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Abstract

The challenge of quick optimization of multilevel structural
equation models (SEM) will be introduced. To provide context,
multilevel SEM will be compared with the mixed model.
Rampart, a novel method to simplify the multilevel SEM
likelihood will be introduced, inspired by the fact that the
multivariate normal density is transparent to orthogonal rotation.
Assumptions and limitation of Rampart will be discussed.
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Structural equation models
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Multilevel structural equation models
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A hypothetical example
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Student
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Teacher
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School
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Estimation time?

How long will
this model take
to estimate?
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Roadmap

I What is hard about multilevel?

I mixed model + SEM = Relational SEM

I Rampart (a novel method that favorably transforms the problem)
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Direct sum

B1

⊕
B2 =

(
B1 0
0 B2

)

k⊕
i=1

Bi =


B1 0 · · · 0

0 B2

...
...

. . . 0
0 · · · 0 Bk

 .

I
⊕

stacks matrices in a block-diagonal arrangement

I Here we assume nested multilevel structure

Joshua N. Pritikin University of Virginia 12/58

Rampart



Intro Relational Rampart Simulation Appendix References

Covariance

Suppose we build a covariance model S for a particular student. A
classroom of s students will have covariance matrix

T =

(
T1,1 T1,2

T2,1

⊕s
i=1 Si

)
.
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Sparseness pattern
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Bottleneck in model evaluation

I Covariance matrix can become very large

I Inverting the covariance is expensive, O(N3)

I Sparse matrix operations help, but not enough

I Conclusion: impractical without cleverness
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Structural equation model

What is a SEM?

It’s similar to regression. But how?
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Structural equation model, 1st moment

Regression is y = Xβ + e

SEM is y = Xβ + e

For y observations, X covariates/predictors, β constant coefficients,
e residuals
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Structural equation model, 2nd moment

Regression

y = Xβ + e

e ∼ N (., σ2I)

SEM

y = Xβ + e

(X, e) ∼ N (.,Σ(θ))

For y observations, X covariates/predictors, β constant coefficients,
e residuals, variance σ2, parameters θ, covariance Σ
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Mixed model

lme4 (Bates, Mächler, Bolker, & Walker, 2015)

Multilevel or crossed regression

Fast

How does it work?
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Mixed model, 1st moment

Y = Xβ︸︷︷︸
constant

+Zu+ e︸ ︷︷ ︸
varying

.

I column vector of observations Y

I covariates X associated with constant coefficients β

I covariates Z associated with varying coefficients u

I column vector of residuals e

E

(
u
e

)
=

(
0
0

)
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Mixed model, 2nd moment

Y = Xβ︸︷︷︸
constant

+Zu+ e︸ ︷︷ ︸
varying

.

Cov

(
u
e

)
=

(
G 0
0 R

)
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Mixed model, unconditional distribution

Y = Xβ + e

where
e ∼ N (0,ZGZT +R)

The formulation I showed earlier is actually conditional on a
particular realization of the varying coefficients u.
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Mixed model, example

lmer(gpa ~ 1 + (1 | school) + (1 | school:teacher), ...)

I Intercept-only model with 3 levels

I The expression after the vertical bar indicates the partitioning
design (like conditional probability)

I 4 free parameters are estimated: the grand intercept; 2 variances,
one for each varying coefficient; and the residual variance

I Efficient
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How does this look in SEM?

Joshua N. Pritikin University of Virginia 24/58

Rampart



Intro Relational Rampart Simulation Appendix References

What is ./?

Let R and S be tables (or data frames) that contain rows.

R ./ (F ) S ≡ {r ∪ s ∧ r ∈ R ∧ s ∈ S ∧ F (r ∪ s)}

where F is a boolean valued function.

Without loss of generality, here F is whether primary and foreign keys
match. We will omit F and write ./ (k) where k is the name of the
key.
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What is ./? Example

Employee Dept
Harry Sales
Sally Finance
George Finance
Harriet Sales

Dept Manager
Sales George
Finance Harriet
Production Charles

Employee ./(Dept) Manager

Employee Dept Manager
Harry Sales George
Sally Finance Harriet
George Sales George
Harriet Finance Harriet
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Which is easier to understand?
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A relational schema
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Autoregressive tree (pedigree)
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Summary: ./ vs conditional probability

Data is joined (./)

Conditional probability is an ingredient in multilevel models, not data

Join commutes, conditional probability doesn’t
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Mixed model

Limitations:

I missing data −→ row-wise deletion

I only the lowest level unit has observations

I multivariate (more than one outcome) is very awkward
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Sufficient statistic approach

Suppose we have data of N independent observations of K-variate
units. Let µ and Σ be the model expected mean vector and
covariance matrix, respectively. Let m and S be the mean vector and
covariance matrix of the data, respectively.

−2 logL(data|θ) =

N(K log(2π) + log(|Σ|) + tr(Σ−1S) + µT Σ−1(µ− 2m))

Maximum covariance dimension is K.
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Sparseness pattern
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Uncompressed likelihood

Suppose we have N observations consisting of data vector x. Let µ
and Σ be the model expected mean vector and covariance matrix,
respectively.

