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Session 1

Why Imputation?

Dedicated multilevel programs restricts maximum 
likelihood estimation to incomplete outcomes 

Multilevel SEM software is more flexible but 
typically imposes normality on incomplete 
predictors and may perform poorly in some cases 

Imputation is flexible (e.g., mixtures of categorical 
and continuous variables are no problem)

Model Notation

Two-level model with observation i nested in 
cluster j (e.g., student i in school j )



Bayesian Estimation For Multilevel Models

Bayesian Estimation And Imputation

Bayesian estimation (e.g., Gibbs sampler) is the 
mathematical machinery for imputation 

Each algorithmic cycle is a complete-data Bayes 
analysis followed by an imputation step 

A multilevel model generates imputations

Analysis Example

Random intercept model with a level-1 predictor 

Assume complete data, estimation steps do not 
change with missing values

Bayesian Paradigm

The Bayesian framework views parameters and 
level-2 residuals as random variables that follow 
a probability distribution (a posterior)

Likelihood
PriorPosterior



Gibbs Sampler

An iterative Gibbs sampler algorithm estimates 
quantities in     one at a time, treating all other 
variables as known 

Monte Carlo simulation “samples” parameter 
values from their conditional distributions 

Repeating the sampling steps many times yields 
a distribution of each estimate

Gibbs Sampler Steps For One Iteration

Estimate regression coefficients 

Estimate level-2 random effects 

Estimate within-cluster residual variance 

Estimate level-2 covariance matrix

Estimating Regression Coefficients

Regression coefficients are drawn from a 
multivariate normal distribution that conditions 
on random effects, variances, and the data 

Current iteration Previous iteration

Conditional Distribution



Level-2 random effects are drawn from a 
multivariate normal distribution that conditions 
on the coefficients, variances, and the data 

Estimating Level-2 Random Effects

Updated estimates
Previous iteration

Conditional Distribution

Estimating The Residual Variance

The within-cluster residual variance is drawn from 
an inverse Wishart distribution that conditions on 
the previous coefficients, random effects, level-2 
covariance matrix, and the data 

Conditional Distribution



Estimating Level-2 Covariance Matrix

The level-2 covariance matrix is sampled from an 
inverse Wishart distribution that conditions on the 
previous coefficients, random effects, residual 
variance, and the data 

Iteration t is complete, start anew at iteration t + 1

Conditional Distribution

Univariate Multiple Imputation

Multilevel Imputation

Imputation uses a model with an incomplete 
variable regressed on complete variables 

Bayesian estimation steps are applied to the 
filled-in data from the previous iteration 

Model parameters and level-2 residuals define a 
distribution from which imputations are sampled



Analysis And Imputation Models

Random intercept analysis model with an 
incomplete predictor 

Random intercept imputation model with the 
incomplete predictor as the outcome

Estimate coefficients 

Estimate random effects 

Estimate residual variance 

Estimate covariance matrix 

Gibbs Sampler Steps

Update imputations

Complete-data  
Bayes estimation

Imputation step

Distribution Of Missing Values

A normal distribution generates imputations, 
with center equal to the predicted value for 
observation i in cluster j and spread equal to the 
within-cluster residual variance

Random Intercept Imputation Model
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Random Intercept Imputation Model
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Random Intercept Imputation Model
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Imputation = 

Burn-In Period

Burn-in interval 
(e.g., 2000)

Iterate . . . . .

Estimate parameters Update imputations

Estimate parameters Update imputations

Estimate parameters Update imputations

Save data set 1Estimate parameters Update imputations

Thinning Interval

Iterate . . . . .

Estimate parameters Update imputations

Estimate parameters

Estimate parameters

Update imputations

Update imputations

Save data set 2Estimate parameters Update imputations

Thinning interval 
(e.g., 2000)



Repeat Until Finished …

Iterate . . . . .

