Multiple Imputation for Multilevel Data

Craig K. Enders Brian T. Keller University of California - Los Angeles Department of Psychology

Work supported by IES award R305D150056

Overview

Why Imputation?

Dedicated multilevel programs restricts maximum likelihood estimation to incomplete outcomes

Multilevel SEM software is more flexible but typically imposes normality on incomplete predictors and may perform poorly in some cases

Imputation is flexible (e.g., mixtures of categorical and continuous variables are no problem)

Model Notation

Two-level model with observation i nested in cluster j (e.g., student i in school j)

$$y_{ij} = \gamma_0 + \gamma_1 x_{ij} + \gamma_2 w_j + u_{0j} + u_{1j} x_{ij} + \varepsilon_{ij}$$

$$\begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} \sim \text{MVN}(\mathbf{0}, \boldsymbol{\Sigma}_{u}) \quad \boldsymbol{\varepsilon}_{ij} \sim \text{N}(0, \sigma_{\varepsilon}^{2})$$

Bayesian Estimation For Multilevel Models

Bayesian Estimation And Imputation

Bayesian estimation (e.g., Gibbs sampler) is the mathematical machinery for imputation

Each algorithmic cycle is a complete-data Bayes analysis followed by an imputation step

A multilevel model generates imputations

Analysis Example

Random intercept model with a level-1 predictor

 $y_{ij} = \gamma_0 + \gamma_1 x_{ij} + u_{0j} + \varepsilon_{ij}$ $u_{0j} \sim \mathcal{N}(0, \Sigma_u) \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

Assume complete data, estimation steps do not change with missing values

Bayesian Paradigm

The Bayesian framework views parameters and level-2 residuals as random variables that follow a probability distribution (a posterior)

$$\boldsymbol{\theta} = \left\{ \boldsymbol{\gamma}, \boldsymbol{u}_j, \sigma_{\varepsilon}^2, \boldsymbol{\Sigma}_u \right\}$$

$$\begin{array}{c|c} P(\theta | \text{data}) \propto P(\text{data} | \theta) P(\theta) \\ / \\ Posterior \\ Likelihood \end{array}$$

Gibbs Sampler

An iterative Gibbs sampler algorithm estimates quantities in θ one at a time, treating all other variables as known

Monte Carlo simulation "samples" parameter values from their conditional distributions

Repeating the sampling steps many times yields a distribution of each estimate

Gibbs Sampler Steps For One Iteration

Estimate regression coefficients

Estimate level-2 random effects

Estimate within-cluster residual variance

Estimate level-2 covariance matrix

Estimating Regression Coefficients

Regression coefficients are drawn from a multivariate normal distribution that conditions on random effects, variances, and the data

Current iteration Previous iteration $\dot{\boldsymbol{\gamma}}^{(t)} \sim P\left(\boldsymbol{\gamma} \mid \boldsymbol{\dot{u}}_{i}^{(t-1)}, \boldsymbol{\dot{\sigma}}_{\varepsilon}^{2(t-1)}, \boldsymbol{\dot{\Sigma}}_{u}^{(t-1)}, \boldsymbol{data}\right)$

Level-2 random effects are drawn from a multivariate normal distribution that conditions on the coefficients, variances, and the data

Estimating The Residual Variance

The within-cluster residual variance is drawn from an inverse Wishart distribution that conditions on the previous coefficients, random effects, level-2 covariance matrix, and the data

$$\dot{\sigma}_{\varepsilon}^{2(t)} \sim P\left(\boldsymbol{u}_{j} \mid \dot{\boldsymbol{\gamma}}^{(t)}, \dot{\boldsymbol{u}}_{j}^{(t)}, \dot{\boldsymbol{\Sigma}}_{u}^{(t-1)}, \text{data}\right)$$

Estimating Level-2 Covariance Matrix

The level-2 covariance matrix is sampled from an inverse Wishart distribution that conditions on the previous coefficients, random effects, residual variance, and the data

 $\dot{\boldsymbol{\Sigma}}_{u}^{(t)} \sim P\left(\boldsymbol{\Sigma}_{u} \mid \dot{\boldsymbol{\gamma}}^{(t)}, \dot{\boldsymbol{u}}_{j}^{(t)}, \dot{\boldsymbol{\sigma}}_{\varepsilon}^{2(t)}, \text{data}\right)$

Iteration t is complete, start anew at iteration t + 1

Conditional Distribution

Univariate Multiple Imputation

Multilevel Imputation

Imputation uses a model with an incomplete variable regressed on complete variables

Bayesian estimation steps are applied to the filled-in data from the previous iteration

Model parameters and level-2 residuals define a distribution from which imputations are sampled

Distribution Of Missing Values

A normal distribution generates imputations, with center equal to the predicted value for observation *i* in cluster *j* and spread equal to the within-cluster residual variance

$$\begin{split} \dot{x}_{ij} &\sim \mathrm{N}\left(\hat{x}_{ij}, \dot{\sigma}_{\varepsilon}^{2}\right) \\ \hat{x}_{ij} &= \dot{\gamma}_{0} + \dot{\gamma}_{1} \; y_{ij} + \dot{u}_{0j} \end{split}$$

Random Intercept Imputation Model

Analysis And Pooling

The analysis model is fit to each data set, and the arithmetic average of the *M* estimates is the multiple imputation point estimate

$$\overline{\theta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}^{(m)}$$

Pooling assumes a normal sampling distribution

Multivariate Missing Data

Joint model imputation uses multivariate regression to impute the set of missing variables

Fully conditional specification imputes variables one at a time in a sequence

Both are multilevel extensions of major singlelevel imputation frameworks

Multivariate Imputation With The Joint Modeling Framework

Joint Model Imputation

Two forms:

1) Multivariate regression model with incomplete variables regressed on complete variables

2) Empty model treating all variables as outcomes

Available in Mplus, MLwiN, and R packages (e.g., jomo, pan, mlmmm)

Random Intercept Analysis Model

Two-level random intercept analysis with continuous level-1 and level-2 predictors

