matching effects

• a higher ICCx combined with a lower ICCy [.5,.1] is more efficient

• a smaller ICCx combined with a higher ICCy [.1,.5] is worst efficient

The point estimation of the Bayesian estimation is similar to the maximum likelihood method. the Bayesian estimation shows the superiority of predicting the true value of the parameters, especially when the Ncluster is low,

the Bayesian method is a good alternative to the maximum likelihood method for estimating the contextual effects in the multilevel models while the number of cluster is small (ie. Less than 10).

Empirical Application

Data sources

Selected data from

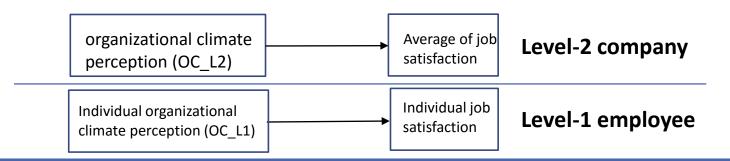
(1)Study of organizational culture and effectiveness (Chiou, Kao, and Liou, 2001)

(2)MOST project based a large-scale survey on the high-tech compnies at HsinChu Science Park in Taiwan

Sample

A total of 45 companies 1200 employees 741 male (61.8%), 459 female (38.3%),

Average cluster size is 26.67 (Median 25, minimum 5, maximum 64



Data information

	F	Eta ²	Var	iance	ICC	10
	1	Lla	within	between	ICC	r _{wgj}
X: perceived climate	9.28*	.257	.2822	.1230	.309	.876
Y: job satisfaction	8.27*	.235	.3604	.1175	.251	.867

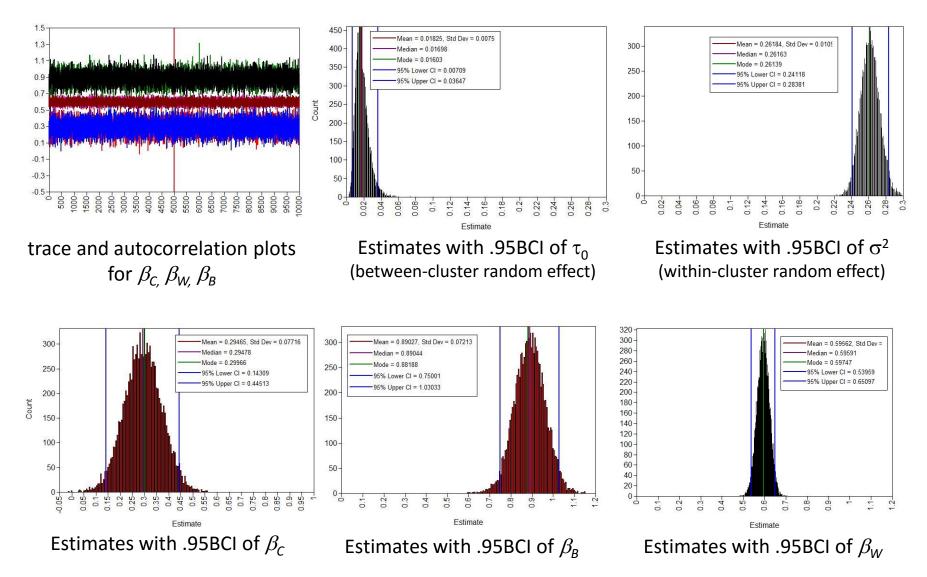
Descriptive statistics and correlation coefficients

Variables		Descrip		Correlation			
Variables	Ν	Mean	std	min	max	1.	2.
Company level							
1 OC \overline{X}_i	45	3.622	.627	2.535	4.267	1.00	
2 JS \overline{Y}_i	45	3.509	.683	2.514	4.125	.875**	1.00
Employee level							
1 OC X_{ij}	1200	3.649	.649	1.000	5.000	1.00	
$2 JS Y_{ij}$	1200	3.504	.755	1.000	5.000	.589**	1.00
* <i>p</i> <.05 ** <i>p</i> <.01							

Summary of Results

		ML		Baysian		Grand-mean centering
		CGM	CWC	CGM	CWC	C C
Fixed						.596
Intercept	γ00	2.450(.260)	.292(.239)	2.447(.281)	.293(.259)	OC_L2
		[1.940,2.960]	[177,.760]	[1.900,3.005]	[213,.805]	
OC_L1	γ_{10}	.596(.028)	.596(.028)	.595(.028)	.596(.029)	.294
		[.541,.652]	[.541,.652]	[.540,.650]	[.540,.650]	OC_L1
OC_L2	γ_{01}	.294(.072)	.890(.066)	.296(.078)	.890(.072)	
		[.153,.435]	[.761,1.019]	[.141,.446]	[.727,1.024]	
Contextual	γc		.294(.072)		.295(.077)	
			[.153,.435]		[.143,.445]	
Random						Group-mean centering
Within	σ^2	.261(.011)	.261(.011)	.262(.011)	.262(.011)	.890
		[.240,.282]	[.240,.282]	[.241,.284]	[.241,.284]	$OC_L2 \xrightarrow{.050} JS_L2$
Between	$ au_0$.014(.011)	.014(.011)	.017(.008)	.017(.008)	00_12 =
		[.003,.025]	[.003,.025]	[.007,.037]	[.007,.036]	
Model fit						.294
Level-1		.348(.025)	.270(.022)	.348(.025)	.270(.022)	$OC_L1 \longrightarrow JS_L1$
R^2		[.298,.398]	[.226,.314]	[.297,.397]	[.226,.313]	
Level-2		.473(.172)	.892(.048)	.445(.162)	.880(.056)	
R^2		[.129,.817]	[.796,.988]	[.122,.734]	[.738,.953]	

Bayesian results of empirical data



Some insights

- 1. We need to consider the clustering nature of the human data.
- 2. ICC play an important role in multilevel data analysis for both predictors and outcomes
- 3. Both ICCx and ICCy with matching pattern may have impact on the analysis
- 4. ICC(1) and ICC(2) reflect different psychometrical characters
- 5. The ICCs of latent variables are extensive with the ICCs concepts of manifest variables
- 6. Careful choice of estimation methods can provide the unbiased, consistent, and utilized estimates. Bayesian method is one of the alternatives.

Further works

Make a more comprehensive simulation about the effects of matching ICCx and ICCy on a full range of conditions

- Magnitude of ICCx and ICCy
- Differentiate the ICC2 from ICC1
- Different sample size of Level-1 and Level-2

The advantage of Bayesian inferences on the cases of small sample size

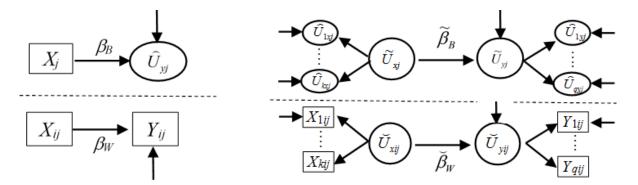
Integrating the sampling error with measurement error

- Appling the Latent variable modeling, i.e., the doubly latent multilevel models (ML-SEM) (Marsh, Lüdtke et al. 2009, 2012; Lüdtke et al., 2008; 2011)
- Testing for the effects of indicator-number, magnitude of factor loading, on the estimation of contextual effects

while sampling errors meet measurement errors in the multilevel data,

What might be happened?

- What's the influences of ICC(1), ICC(2)
- What's the matching effect of ICC(1)(2) on x and y
- What's the impact of the sample size
- What's the impact of the item number
- What's the estimation of the contextual effects



Thanks for listening

For further information, please email https://www.hawjeng@ntnu.edu.tw