Estimate parameters Update imputations

Estimate parameters

Estimate parameters

Update imputations

Update imputations

Save data set 20Estimate parameters Update imputations

Thinning interval 
(e.g., 2000)

Analysis And Pooling

The analysis model is fit to each data set, and 
the arithmetic average of the M estimates is the 
multiple imputation point estimate 

Pooling assumes a normal sampling distribution

Pooling Standard Errors

Average sampling  
variance

Variance across  
imputations

Standard error

Multivariate Missing Data

Joint model imputation uses multivariate 
regression to impute the set of missing variables 

Fully conditional specification imputes variables 
one at a time in a sequence 

Both are multilevel extensions of major single-
level imputation frameworks



Multivariate Imputation With 
The Joint Modeling Framework

Joint Model Imputation

Two forms: 

1) Multivariate regression model with incomplete 
variables regressed on complete variables 

2) Empty model treating all variables as outcomes 

Available in Mplus, MLwiN, and R packages (e.g., 
jomo, pan, mlmmm)

Random Intercept Analysis Model

Two-level random intercept analysis with 
continuous level-1 and level-2 predictors 

All variables have missing data

Imputation Model



Covariance Structure

Level-1

?

Level-2

Imputation Step

Compatibility Of Imputation And Analysis

The imputation model is more flexible than the 
analysis model because it allows level-1 and 
level-2 covariance matrices to freely vary 

The analysis model assumes a common slope 

Imputations are appropriate for random 
intercept analyses that partition relations into 
within- and between-cluster parts

Compatible Analysis Models

Contextual effects analyses

Multilevel SEM



R Package jomo
# load packages 
library (jomo) 

# read raw data 
dat <- read.table("~/desktop/examples/ridata.csv", sep = ",") 
names(dat) = c("cluster", "av1", "av2", "y", "x","w") 
dat[dat == 999] <- NA 

# jomo imputation 
set.seed(90291) 
dat$icept <- 1 
l1miss <- c("y", "x") 
l2miss <- c("w") 
l1complete <- c("icept") 
l2complete <- c("icept") 
impdata <- jomo(dat[l1miss], Y2 = dat[l2miss], X = dat[l1complete],  
  X2 = dat[l2complete], clus = dat$cluster,  
  nburn = 2000, nbetween = 2000, nimp = 20, meth = "common")

Mplus
 data: 
 file = ridata.csv; 
 variable: 
 names = cluster av1 av2 y x w; 
 usevariables = av1 av2 y x w; 
 missing = all(999); 
 analysis: 
 type = basic; 
 bseed = 90291; 
 data imputation: 
 impute = y x w; 
 ndatasets = 20; 
 save = imp*.dat; 
 thin = 1000; 
 output: 
 tech8;

Simulation Study

Random intercept model with 1000 replications 

ICC = .25, medium effect sizes 

30 clusters with 5 or 30 observations per cluster 
(i.e., N = 150 and 900)  

15% MAR missing data on all analysis variables 

20 imputations with R package jomo
-40 -20 0 20

Complete Data Joint Model Imputation

-40 -20 0 20

Percentage Bias Percentage Bias

Intercept

L1 Slope

L2 Slope

Intercept Var.

Residual Var.

J = 30, nj = 5 J = 30, nj = 30



Random Slope Analysis Model

Two-level random slope analysis with continuous 
level-1 and level-2 predictors 

All variables have missing data

Joint Model Limitations

Within-cluster covariances must preserve level-1 
relations, including the random coefficients 

The classic formulation of the joint model 
assumes a common covariance matrix at level-1 

Imputation ignores random slope variation

Covariance Structure Revisited

Level-1

?

Level-2

Simulation Study

Random slope model with 1000 replications 

ICC = .25, medium effect sizes 

30 clusters with 5 or 30 observations per cluster 
(i.e., N = 150 and 900)  

15% MAR missing data on all analysis variables 

20 imputations with R package jomo
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Complete Data Joint Model Imputation
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Intercept Var.

Residual Var.

Covariance
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Brief Maximum Likelihood Detour

Mplus allows incomplete 
random slope predictors 

Requires numerical 
integration and many 
latent variable products 

Often yields severe bias

Percentage Bias

J = 30, nj = 30

Intercept

L1 Slope

L2 Slope

Intercept Var.

Residual Var.

Covariance

Slope Var.

-40 -20 0 20

Joint Modeling With  
Random Level-1 Covariance Matrices

Yucel (2011) extended the joint model to 
incorporate random level-1 covariance matrices 

Available in the R package jomo 

Currently limited to 2-level models

Covariance Structure

Level-1

?

Level-2



Limitation Of Random Covariance Matrices

The between-cluster covariance matrix 
preserves random intercept variation, while the 
within-cluster matrices preserve random slopes 

Elements of       in the analysis model depend 
on orthogonal sources of variation 

Imputation assumes no correlation between the 
random intercepts and slopes

Covariance Structure

Level-1

?