 $y_{ij} = \gamma_0 + \gamma_1 x_{ij} + \gamma_2 w_j + u_{0j} + \varepsilon_{ij}$

All variables have missing data

Imputation Model

$$y_{ij} = \gamma_{0(y)} + u_{0j(y)} + \varepsilon_{ij(y)}$$
$$x_{ij} = \gamma_{0(x)} + u_{0j(x)} + \varepsilon_{ij(x)}$$
$$w_j = \gamma_{0(w)} + u_{0j(w)}$$

$$\begin{pmatrix} u_{0j(y)} \\ u_{0j(x)} \\ u_{0j(w)} \end{pmatrix} \sim \mathrm{MVN}(\mathbf{0}, \mathbf{\Sigma}_u) \qquad \begin{pmatrix} \varepsilon_{ij(y)} \\ \varepsilon_{ij(x)} \\ \varepsilon_{ij(w)} \end{pmatrix} \sim \mathrm{MVN}(\mathbf{0}, \mathbf{\Sigma}_{\varepsilon})$$

Compatibility Of Imputation And Analysis

The imputation model is more flexible than the analysis model because it allows level-1 and level-2 covariance matrices to freely vary

The analysis model assumes a common slope

Imputations are appropriate for random intercept analyses that partition relations into within- and between-cluster parts

Compatible Analysis Models

Contextual effects analyses

$$y_{ij} = \gamma_0 + \gamma_1 x_{ij} + \gamma_2 \overline{x}_j + \gamma_3 w_j + u_{0j} + \varepsilon_{ij}$$

	R Package jomo	
/	# load packages	
	library (jomo)	1
	# read raw data	
,	<pre>dat <- read.table("~/desktop/examples/ridata.csv", sep = ",")</pre>	
;	names(dat) = c("cluster", "av1", "av2", "y", "x", "w")	
,	dat[dat == 999] <- NA	
	# jomo imputation	
	set.seed(90291)	
,	dat\$icept <- 1	
	l1miss <- c("y", "x")	
	12miss <- c("w")	
	llcomplete <- c("icept")	
	12complete <- c("icept")	
	<pre>impdata <- jomo(dat[l1miss], Y2 = dat[l2miss], X = dat[l1complete],</pre>	
	<pre>X2 = dat[l2complete], clus = dat\$cluster,</pre>	
	<pre>nburn = 2000, nbetween = 2000, nimp = 20, meth = "common")</pre>	

Mplus

data: file = ridata.csv; variable: names = cluster av1 av2 y x w; usevariables = av1 av2 y x w; missing = all(999); analysis: type = basic; bseed = 90291; data imputation: $impute = y \times w;$ ndatasets = 20;save = imp*.dat; thin = 1000;output: tech8;

Simulation Study

Random intercept model with 1000 replications

ICC = .25, medium effect sizes

30 clusters with 5 or 30 observations per cluster (i.e., N = 150 and 900)

15% MAR missing data on all analysis variables

20 imputations with R package jomo

Random Slope Analysis Model

Two-level random slope analysis with continuous level-1 and level-2 predictors

 $y_{ij} = \gamma_0 + \gamma_1 x_{ij} + \gamma_2 w_j + u_{0j} + u_{1j} x_{ij} + \varepsilon_{ij}$

All variables have missing data

Joint Model Limitations

Within-cluster covariances must preserve level-1 relations, including the random coefficients

The classic formulation of the joint model assumes a common covariance matrix at level-1

Imputation ignores random slope variation

Simulation Study

Random slope model with 1000 replications

ICC = .25, medium effect sizes

30 clusters with 5 or 30 observations per cluster (i.e., N = 150 and 900)

15% MAR missing data on all analysis variables

20 imputations with R package jomo

Joint Modeling With Random Level-1 Covariance Matrices

Yucel (2011) extended the joint model to incorporate random level-1 covariance matrices

Available in the R package jomo

Currently limited to 2-level models

Limitation Of Random Covariance Matrices

The between-cluster covariance matrix preserves random intercept variation, while the within-cluster matrices preserve random slopes

Elements of Σ_u in the analysis model depend on orthogonal sources of variation

Imputation assumes no correlation between the random intercepts and slopes

R Package jomo

load packages
library (jomo)

read raw data

dat <- read.table("~/desktop/examples/ridata.csv", sep = ",")
names(dat) = c("cluster", "av1", "av2", "y", "x","w")
dat[dat == 999] <- NA</pre>

Simulation Study

Random slope model with 1000 replications

ICC = .25, medium effect sizes

30 clusters with 5 or 30 observations per cluster (i.e., N = 150 and 900)

15% MAR missing data on all analysis variables

20 imputations with R package jomo

Fully Conditional Specification

Variable-by-variable imputation

Uses a series of univariate regression models with an incomplete variable regressed on complete and previously imputed variables

Available in R package mice (2-level models with continuous variables) and the Blimp application for MacOS, Windows, and Linux

Random Intercept Analysis Model

Two-level random intercept analysis with continuous level-1 and level-2 predictors

$$y_{ij} = \gamma_0 + \gamma_1 x_{ij} + \gamma_2 w_j + u_{0j} + \varepsilon_{ij}$$

All variables have missing data

Overview Of Algorithmic Steps

Each incomplete variable has an imputation models tailored to match features of the analysis

A single iteration consists of estimation and imputation sequences for each missing variable

The imputed variable from one sequence serves as a predictor variable in all other sequences

Algorithmic Steps

Estimation And Imputation For y

Imputation model:

$$y_{ij} = \gamma_{0(y)} + \gamma_{1(y)} x_{ij} + \gamma_{2(y)} w_j + u_{0j(y)} + \varepsilon_{ij(y)}$$

Bayesian estimation and imputation sequence:

$$\begin{split} \dot{\theta}_{(y)}^{(t)} &\sim P\left(\theta_{(y)} \mid \dot{y}^{(t-1)}, \dot{x}^{(t-1)}, \dot{w}^{(t-1)}\right) \\ \dot{y}^{(t)} &\sim P\left(y \mid \dot{x}^{(t-1)}, \dot{w}^{(t-1)}, \dot{\theta}_{(y)}^{(t)}\right) \end{split}$$