−2 logL(data|θ) = N log(2π) + log(|Σ|) + (µ− x)T Σ−1(µ− x)

Maximum covariance dimension is N .
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Rampart

Covariance becomes very large. What to do?

SEMs are specified using the RAM parameterization:

µ = F (I −A)−1M

Σ = F (I −A)−1S(I −A)−TF T

A, S, F , and M are used for what?
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RAM’s A matrix
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RAM’s A matrix

T S1 S2 S3 S4
T 0 0 0 0 0

S1 1 0 0 0 0
S2 1 0 0 0 0
S3 1 0 0 0 0
S4 1 0 0 0 0
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Orthogonal or axis rotation
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Call forth the sublime orthogonal rotation
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Rampart transformed
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Rampart transformed

T S1 S2 S3 S4
T 0 0 0 0 0

S1
√

4 0 0 0 0
S2 0 0 0 0 0
S3 0 0 0 0 0
S4 0 0 0 0 0
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Rampart transformed
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Rampart algebratically

I Upper level has K outgoing regressions

I Lower level has M incoming regressions with data D

I Find an orthogonal matrix Q ∈ RM×M such that the lower
M −K rows of QA are zero.

I Define new model A′ as the first K rows of QTA

I Define new lower level dataset D′ = QTD

I Proceed with optimization as usual
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Rampart geometry



1.00 6.00 0.00 0.00 0.00 0.00 0.00
1.00 −1.00 5.00 0.00 0.00 0.00 0.00
1.00 −1.00 −1.00 4.00 0.00 0.00 0.00
1.00 −1.00 −1.00 −1.00 3.00 0.00 0.00
1.00 −1.00 −1.00 −1.00 −1.00 2.00 0.00
1.00 −1.00 −1.00 −1.00 −1.00 −1.00 1.00
1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00


Use QR decomposition to scale to an orthogonal rotation

Joshua N. Pritikin University of Virginia 44/58

Rampart



Intro Relational Rampart Simulation Appendix References

Rampart, apply recursively
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Rampart historical lineage

Who done it?

I summer of 2012: idea conceived by Timo von Oertzen, Steven M.
Boker, and Timothy R. Brick, inspired by von Oertzen and
Hackett (submitted)

I spring 2013: prototyped in OpenMx (by me)

I completed predissertation on a different topic

I spring 2016: optimized implementation in OpenMx (again by me)

Joshua N. Pritikin University of Virginia 46/58

Rampart



Intro Relational Rampart Simulation Appendix References

Does it work?
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Conditions

I 11 parameters per level, 2 between level regressions (total 35)

I 1st student indicator was set to missing with 20% probability

I 2 sets of true parameters (θ1 and θ2)

I Parameter θ1: 7 schools, 38 teachers, and 293 students

I Parameter θ2: 7 schools, 37 teachers, and 296 students

I 200 Monte Carlo replications for each condition (Algorithm× θ)
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Monte Carlo bias and variance

θ replications method ||bias|| ||σ2||

1 174 rampart 1.686 0.769
regular 1.702 0.780

2 171 rampart 2.336 0.557
regular 2.335 0.560
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Scatterplot of deviance at the maximum likelihood
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Seconds required per replication
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OpenMx is a free and open source extension to the R statistical
environment.

Software and support available at
http://openmx.psyc.virginia.edu/

Questions?
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Appendix

Some extra slides follow
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Terminology

Historically, coefficients that help predict all observations are called
fixed effects whereas the other type of coefficient has been called a
random effect. These are unfortunate terminology. In the statistical
literature, there are at least five definitions of these phrases, all of
which differ from each other (Gelman, 2005). Moreover, in computer
science, the term random is usually associated with draws from a
uniform random number generator, not synonymous with stochastic
that does not suppose a particular distribution. Here we follow
Gelman (2005) and use the terms constant and varying.
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Example, lme4

lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
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Example, OpenMx (part 1)

bySubj <- mxModel(

model="bySubj", type="RAM",

latentVars=c("slope", "intercept"),

mxData(data.frame(Subject=unique(sleepstudy$Subject)),

type="raw", primaryKey = "Subject"),

mxPath(c("intercept", "slope"), arrows=2, values=1),

mxPath("intercept", "slope", arrows=2,

values=.25, labels="cov1"))
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Example, OpenMx (part 2)

ss <- mxModel(

model="sleep", type="RAM", bySubj,

manifestVars="Reaction", latentVars = "Days",

mxData(sleepstudy, type="raw", sort=FALSE),

mxPath("one", "Reaction", arrows=1, free=TRUE),

mxPath("one", "Days", arrows=1, free=FALSE,

labels="data.Days"),

mxPath("Days", "Reaction", arrows=1, free=TRUE),

mxPath("Reaction", arrows=2, values=1),

mxPath(paste0('bySubj.', c('intercept','slope')),

'Reaction', arrows=1, free=FALSE, values=c(1,NA),

labels=c(NA, "data.Days"), joinKey="Subject"))
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