Level-2

Intercept variation

Slope variation

R Package jomo
# load packages 
library (jomo) 

# read raw data 
dat <- read.table("~/desktop/examples/ridata.csv", sep = ",") 
names(dat) = c("cluster", "av1", "av2", "y", "x","w") 
dat[dat == 999] <- NA 

# jomo imputation 
set.seed(90291) 
dat$icept <- 1 
l1miss <- c("y", "x") 
l2miss <- c("w") 
l1complete <- c("icept") 
l2complete <- c("icept") 
impdata <- jomo(dat[l1miss], Y2 = dat[l2miss], X = dat[l1complete],  
  X2 = dat[l2complete], clus = dat$cluster,  
  nburn = 2000, nbetween = 2000, nimp = 20, meth = "random")

Simulation Study

Random slope model with 1000 replications 

ICC = .25, medium effect sizes 

30 clusters with 5 or 30 observations per cluster 
(i.e., N = 150 and 900)  

15% MAR missing data on all analysis variables 

20 imputations with R package jomo
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Multivariate Imputation With 
Fully Conditional Specification

Fully Conditional Specification

Variable-by-variable imputation 

Uses a series of univariate regression models 
with an incomplete variable regressed on 
complete and previously imputed variables 

Available in R package mice (2-level models 
with continuous variables) and the Blimp 
application for MacOS, Windows, and Linux

Random Intercept Analysis Model

Two-level random intercept analysis with 
continuous level-1 and level-2 predictors 

All variables have missing data



Overview Of Algorithmic Steps

Each incomplete variable has an imputation 
models tailored to match features of the analysis 

A single iteration consists of estimation and 
imputation sequences for each missing variable 

The imputed variable from one sequence serves 
as a predictor variable in all other sequences

Algorithmic Steps

Burn-in or thinning 
interval (e.g., 2000)

Estimate Y3 model

Update Y1 imputationsEstimate Y1 model

Update Y2 imputationsEstimate Y2 model

Update Y3 imputations

Save data set

Iterate . . . . .

Estimate Y1 model Update Y1 imputations

Update Y3 imputationsEstimate Y3 model

Estimation And Imputation For y

Imputation model: 

Bayesian estimation and imputation sequence:

Imputation Model For y

Level-1

Level-2



Imputation Step For y Estimation And Imputation For x

Imputation model: 

Bayesian estimation and imputation sequence:

Imputation Model For x

Level-1

Level-2

Imputation Step For x



Estimation And Imputation For w

Imputation model: 

Bayesian estimation and imputation sequence:

Imputation Model For w

Level-1

Level-2

Imputation Step For w Blimp Syntax

DATA: ~/desktop/examples/ridata.csv; 
VARIABLES: cluster av1 av2 y x w; 
MISSING: 999;  
MODEL: cluster ~ y x w;  
NIMPS: 20; 
THIN: 2000; 
BURN: 2000; 
SEED: 90291; 
OUTFILE: ~/desktop/examples/imps.csv; 
OPTIONS: stacked noclmeans prior1;



Simulation Study

Random intercept model with 1000 replications 

ICC = .25, medium effect sizes 

30 clusters with 5 or 30 observations per cluster 
(i.e., N = 150 and 900)  

15% MAR missing data on all analysis variables 

20 imputations with the Blimp application
-40 -20 0 20

Complete Data Joint Model FCS

-40 -20 0 20

Percentage Bias Percentage Bias

Intercept

L1 Slope
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Intercept Var.

Residual Var.
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Limitations

The classic formulation of fully conditional 
specification assumes equal within- and 
between-cluster regression slopes 

i.e., Equality constraints on the level-1 and 
level-2 model-implied covariance matrices 

Not ideal for models that partition relations

Revisiting Models That Partition Variability

Contextual effects analyses

Multilevel SEM



Partitioned Imputation Model For y

Level-1

Level-2

Partitioned Imputation Model For x

Level-1

Level-2

Imputation Model For w

Level-1

Level-2

Blimp Syntax

DATA: ~/desktop/examples/ridata.csv; 
VARIABLES: cluster av1 av2 y x w; 
MISSING: 999;  
MODEL: cluster ~ y x w;  
NIMPS: 20; 
THIN: 2000; 
BURN: 2000; 
SEED: 90291; 
OUTFILE: ~/desktop/example/imps.csv; 
OPTIONS: stacked clmeans prior1;