Estimation And Imputation For x

Imputation model:

$$x_{ij} = \gamma_{0(x)} + \gamma_{1(x)} y_{ij} + \gamma_{2(x)} w_j + u_{0j(x)} + \varepsilon_{ij(x)}$$

Bayesian estimation and imputation sequence:

$$\dot{\theta}_{(x)}^{(t)} \sim P\left(\theta_{(x)} \mid \dot{y}^{(t)}, \dot{x}^{(t-1)}, \dot{w}^{(t-1)}\right) \\ \dot{x}^{(t)} \sim P\left(x \mid \dot{y}^{(t)}, \dot{w}^{(t-1)}, \dot{\theta}_{(x)}^{(t)}\right)$$

Imputation model:

$$w_j = \gamma_{0(w)} + \gamma_{1(w)} \overline{y}_j + \gamma_{2(w)} \overline{x}_j + u_{0j(w)}$$

Bayesian estimation and imputation sequence:

$$\begin{split} \dot{\theta}_{(w)}^{(t)} &\sim P\left(\theta_{(w)} \mid \dot{y}^{(t)}, \dot{x}^{(t)}, \dot{w}^{(t-1)}\right) \\ \dot{w}^{(t)} &\sim P\left(w \mid \dot{y}^{(t)}, \dot{x}^{(t)}, \dot{\theta}_{(w)}^{(t)}\right) \end{split}$$

Blimp Syntax

```
DATA: ~/desktop/examples/ridata.csv;
VARIABLES: cluster av1 av2 y x w;
MISSING: 999;
MODEL: cluster ~ y x w;
NIMPS: 20;
THIN: 2000;
BURN: 2000;
SEED: 90291;
OUTFILE: ~/desktop/examples/imps.csv;
OPTIONS: stacked noclmeans prior1;
```

Simulation Study

Random intercept model with 1000 replications

ICC = .25, medium effect sizes

30 clusters with 5 or 30 observations per cluster (i.e., N = 150 and 900)

15% MAR missing data on all analysis variables

20 imputations with the Blimp application

Limitations

The classic formulation of fully conditional specification assumes equal within- and between-cluster regression slopes

i.e., Equality constraints on the level-1 and level-2 model-implied covariance matrices

Not ideal for models that partition relations

Revisiting Models That Partition Variability

Contextual effects analyses

$$y_{ij} = \gamma_0 + \gamma_1 x_{ij} + \gamma_2 \overline{x}_j + \gamma_3 w_j + u_{0j} + \epsilon_{ij}$$

Blimp Syntax

```
DATA: ~/desktop/examples/ridata.csv;
VARIABLES: cluster av1 av2 y x w;
MISSING: 999;
MODEL: cluster ~ y x w;
NIMPS: 20;
THIN: 2000;
BURN: 2000;
SEED: 90291;
OUTFILE: ~/desktop/example/imps.csv;
OPTIONS: stacked clmeans prior1;
```

Random Slope Analysis Model

Two-level random slope analysis with continuous level-1 and level-2 predictors

 $y_{ij} = \gamma_0 + \gamma_1 x_{ij} + \gamma_2 w_j + u_{0j} + u_{1j} x_{ij} + \varepsilon_{ij}$

All variables have missing data

Reversed Random Coefficients

Fully conditional specification uses "reversed random coefficients" to preserve random slope variation

Imputation treats x as a random predictor of y, and y as a random predictor of x

Reversed Coefficient Model For *x*

 $x_{ij} = \gamma_{0(x)} + \gamma_{1(x)} y_{ij} + \gamma_{2(x)} \overline{y_j} + \gamma_{3(x)} w_j + u_{0j(x)} + u_{1j(x)} y_{ij} + \varepsilon_{ij(x)}$

Simulation Study

Random slope model with 1000 replications

ICC = .25, medium effect sizes

30 clusters with 5 or 30 observations per cluster (i.e., N = 150 and 900)

15% MAR missing data on all analysis variables

20 imputations with the Blimp application

Incomplete Categorical Variables

Complete Categorical Variables

Complete categorical variables function as predictors in fully conditional specification

Convert nominal (and maybe ordinal) variables to dummy or effect codes, à la regression

Blimp's NOMINAL command automatically creates the necessary code variables

Latent Variable Imputation Framework

Blimp uses a latent variable (i.e., probit regression) formulation to impute categorical variables

Discrete responses arise from one or more underlying normal latent variables, denoted y^*

Cumulative and multinomial probit models impute ordinal and nominal variables, respectively

Latent Variable Scaling

Latent variable distributions are centered at a predicted value and have residual variance fixed at one for identification

$$y_{ij}^* \sim \mathrm{N}\big(\gamma_0 + \gamma_1 x_{ij} + u_{0j}, 1\big)$$

Random Intercept Model Cluster 1 $\hat{y}_{ij}^* = \gamma_0 + \gamma_1 x_{ij} + u_{0j}$ + Cluster 2 • Cluster 3

Threshold Parameters

Ordinal (or binary) variables with *K* response options require *K* - 1 threshold parameters

Thresholds are *z*-scores corresponding to the cumulative percentage of each response

Thresholds slice the continuous latent distribution into discrete response segments

Complete-Data Bayesian Estimation

The Gibbs sampler first replaces discrete responses with latent variable scores

Threshold parameters (ordinal variables) are sampled using a Metropolis step

Bayesian estimation steps for normal data update parameters and level-2 residual terms for the underlying latent variable model

Latent Scores For Ordinal Variables

A discrete response restricts the plausible range of the latent scores

e.g., a score of y = 2 must have a latent score located between the appropriate thresholds

The latent variable scores are drawn from a normal distribution truncated at the thresholds

Incomplete Ordinal Variables

Identical procedure as complete data, with imputations generated at the end of each Bayesian estimation sequence

Latent scores for missing cases are unbounded because the truncation points are unknown

Latent imputes are subsequently discretized using threshold parameters

Gibbs Sampler Steps

Latent Scores For Nominal Variables

A discrete response occurs when its latent response strength exceeds those of all other categories

Category membership implies a rank order and magnitude for the latent difference scores

An accept-reject algorithm draws latent scores until it obtains values that satisfy the constraints

Latent Variable Score Constraints

Incomplete Nominal Variables

Category membership is unknown

Latent difference scores for incomplete cases can take on any configuration of values

Discrete imputes are generated by applying the order and magnitude conditions

Generating Discrete Imputes

Blimp Syntax DATA: ~/desktop/examples/rsdata.csv; VARIABLES: cluster av1 av2 y x w; MISSING: 999; MODEL: cluster ~ y x w; ORDINAL: g; NOMINAL: x w; NIMPS: 20; THIN: 2000; BURN: 2000; SEED: 90291; OUTFILE: ~/desktop/examples/imps.csv; OFTIONS: stacked clmeans prior1;

Two-Level Analysis Example

Download Information

The Blimp application for MacOS and Windows is freely available online (Linux by request)

www.appliedmissingdata.com/multilevelimputation.html

The data and analysis scripts are also available

Motivating Example

Data from a cluster-randomized study investigating a novel math problem-solving curriculum

29 schools (level-2 units) were randomly assigned to an intervention or control condition

The average number of students (level-1 units) per school was 33.86, with a range of 13 to 61

Input Data

	Variable	Description	Missing	Metric
2	school	School identifier variable		
evel-	condition	Treatment code ($0 = \text{control}$, $1 = \text{intervention}$)		Nominal
Ļ	esolpercent	Percentage of English as second language	*	Numeric
	student	Student identifier		
	abilitylev	Ability grouping (3-group classification)	*	Nominal
	female	Female dummy code		Nominal
- <u>-</u>	stanmath	Standardized math test scores	*	Numeric
Leve	frlunch	Lunch assistance dummy code	*	Nominal
	efficacy	Math self-efficacy rating scale	*	Ordinal
	probsolve1	Math problem-solving score at baseline	*	Numeric
	probsolve7	Math problem-solving score at final wave	*	Ordinal

Analysis Model

The substantive analysis model predicts end-ofyear problem-solving scores from intervention condition and pretest covariates

 $probsolve7_{ij} = \gamma_0 + \gamma_1(probsolve1_{ij}) + \gamma_2(efficacy_{ij}) + \gamma_3(abilitylev2_{ij}) + \gamma_4(abilitylev3_{ij}) + \gamma_5(female_{ij}) + \gamma_6(esolpercent_j) + \gamma_7(condition_j) + u_{0j} + \varepsilon_{ij}$

Blimp Syntax

DATA: ~/Desktop/Blimp Examples/Ex2Level.csv;
VARIABLES: school condition esolpercent student
abilitylev
<pre>female stanmath frlunch efficacy probsolve1 probsolve7;</pre>
ORDINAL: efficacy;
NOMINAL: condition abilitylev female frlunch;
MISSING: 999;
MODEL: school ~ condition esolpercent abilitylev female
<pre>stanmath frlunch efficacy probsolve1 probsolve7;</pre>
NIMPS: 20;
THIN: 2000;
BURN: 2000;
SEED: 90291;
OUTFILE: ~/Desktop/Blimp Examples/Imps2Level.csv;
OPTIONS: stacked nopsr csv clmean prior1 hov;

Import Data

	■ □ □ □ Blimp Examples	○ ①	Q Search
-avorites	Name	^	Date Modified
iCloud Drive	Ex2Level.csv		Today, 1:54 PM
🖺 Documents	Ex3Level.csv		Today, 1:56 PM
😺 Dropbox			
🚇 All My Files			
iCloud Drive			
Applications			
Desktop			
Ownloads			
Deleted Users			
😭 craig			
Devices			
			Cancel Open

			Import Data			
		Data Vi	ew Variable Vi	ew		
Delimite Missing Value Code	r Comma 999 Import		1,1,41,1,999,1,5 1,1,41,2,2,1,493 1,1,41,3,999,0, 1,1,41,4,2,1,53 1,1,41,5,3,1,993 1,1,41,5,3,1,993 1,1,41,6,999,0, 1,1,41,8,999,0, 1,1,41,8,999,0, 1,41,18,2,1,45 1,1,41,10,2,1,54	665,1,3,110,119 2,0,999,999,95 459,1,4,93,92 7,1,3,107,118 9,1,5,105,106 553,1,3,100,95 5,1,2,97,95 399,1,1,99,105 7,999,4,105,96 H,1,1,198,118 2,1,1,102,96		
VAD1	VAD2	VAD2	1.1.41.13.2.1.18	6.1.1.93.97	VADE	1/4.07
1000	1 000	41 000	1000	000 000	1000	ERE OO
1.000	1.000	41.000	2,000	399.000	1.000	492.000
1.000	1.000	41.000	3.000	2.000	0.000	492.000
1,000	1,000	41.000	4 000	2 000	1,000	537.000
1,000	1,000	41,000	5,000	3,000	1,000	999.000
1.000	1.000	41.000	6.000	999.000	0.000	553.000
1.000	1.000	41.000	7.000	2.000	1.000	406.000
1.000	1.000	41.000	8.000	999.000	0.000	399.000
1.000	1.000	41.000	9.000	2.000	1.000	457.000
						Do

	Imp	ort Data
	Data View	Variable View
Vari	able Name	Variable Type
sch	ool	Continuous
con	dition	Nominal
eso	Ipercent	Continuous
stud	dent	Continuous
abil	itylev	Nominal
fem	ale	Nominal
star	nmath	Continuous
frlu	nch	Nominal
effi	cacy	Ordinal
pro	bsolve1	Continuous
pro	bsolve7	Continuous