Random Slope Analysis Model

Two-level random slope analysis with continuous 
level-1 and level-2 predictors 

All variables have missing data

Reversed Random Coefficients

Fully conditional specification uses “reversed 
random coefficients” to preserve random slope 
variation 

Imputation treats x as a random predictor of y, 
and y as a random predictor of x

Reversed Coefficient Model For y

Level-1

Level-2

Reversed Coefficient Model For x

Level-1

Level-2



Imputation Model For w

Level-1

Level-2

Blimp Syntax

DATA: ~/desktop/examples/rsdata.csv; 
VARIABLES: cluster av1 av2 y x w; 
MISSING: 999;  
MODEL: cluster ~ y:x w;  
NIMPS: 20; 
THIN: 2000; 
BURN: 2000; 
SEED: 90291; 
OUTFILE: ~/desktop/examples/imps.csv; 
OPTIONS: stacked clmeans prior1;

Simulation Study

Random slope model with 1000 replications 

ICC = .25, medium effect sizes 

30 clusters with 5 or 30 observations per cluster 
(i.e., N = 150 and 900)  

15% MAR missing data on all analysis variables 

20 imputations with the Blimp application
-40 -20 0 20

Complete Data Joint Model FCS

Percentage Bias Percentage Bias

Intercept

L1 Slope

L2 Slope

Intercept Var.

Residual Var.

Covariance

Slope Var.
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J = 30, nj = 5 J = 30, nj = 30



Incomplete Categorical Variables

Complete Categorical Variables

Complete categorical variables function as 
predictors in fully conditional specification 

Convert nominal (and maybe ordinal) variables 
to dummy or effect codes, à la regression 

Blimp’s NOMINAL command automatically 
creates the necessary code variables

Latent Variable Imputation Framework

Blimp uses a latent variable (i.e., probit regression) 
formulation to impute categorical variables 

Discrete responses arise from one or more 
underlying normal latent variables, denoted 

Cumulative and multinomial probit models impute 
ordinal and nominal variables, respectively

Latent Variable Transformations

Ordinal

Nominal



Latent Variable Scaling

Latent variable distributions are centered at a 
predicted value and have residual variance fixed 
at one for identification 

Random Intercept Model

Cluster 1
Cluster 2
Cluster 3

1

Threshold Parameters

Ordinal (or binary) variables with K response 
options require K - 1 threshold parameters 

Thresholds are z-scores corresponding to the 
cumulative percentage of each response 

Thresholds slice the continuous latent 
distribution into discrete response segments

Marginal Distribution Example

12%

50%

0

12%

38% 29% 21%

-1.17 .81

z-Score

79%

1 2 3 4

1 2 3 4



Multilevel Model Example

Cluster 1
Cluster 2
Cluster 3

1

2

3

4

Complete-Data Bayesian Estimation

The Gibbs sampler first replaces discrete 
responses with latent variable scores 

Threshold parameters (ordinal variables) are 
sampled using a Metropolis step 

Bayesian estimation steps for normal data 
update parameters and level-2 residual terms 
for the underlying latent variable model

Gibbs Sampler Steps

Bayes estimation 
for normal variables

Estimate coefficients

Estimate random effects

Estimate covariance matrix

Estimate thresholds (ordinal)
Draw latent scores

“Impute” 
discrete responses

Estimate thresholds Ordinal variables

Latent Scores For Ordinal Variables

A discrete response restricts the plausible range 
of the latent scores 

e.g., a score of y = 2 must have a latent score 
located between the appropriate thresholds 

The latent variable scores are drawn from a 
normal distribution truncated at the thresholds



Truncated Normal Draw | y = 2

1

2

3

4

Implausible latent score, reject draw

Truncated Normal Draw | y = 2

1

2

3

4

Plausible latent score, retain draw

Incomplete Ordinal Variables

Identical procedure as complete data, with 
imputations generated at the end of each 
Bayesian estimation sequence 

Latent scores for missing cases are unbounded 
because the truncation points are unknown 

Latent imputes are subsequently discretized 
using threshold parameters

Gibbs Sampler Steps

Update latent imputations

Bayes estimation 
for normal variables

Estimate coefficients

Estimate random effects

Estimate covariance matrix

Estimate thresholds (ordinal)
Draw latent scores

Convert to discrete imputes

Estimate thresholds Ordinal variables

Impute missing  
latent scores

Replace 
discrete responses



Truncated Normal Draw | y = ?