DATA: /Users/craig/Des	Syntax Editor sktop/Blimp Examples/Ex2Level.csv:	
VARIABLES: school co efficacy probsolve1 pr	ondition esolpercent student abilitylev female stanmath fr robsolve7;	lunch
ORDINAL: efficacy;		
NOMINAL: condition a	ibilitylev female frlunch;	
MISSING: 999;		

		Model Specification			
		Model MCMC	Output		
		Burn In Iterations	2000		
		Thinning Iterations	2000		
		Random Number Seed	90291		
	Cluster Means	Level-1 Variance	Structure	Variance Prior	
	 Include Exclude 	 Homogeno Heterogeno 	us ous	 Prior1 (IW with SSCP = ID Prior2 (IW with SSCP = 0)
Cancel	Reset				Done

NOMINAL: condition abilitylev female frlunch; MISSING: 999; MODEL: school ~ condition esolpercent abilitylev female stanmath frlunch efficacy probsolve1 probsolve7; NIMPS: 20; THIN: 2000; BURN: 2000; SEED: 90291; OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv; OPTIONS: stacked nopsr csv clmean prior1 hov;	Syntax Editor DATA: /Users/craig/Desktop/Blimp Examples/Ex2Level.csv; VARIABLES: school condition esolpercent student abilitylev female stanmath frlunch efficacy probsolve1 probsolve7; ORDINAL: efficacy;	Run Program
MISSING: 999; Specify Model #M MODEL: school ~ condition esolpercent abilitylev female stanmath frlunch efficacy probsolve1 MCMC Options ^ #M probsolve7; MCMC Options #EM NIMPS: 20; Data View #CD BURN: 2000; SEED: 90291; State changes to syntax file? Syntax file must be saved prior to running. OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv; Cancel save	NOMINAL: condition abilitylev female frlunch;	🗯 Blimp File Edit Impute Help
MODEL: school ~ condition esolpercent abilitylev female stanmath frlunch efficacy probsolve1 probsolve7; NIMPS: 20; THIN: 2000; BURN: 2000; SEED: 90291; OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv; OPTIONS: stacked nopsr csv clmean prior1 hov;	MISSING: 999;	Specify Model #M
NIMPS: 20; THIN: 2000; BURN: 2000; SEED: 90291; OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv; OPTIONS: stacked nopsr csv clmean prior1 hov;	MODEL: school ~ condition esolpercent abilitylev female stanmath frlunch efficacy probsolve1 probsolve7;	MCMC Options 个第M Output Options
THIN: 2000; BURN: 2000; SEED: 90291; OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv; OPTIQNS: stacked nopsr csv clmean prior1 hov;	NIMPS: 20;	Data View #D
BURN: 2000; SEED: 90291; OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv; OPTIQNS: stacked nopsr csv clmean prior1 hov;	THIN: 2000;	Run # R
SEED: 90291; OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv; OPTIONS: stacked nopsr csv clmean prior1 hov: Cancel Save	BURN: 2000;	
OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv; Cancel Save	SEED: 90291;	Save changes to syntax file? Syntax file must be saved prior to running.
OPTIONS: stacked nopsr csv clmean prior1 hov:	OUTFILE: /Users/craig/Desktop/Blimp Examples/Imps2Level.csv;	
	OPTIONS: stacked nopsr csv clmean prior1 hov;	Cancel Save

Algorithmic Options Sp	ecified:
hov, clmean, R	aneff Prior 1, Resvar Prior 1.
Starting Burn-in on Su Burn-in iteration Burn-in iteration Burn-in iteration Burn-in iteration Surn-in complete on Su Imputation Saved 1 Imputation Saved 2 Imputation Saved 3 Imputation Saved 4 Imputation Saved 6 Imputation Saved 8 Imputation Saved 1 Imputation Saved 1 Imputation Saved 1 Imputation Saved 1 Imputation Saved 1	Apr 16 15:26:02 2017 100 complete on Sun Apr 16 15:26:03 2017 1000 complete on Sun Apr 16 15:26:05 2017 1500 complete on Sun Apr 16 15:26:06 2017 2000 complete on Sun Apr 16 15:26:07 2017 1 Apr 16 15:26:07 2017 on Sun Apr 16 15:26:17 2017 on Sun Apr 16 15:26:17 2017 on Sun Apr 16 15:26:23 2017 on Sun Apr 16 15:26:23 2017 on Sun Apr 16 15:26:23 2017 on Sun Apr 16 15:26:40 2017 on Sun Apr 16 15:26:52 2017 on Sun Apr 16 15:26:50 2017 on Sun Apr 16 15:26:50 2017 on Sun Apr 16 15:26:50 2017 1 on Sun Apr 16 15:27:00 2017 2 on Sun Apr 16 15:27:00 2017 2 on Sun Apr 16 15:27:00 2017 3 on Sun Apr 16 15:27:00 2017
Imputation Saved 1	4 on Sun Apr 16 15:27:17 2017
Imputation Saved 1	5 on Sun Apr 16 15:27:23 2017
Imputation Saved 1	6 on Sun Apr 16 15:27:27 2017
Imputation Saved 1	7 on Sun Apr 16 15:27:33 2017
Imputation Saved 1	3 on Sun Apr 16 15:27:38 2017
Imputation Saved 1	9 on Sun Apr 16 15:27:42 2017
Imputation Saved 1	9 on Sun Apr 16 15:27:47 2017