Plausible latent imputation

Generating Discrete Imputes

1

3

4

2

Multinomial Probit Model

The multinomial model 
defines K latent variables 
representing the response 
strength of each category 

K categories require K-1 latent 
variable difference scores 

Category K is the reference

2

1

3

Example: 3-Category Nominal Variable



Latent Variable Distributions

Cluster 1
Cluster 2

Latent Scores For Nominal Variables

A discrete response occurs when its latent 
response strength exceeds those of all other 
categories 

Category membership implies a rank order and 
magnitude for the latent difference scores  

An accept-reject algorithm draws latent scores 
until it obtains values that satisfy the constraints

Latent Variable Score Constraints

2

1

3
0

Latent Variable Score Constraints

2

1

3
0



Latent Variable Score Constraints

2

1

3
0

Incomplete Nominal Variables

Category membership is unknown 

Latent difference scores for incomplete cases 
can take on any configuration of values 

Discrete imputes are generated by applying the 
order and magnitude conditions

Latent Difference Score Imputations

?

?

?

``
``
``
`

0

Generating Discrete Imputes

2

1

3
0



Generating Discrete Imputes

2

1

3
0

Generating Discrete Imputes

2

1

3
0

Blimp Syntax

DATA: ~/desktop/examples/rsdata.csv; 
VARIABLES: cluster av1 av2 y x w; 
MISSING: 999;  
MODEL: cluster ~ y x w;  
ORDINAL: y; 
NOMINAL: x w; 
NIMPS: 20; 
THIN: 2000; 
BURN: 2000; 
SEED: 90291; 
OUTFILE: ~/desktop/examples/imps.csv; 
OPTIONS: stacked clmeans prior1;

Two-Level Analysis Example



Download Information

The Blimp application for MacOS and Windows 
is freely available online (Linux by request) 

www.appliedmissingdata.com/multilevel-
imputation.html 

The data and analysis scripts are also available

Motivating Example

Data from a cluster-randomized study 
investigating a novel math problem-solving 
curriculum  

29 schools (level-2 units) were randomly 
assigned to an intervention or control condition 

The average number of students (level-1 units) 
per school was 33.86, with a range of 13 to 61

Input Data
Variable Description Missing Metric

school School identifier variable

condition Treatment code (0 = control, 1 = intervention) Nominal

esolpercent Percentage of English as second language * Numeric

student Student identifier

abilitylev Ability grouping (3-group classification) * Nominal

female Female dummy code Nominal

stanmath Standardized math test scores * Numeric

frlunch Lunch assistance dummy code * Nominal

efficacy Math self-efficacy rating scale * Ordinal

probsolve1 Math problem-solving score at baseline * Numeric

probsolve7 Math problem-solving score at final wave * Ordinal

Le
ve

l-1
Le

ve
l-2

Analysis Model

The substantive analysis model  predicts end-of-
year problem-solving scores from intervention 
condition and pretest covariates



Blimp Syntax

DATA: ~/Desktop/Blimp Examples/Ex2Level.csv; 
VARIABLES: school condition esolpercent student 
abilitylev  
  female stanmath frlunch efficacy probsolve1 probsolve7; 
ORDINAL: efficacy; 
NOMINAL: condition abilitylev female frlunch; 
MISSING: 999;  
MODEL: school ~ condition esolpercent abilitylev female 
  stanmath frlunch efficacy probsolve1 probsolve7;  
NIMPS: 20; 
THIN: 2000; 
BURN: 2000; 
SEED: 90291; 
OUTFILE: ~/Desktop/Blimp Examples/Imps2Level.csv;  
OPTIONS: stacked nopsr csv clmean prior1 hov; 

Import Data



 Specify Imputation Model



 Specify Algorithmic Options

 Specify Output Options



Run Program

Pooling with R Package mitml

# Required packages 
library(mitml) 
library(lme4) 

# Read data 
imputations <- read.csv("~/desktop/Blimp Examples/Imps2Level.csv", header = F) 
names(imputations) <- c("imputation", "school", "condition", “esolpercent", 
  "student", "abilitylev", "female", "stanmath", "frlunch", “efficacy”, 
  "probsolve1", "probsolve7") 
imputations$abilitylev <- factor(imputations$abilitylev) 

# Analyze data and pool estimates 
model <- "probsolve7 ~ probsolve1 + efficacy + abilitylev + female +  
  esolpercent + condition + (1|school)" 
implist <-  as.mitml.list(split(imputations, imputations$imputation)) 
mlm <- with(implist, lmer(model, REML = F)) 
estimates <- testEstimates(mlm, var.comp = T, df.com = NULL) 

# Display estimates 
estimates



mitml Output

Final parameter estimates and inferences obtained from 20 imputed data sets. 