001	ng will n fackage milim
Required	packages
Library(mi	tml)
library(lm	e4)
# Read dat	a
imputation names(impu	<pre>s <- read.csv("~/desktop/Blimp Examples/Imps2Level.csv", header = F) tations) <- c("imputation", "school", "condition", "esolpercent",</pre>
"student "probsol	", "abilitylev", "female", "stanmath", "frlunch", ``efficacy", ve1", "probsolve7")
imputation	s\$abilitylev <- factor(imputations\$abilitylev)
# Analyze	data and pool estimates
model <- "	probsolve7 ~ probsolve1 + efficacy + abilitylev + female +
esolperc	ent + condition + (1 school)"
implist <-	as.mitml.list(split(imputations, imputations\$imputation))
mlm <- wit	h(implist, lmer(model, REML = F))
estimates	<- testEstimates(mlm, var.comp = T, df.com = NULL)
# Display	estimates
estimates	

mitm	

Final paramet	ter estimates	and infer	ences obta	ained from 2	20 imputed	data sets.
	Estimate S	td.Error	t.value	df	p.value	RIV
(Intercept)	55.932	4.928	11.349	500.705	0.000	0.242
probsolve1	0.416	0.040	10.330	297.510	0.000	0.338
efficacy	0.721	0.273	2.641	157.466	0.005	0.532
abilitylev2	1.169	1.526	0.766	131.473	0.222	0.613
abilitylev3	2.843	1.680	1.693	185.041	0.046	0.472
female	0.324	0.733	0.442	284.297	0.329	0.349
esolpercent	0.063	0.042	1.525	4350.615	0.064	0.071
condition	4.779	1.931	2.475	2174.122	0.007	0.103
		Estin	ate			
Intercept~~I	intercept sc	hool 18.	582			
Residual~~Re	sidual	89.	179			
ICC school		0.	172			
Unadjusted h	ypothesis t	est as app	propriate	in larger	samples.	

Centering Predictors

Centering is performed post-imputation because the means are unknown with missing data

Center variables at imputation-specific constants

Pooling with R Package mitml # Required packages library(mitml) library(lme4) # Read data imputations <- read.csv("~/Desktop/ex/Imps2Level.csv", header = F)</pre> names(imputations) <- c("imputation", "school", "condition",</pre> "esolpercent", "student", "abilitylev", "female", "stanmath", "frlunch", "efficacy", "probsolve1", "probsolve7") # Create Dummy codes (Factor 1 is reference) imputations\$abilitvlev <- factor(imputations\$abilitvlev)</pre> dummyCodes <- model.matrix(~ imputations\$abilitylev)</pre> imputations\$abilityleveD1 <- dummyCodes[,2]</pre> imputations\$abilityleveD2 <- dummyCodes[,3]</pre> # Create imputations as a list imputationList <- split(imputations, imputations\$imputation)</pre>

Pooling with R Package mitml, Cont.

```
# Grand mean centering
impListCent <- lapply(imputationList,function(dat) {</pre>
    # Variables needing centering
    vars <- c("esolpercent", "student", "female", "stanmath",</pre>
     "frlunch", "efficacy", "probsolve1", "abilityleveD1", "abilityleveD2")
    # Get grand means
    mns <- colMeans(dat[,vars])</pre>
    # Center
    dat[,vars] <- sweep(dat[,vars],2,mns)</pre>
    # Return data
    return(dat)
})
# Create imputations as mitml List
implistCent <- as.mitml.list(impListCent)</pre>
# Analyze data and pool estimates
model <- "probsolve7 ~ probsolve1 + efficacy + abilitylev + female +</pre>
 esolpercent + condition + (1|school)"
mlm <- with(implistCent, lmer(model, REML = F))</pre>
estimates <- testEstimates(mlm, var.comp = T, df.com = NULL)
```


Pooling Covariance Matrices

Wald Test Statistic Evaluating the Wald statistic to a chi-square (shown below) or *F* distribution gives a *p*-value $W = \frac{\left(\bar{\theta} - \theta_0\right)^T \cos_w^{-1} \left(\bar{\theta} - \theta_0\right)}{1 + \bar{r}} \qquad \qquad \text{Wald based on pooled quantities}}$ Inflation factor

Wald Test With mitml

```
# Empty model
model1 <- "probsolve7 ~ (1|school)"
mlm1 <- with(implist, lmer(model1, REML = F))
estimates1 <- testEstimates(mlm1, var.comp = T, df.com = NULL)
estimates1
# Covariates only
model2 <- "probsolve7 ~ probsolve1 + efficacy + abilitylev +</pre>
```

```
female + esolpercent + (1|school)"
mlm2 <- with(implist, lmer(model2, REML = F))
estimates2 <- testEstimates(mlm2, var.comp = T, df.com = NULL)
estimates2</pre>
```

```
# Compare models with Wald test
testModels(mlm2, mlm1, method = "D1")
```


First And Second Pass Test Statistics

Pass 1: Average likelihood ratio statistic

$$\bar{T}_1 = \frac{1}{M} \sum_{m=1}^M -2l\left(\boldsymbol{\theta}_0^{(t)} | \mathbf{Y}^{(t)}\right) + 2l\left(\boldsymbol{\theta}_1^{(t)} | \mathbf{Y}^{(t)}\right)$$

Pass 2: Average test statistic with likelihood evaluated at the pooled estimates

$$\overline{T}_2 = \frac{1}{M} \sum_{m=1}^{M} -2l\left(\overline{\mathbf{\theta}}_0 | \mathbf{Y}^{(t)}\right) + 2l\left(\overline{\mathbf{\theta}}_1 | \mathbf{Y}^{(t)}\right)$$

Meng And Rubin (1992) Test Statistic

The LRT can be evaluated against a chi-square (shown below) or F distribution

Likelihood Ratio Test With mitml

Random intercept model model1 <- "probsolve7 ~ probsolve1 + efficacy + abilitylev + female + esolpercent + condition + (1|school)" mlm1 <- with(implist, lmer(model1, REML = F)) estimates1 <- testEstimates(mlm1, var.comp = T, df.com = NULL) estimates1 # Random slope for self-efficacy model2 <- "probsolve7 ~ probsolve1 + efficacy + abilitylev + female + esolpercent + condition + (efficacy|school)" mlm2 <- with(implist, lmer(model2, REML = F)) estimates2 <- testEstimates(mlm2, var.comp = T, df.com = NULL) estimates2

Compare models with Meng and Rubin likelihood ratio test testModels(mlm2, mlm1, method = "D3")

Three-Level Analysis Example

Motivating Example

Data from a cluster-randomized study investigating a math problem-solving curriculum

29 schools (level-3 units) were randomly assigned to an intervention or control condition

The average number of students (level-2 units) per school was 33.86, with a range of 13 to 61