             Estimate Std.Error   t.value        df   p.value       RIV 
(Intercept)    55.932     4.928    11.349   500.705     0.000     0.242 
probsolve1      0.416     0.040    10.330   297.510     0.000     0.338 
efficacy        0.721     0.273     2.641   157.466     0.005     0.532 
abilitylev2     1.169     1.526     0.766   131.473     0.222     0.613 
abilitylev3     2.843     1.680     1.693   185.041     0.046     0.472 
female          0.324     0.733     0.442   284.297     0.329     0.349 
esolpercent     0.063     0.042     1.525  4350.615     0.064     0.071 
condition       4.779     1.931     2.475  2174.122     0.007     0.103  

                            Estimate  
Intercept~~Intercept|school   18.582  
Residual~~Residual            89.179  
ICC|school                     0.172 

Unadjusted hypothesis test as appropriate in larger samples. 

Centering Predictors

Centering is performed post-imputation 
because the means are unknown with missing 
data 

Center variables at imputation-specific constants

Centering constants (e.g., 
grand or group mean)

Pooling with R Package mitml

# Required packages 
library(mitml) 
library(lme4) 

# Read data 
imputations <- read.csv("~/Desktop/ex/Imps2Level.csv", header = F) 
names(imputations) <- c("imputation", "school", "condition", 
"esolpercent", "student",  
  "abilitylev", "female", "stanmath", "frlunch", "efficacy", 
"probsolve1", "probsolve7") 

# Create Dummy codes (Factor 1 is reference) 
imputations$abilitylev <- factor(imputations$abilitylev) 
dummyCodes <- model.matrix( ~ imputations$abilitylev) 
imputations$abilityleveD1 <- dummyCodes[,2] 
imputations$abilityleveD2 <- dummyCodes[,3] 

# Create imputations as a list 
imputationList <- split(imputations, imputations$imputation) 

Pooling with R Package mitml, Cont.

# Grand mean centering 
impListCent <- lapply(imputationList,function(dat) { 
 # Variables needing centering 
 vars <- c("esolpercent", "student", "female", "stanmath", 
   "frlunch", "efficacy", "probsolve1","abilityleveD1", "abilityleveD2") 
 # Get grand means 
 mns <- colMeans(dat[,vars]) 
 # Center 
 dat[,vars] <- sweep(dat[,vars],2,mns) 
 # Return data 
 return(dat) 
}) 

# Create imputations as mitml List 
implistCent <-  as.mitml.list(impListCent) 

# Analyze data and pool estimates 
model <- "probsolve7 ~ probsolve1 + efficacy + abilitylev + female +  
  esolpercent + condition + (1|school)" 
mlm <- with(implistCent, lmer(model, REML = F)) 
estimates <- testEstimates(mlm, var.comp = T, df.com = NULL)



Multiple Imputation Significance Tests

Pooling Covariance Matrices

Average covariance  
matrix

Variance across  
imputations

Average proportional 
increase in variance

Wald Test Statistic

Evaluating the Wald statistic to a chi-square 
(shown below) or F distribution gives a p-value

Wald based on  
pooled quantities

Inflation factor

Wald Test With mitml
# Empty model 
model1 <- "probsolve7 ~ (1|school)" 

mlm1 <- with(implist, lmer(model1, REML = F)) 
estimates1 <- testEstimates(mlm1, var.comp = T, df.com = NULL) 
estimates1 

# Covariates only 
model2 <- "probsolve7 ~ probsolve1 + efficacy + abilitylev + 

  female + esolpercent + (1|school)" 
mlm2 <- with(implist, lmer(model2, REML = F)) 
estimates2 <- testEstimates(mlm2, var.comp = T, df.com = NULL) 

estimates2 

# Compare models with Wald test 
testModels(mlm2, mlm1, method = "D1")



Output

Model comparison calculated from 20 imputed data sets. 