Seven (approximately) monthly assessments with planned missing data and attrition

Input Data

	Variable	Description	Missing	Metric
ς	school	School identifier variable		
vel	condition	Treatment code ($0 = \text{control}, 1 = \text{intervention}$)		Nominal
Le	esolpercent	Percentage of English as second language	*	Numeric
	student	Student identifier		
2	abilitylev	Ability grouping (3-group classification)	*	Nominal
ve	female	Female dummy code		Nominal
Le	stanmath	Standardized math test scores	*	Numeric
	frlunch	Lunch assistance dummy code	*	Nominal
	wave	Assessment wave		
<u>-</u>	time	Months since baseline		Numeric
evel	condbytime	Condition by time interaction		Numeric
Ľ	probsolve	Math problem-solving score	*	Numeric
	efficacy	Math self-efficacy 6-point rating scale	*	Ordinal

Analysis Model

The substantive analysis model examines the intervention by time interaction, controlling for covariates at each level

 $probsolve_{ijk} = \gamma_0 + \gamma_1(efficacy_{ijk}) + \gamma_2(time_{ijk}) +$

 $\gamma_{3}(condby time_{ijk}) + \gamma_{4}(ability lev3_{jk}) + \gamma_{5}(ability lev3_{jk}) +$

 $\gamma_6(female_{jk}) + \gamma_7(esolpercent_k) + \gamma_8(condition_k) +$

 $r_{0jk} + r_{1jk}(time_{ijk}) + u_{0k} + u_{1k}(time_{ijk}) + \varepsilon_{ijk}$

Blimp Syntax

DATA: ~/Desktop/Blimp Examples/Ex3Level.csv; VARIABLES: school condition esolpercent student abilitylev female stanmath frlunch wave time condbytime probsolve efficacy; ORDINAL: efficacy; NOMINAL: condition abilitylev female frlunch; MISSING: 999; MODEL: student school ~ condition esolpercent abilitylev female stanmath frlunch condbytime efficacy time:probsolve; NIMPS: 20; THIN: 2000; BURN: 2000; SEED: 90291; OUTFILE: ~/Desktop/Blimp Examples/Imps3Level.csv; OPTIONS: stacked nopsr csv clmean prior1 hov;

		· ·	Q Search
avorites	Name	^	Date Modified
iCloud Drive	Ex2Level.csv		Today, 1:54 PM
🕒 Documents	Ex3Level.csv		Today, 1:56 PM
😺 Dropbox			
All My Files			
iCloud Drive			
Applications			
Desktop			
Ownloads			
Deleted Users			
😭 craig			
Devices			
			Cancel Open

				Import Data			
			Data Vie	w Variable Vi	ew		
Del	imiter	Comma	~	1,1,41,127,999, 1,1,41,127,999, 1,1,41,127,999, 1,1,41,127,999, 1,1,41,127,999, 11,41,127,999	1,565,1,1,.19,.19,1 1,565,1,2,1.63,1.6 1,565,1,3,2.29,2.2 1,565,1,4,3.93,3.9 1,565,1,4,3.93,3.9	10,3 3,108,999 29,112,3 93,99,999 32 115 4	
Missing Value	Code	999		1,1,41,127,999, 1,1,41,127,999, 1,1,41,128,21,4	1,565,1,6,6.16,6.1 1,565,1,7,7.01,7.0 192.0.14747.99	6,120,999 1,119,4 9,999	
		(Incoment		1,1,41,128,2,1,4	192,0,2,1.37,1.37,1	11,999	
		Import		1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4	192,0,2,1.37,1.37,1 192,0,3,2.32,2.32 192,0,4,3.83,3.83 192,0,5,4.59,4.59 192.0.6.6.13.6.13.	11,999 ,100,4 ,118,999 ,105,4 99,999	
VAR1		Import VAR2	VAR3	1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1.1.41,128,2,1,4	92,0,2,1.37,1.37,1 92,0,3,2.32,2.32 92,0,4,3.83,3.83 92,0,5,4.59,4.59 92.0.6.6.13.6.13. VAR5	11,999 ,100,4 ,118,999 ,105,4 99.999 VAR6	VAR7
VAR1 1.0	00	VAR2	VAR3 41.000	1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 VAR4 127,000	192,0,2,1.37,1.37,1 192,0,3,2.32,2.32 192,0,4,3.83,3.83 192,0,5,4.59,4.59 192.0.6.6.13.6.13. 192,0,5,4.59 192,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	11,999 ,100,4 ,118,999 ,105,4 99.999 VAR6 1.000	VAR7 565.000
VAR1 1.0 1.0	00	Import VAR2 1.000 1.000	VAR3 41.000 41.000	1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 VAR4 127,000 127,000	192,0,2,1.37,1.37,1 192,0,3,2.32,2.32 192,0,4,3.83,3.83 192,0,5,4.59,4.59 192,0,6,6,13,6,13 VAR5 999,000 999,000	VAR6 1.000 1.000 1.000 1.000 1.000	VAR7 565.000 565.000
VAR1 1.0 1.0 1.0	00 00 00	Import VAR2 1.000 1.000 1.000	VAR3 41.000 41.000 41.000	1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 VAR4 127,000 127,000	92,0,2,1.37,1.37,1 92,0,3,2.32,2.32 192,0,4,3.83,3.83 192,0,5,4.59,4.59 192,0,6,6.13,6.13, VAR5 999.000 999.000 999.000	VAR6 1.000 VAR6 1.000 1.000 1.000	VAR7 565.000 565.000 565.000
VAR1 1.0 1.0 1.0 1.0	00 00 00 00	VAR2 1.000 1.000 1.000 1.000	VAR3 41.000 41.000 41.000 41.000	1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 VAR4 127,000 127,000 127,000	192,0,2,1.37,1.37,1 192,0,3,2.32,2.32 192,0,4,3.83,3.83 192,0,5,4.59,4.59 192,0,6,6.13,6.13, VAR5 999.000 999.000 999.000	VAR6 1.000 1.000 1.000 1.000 1.000 1.000 1.000	VAR7 565.000 565.000 565.000 565.000
VAR1 1.0 1.0 1.0 1.0 1.0	00 00 00 00 00	Import VAR2 1.000 1.000 1.000 1.000 1.000	VAR3 41.000 41.000 41.000 41.000	1,1,41,128,2,1,4 1,2,2,000 127,000 127,000 127,000	192,0,2,1,37,1,37,1 192,0,3,2,32,2,2,32 192,0,4,38,3,83 192,0,5,4,59,4,59 192,0,6,6,13,6,13, 192,0,5,4,59,4,59 192,0,6,6,13,6,13, 192,0,0,0 999,000 999,000 999,000	11,999 110,4 118,999 105,4 99,999 VAR6 1.000 1.000 1.000 1.000 1.000	VAR7 565.000 565.000 565.000 565.000 565.000
VAR1 1.0 1.0 1.0 1.0 1.0 1.0	00 00 00 00 00 00	Import 1.000 1.000 1.000 1.000 1.000 1.000	VAR3 41.000 41.000 41.000 41.000 41.000	1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 VAR4 127,000 127,000 127,000 127,000 127,000	92,0,2,1.37,1.37,1 192,0,3,2.32,2.3 192,0,4,3,8,3,3,8 192,0,5,4.59,4.59 192,0,6,6,13,6,13, VAR5 999,000 999,000 999,000 999,000 999,000	11,999 110,4 118,999 105,4 99,999 VAR6 1.000 1.000 1.000 1.000 1.000 1.000	VAR7 565.000 565.000 565.000 565.000 565.000
VAR1 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00 00 00 00 00 00 00 00	VAR2 1.000 1.000 1.000 1.000 1.000 1.000 1.000	VAR3 41.000 41.000 41.000 41.000 41.000 41.000	1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 VAR4 127,000 127,000 127,000 127,000	192,0,2,1,371,371 192,0,3,2,32,22,32 192,0,4,3,83,3,33 192,0,5,4,59,4,59 192,0,6,6,13,6,13, VAR5 999,000 999,000 999,000 999,000 999,000 999,000 999,000	11,999 110,4 118,999 105,4 99,999 VAR6 1.000 1.000 1.000 1.000 1.000 1.000 1.000	VAR7 565.000 565.000 565.000 565.000 565.000 565.000
VAR1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00 00 00 00 00 00 00 00 00	VAR2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	VAR3 41.000 41.000 41.000 41.000 41.000 41.000 41.000	1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,1,41,128,2,1,4 1,2,000 1,27,000 1,27,000 1,27,000 1,27,000 1,27,000 1,27,000 1,27,000 1,27,000 1,28,000	192,0,2,1,371,371 192,0,3,2,32,2,32,32 192,0,5,4,59,4,59 192,0,6,6,13,6,13, VAR5 999,000 990,000 990,000 990,000 990,000 990,000 990,000 900,000	1,099 1,109,4 1,109,4 1,118,999 1,105,4 99,999 VAR6 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	VAR7 565.000 565.000 565.000 565.000 565.000 565.000 492.000