Combination method: D1  

    F.value      df1      df2  p.value      RIV  

     28.657        6 1615.839    0.000    0.347  

Unadjusted hypothesis test as appropriate in larger samples. 

First And Second Pass Test Statistics

Pass 1: Average likelihood ratio statistic 

Pass 2: Average test statistic with likelihood 
evaluated at the pooled estimates 

Meng And Rubin (1992) Test Statistic

The LRT can be evaluated against a chi-square 
(shown below) or F distribution

LRT based on  
pooled quantities

Inflation factor

Average proportional 
increase in variance

Likelihood Ratio Test With mitml

# Random intercept model 
model1 <- "probsolve7 ~ probsolve1 + efficacy + abilitylev + female +  
  esolpercent + condition + (1|school)" 

mlm1 <- with(implist, lmer(model1, REML = F)) 
estimates1 <- testEstimates(mlm1, var.comp = T, df.com = NULL) 
estimates1 

# Random slope for self-efficacy 
model2 <- "probsolve7 ~ probsolve1 + efficacy + abilitylev + female +  
  esolpercent + condition + (efficacy|school)" 
mlm2 <- with(implist, lmer(model2, REML = F)) 
estimates2 <- testEstimates(mlm2, var.comp = T, df.com = NULL) 

estimates2 

# Compare models with Meng and Rubin likelihood ratio test 
testModels(mlm2, mlm1, method = "D3")



Output

Model comparison calculated from 20 imputed data sets. 

Combination method: D3  

   F.value     df1     df2 p.value     RIV  

     0.085       2 786.816   0.918   0.249 

Three-Level Analysis Example

Motivating Example

Data from a cluster-randomized study investigating a 
math problem-solving curriculum  

29 schools (level-3 units) were randomly assigned to an 
intervention or control condition 

The average number of students (level-2 units) per 
school was 33.86, with a range of 13 to 61 

Seven (approximately) monthly assessments with 
planned missing data and attrition

Input Data
Variable Description Missing Metric

school School identifier variable

condition Treatment code (0 = control, 1 = intervention) Nominal

esolpercent Percentage of English as second language * Numeric

student Student identifier

abilitylev Ability grouping (3-group classification) * Nominal

female Female dummy code Nominal

stanmath Standardized math test scores * Numeric

frlunch Lunch assistance dummy code * Nominal

wave Assessment wave

time Months since baseline Numeric

condbytime Condition by time interaction Numeric

probsolve Math problem-solving score * Numeric

efficacy Math self-efficacy 6-point rating scale * Ordinal

Le
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l-1
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ve
l-2

Le
ve

l-3



Analysis Model

The substantive analysis model examines the 
intervention by time interaction, controlling for 
covariates at each level

Blimp Syntax

DATA: ~/Desktop/Blimp Examples/Ex3Level.csv; 
VARIABLES: school condition esolpercent student abilitylev 
  female stanmath frlunch wave time condbytime probsolve 
  efficacy; 
ORDINAL: efficacy; 
NOMINAL: condition abilitylev  female  frlunch; 
MISSING: 999;  
MODEL: student school ~ condition esolpercent abilitylev 
  female stanmath frlunch condbytime efficacy 
  time:probsolve;  
NIMPS: 20; 
THIN: 2000; 
BURN: 2000; 
SEED: 90291; 
OUTFILE: ~/Desktop/Blimp Examples/Imps3Level.csv;      
OPTIONS: stacked nopsr csv clmean prior1 hov;  

Import Data



 Specify Imputation Model



 Specify Algorithmic Options



 Specify Output Options

Run Program



Pooling with R Package mitml

# Required packages 
library(mitml) 
library(lme4) 

# Read data 
imputations <- read.csv("~/desktop/Blimp Examples/Imps3Level.csv", header = F) 
names(imputations) <- c("imputation", "school", "condition", “esolpercent”,  
  "student", "abilitylev", "female", "stanmath", "frlunch", "wave", “time", 
  "condbytime", “probsolve", "efficacy") 
imputations$abilitylev <- factor(imputations$abilitylev) 

# Analyze data and pool estimates 
model <- "probsolve ~ efficacy + time + condbytime + abilitylev + female +  
  esolpercent + condition + (time|student:school) + (time|school)" 
implist <-  as.mitml.list(split(imputations, imputations$imputation)) 
mlm <- with(implist, lmer(model, REML = F)) 
estimates <- testEstimates(mlm, var.comp = T, df.com = NULL) 

# Display estimates 
estimates

mitml Output

Final parameter estimates and inferences obtained from 20 imputed data sets. 

             Estimate Std.Error   t.value        df   p.value       RIV 
(Intercept)    92.715     1.917    48.373   549.605     0.000     0.228 
efficacy        0.765     0.144     5.326    56.231     0.000     1.388 
time            0.686     0.172     3.985   934.853     0.000     0.166 
condbytime      0.549     0.222     2.470  1995.448     0.007     0.108 
abilitylev2     0.747     0.886     0.843   321.312     0.200     0.321 
abilitylev3     6.974     0.967     7.210   441.810     0.000     0.262 
female         -0.530     0.439    -1.207   968.110     0.114     0.163 
esolpercent     0.051     0.023     2.194  1003.065     0.014     0.160 
condition       0.083     1.085     0.077  2741.808     0.469     0.091 

mitml Output

                                    Estimate  
Intercept~~Intercept|student:school   23.532  
Intercept~~time|student:school         0.529  
time~~time|student:school              0.131  
Intercept~~Intercept|school            5.038  
Intercept~~time|school                -0.167  

time~~time|school                      0.255  
Residual~~Residual                    62.353  
ICC|school                             0.274  
NA                                     0.075  

Unadjusted hypothesis test as appropriate in larger samples.



Interaction terms can be rescaled to equal the 
product of deviation score variables 

Centering Incomplete Product Terms

Centering constants (e.g., 
grand or group mean)

Pooling with R Package mitml

# Required packages 
library(mitml) 
library(lme4) 

# Read data 
imputations <- read.csv("~/Desktop/ex/Imps3Level.csv", header = F) 
names(imputations) <- c("imputation", "school", "condition", 
"esolpercent", "student",  
  "abilitylev", "female", "stanmath", "frlunch", "wave", "time", 
"condbytime", "probsolve",  
  "efficacy") 
   
# Create Dummy codes (Factor 1 is reference) 
imputations$abilitylev <- factor(imputations$abilitylev) 
dummyCodes <- model.matrix( ~ imputations$abilitylev) 
imputations$abilityleveD1 <- dummyCodes[,2] 
imputations$abilityleveD2 <- dummyCodes[,3] 

# Create imputations as a list 
imputationList <- split(imputations, imputations$imputation)

mitml Output

Final parameter estimates and inferences obtained from 20 imputed data sets. 

             Estimate Std.Error   t.value        df   p.value       RIV 
(Intercept)   101.891     1.361    74.840  1398.955     0.000     0.132 
efficacy        0.765     0.144     5.326    56.231     0.000     1.388 
time            0.686     0.172     3.985   934.854     0.000     0.166 
condbytime      0.549     0.222     2.470  1995.446     0.007     0.108 
abilitylev2     0.747     0.886     0.843   321.312     0.200     0.321 
abilitylev3     6.974     0.967     7.210   441.809     0.000     0.262 
female         -0.530     0.439    -1.207   968.111     0.114     0.163 
esolpercent     0.051     0.023     2.194  1003.064     0.014     0.160 
condition       3.380     1.462     2.312 20385.340     0.010     0.031 

Pooling with R Package mitml, Cont.

# Centering 
impListCent <- lapply(imputationList,function(dat) { 
 # Variables needing grand mean centering 
 vars <- c("efficacy", "esolpercent", "female","abilityleveD1", "abilityleveD2") 
 # Get grand means 
 mns <- colMeans(dat[,vars]) 
 # Grand Mean Center 
 dat[,vars] <- sweep(dat[,vars],2,mns) 
 ## Center interaction 
 # Time centering constant 
 timeC <- 6 
 # Condition constant 
 condC <- 0 
 # Center Time 
 dat$time <- dat$time - timeC 
 # Center Condition 
 dat$condition <- dat$condition - condC 
 # Center condbytime 
 dat$condbytime <- dat$condbytime - (dat$condition*timeC) - (dat$time*condC) + (condC*timeC) 
 # Return data 
 return(dat) 
}) 

# Analyze data and pool estimates 
model <- "probsolve ~ efficacy + time + condbytime + abilitylev + female +  
  esolpercent + condition + (time|student:school) + (time|school)" 
implist <-  as.mitml.list(impListCent) 