Imp	port Data
Data View	Variable View
Variable Name	Variable Type
school	Continuous
condition	Nominal
esolpercent	Continuous
student	Continuous
abilitylev	Nominal
female	Nominal
stanmath	Continuous
frlunch	Nominal
wave	Continuous
time	Continuous
condbytime	Continuous
probsolve	Continuous
efficacy	Ordinal

Specify Imputation Model

	Mod	el Specificat	tion		
	Model	MCMC	Output		
Variables				Cluster-Level Identifier Variables	
condition		>		student (L2)	
esolpercent				school (L3)	
abilitylev		<			
female					
stanmath				Single Level Imputation	
frlunch					
wave				Imputation Model Variables	
time		Build Terms		condition	
condbytime	Mair	Effects	~	esolpercent	
probsolve			-	abilitylev	
efficacy				female	
				stanmath	
				frunch	
		<u> </u>			
		1		conabytime	
		<u> </u>		efficacy	
Orașel Deset					
Cancel Reset				Dor	ie

0	Mod	el Specification	
	Model	MCMC Out	tput
Variables			Cluster-Level Identifier Variables
condition		>	student (L2)
esolpercent			school (L3)
abilitylev		<	
female			Circle Level Insertation
stanmath			Single Level Imputation
frlunch			Imputation Model Variables
wave	_	Build Termo	condition
time		Build Terms	
probablyc	Ran	domSlopes 🔛	esolpercent
efficacy			abilitylev
encacy			female
			stanmath
		>	frlunch
			condbytime
		<	efficacy
			time:probsolve (Random Slopes)
			time.probative (italiatim tiopes)
Cancel Reset			Done

		Model Specificatio	n	
		Model MCMC 0	utput	
	Save Imputat	ions to File Browse /Users/cra	ig/Desktop/	
		examples/ imputatior	IS.CSV	
	Data Format	File Type	Diagnostics	
	 Stacked Separate Files 	• .csv • .dat	No PSR PSR	
Cancel	Reset			Done

Output	
	P(
Starting Burn-in on Sun Apr 16 15:36:53 2017	
Burn-in iteration 500 complete on Sun Apr 16 15:36:57 2017	
Burn-in iteration 1000 complete on Sun Apr 16 15:37:02 2017	
Burn-in iteration 1500 complete on Sun Apr 16 15:3/:0/ 2017	
Burn-in iteration 2000 complete on Sun Apr 16 15:37:12 2017	
Imputation Saved 1 on Sun Apr 16 15:37:12 2017	# K6
Imputation Saved 2 on Sun Apr 16 15:37:32 2017	libi
Imputation Saved 3 on Sun Apr 16 15:37:53 2017	libi
Imputation Saved 4 on Sun Apr 16 15:38:16 2017	
Imputation Saved 5 on Sun Apr 16 15:38:38 2017	# Pc
Imputation Saved 6 on Sun Apr 16 15:39:01 2017	impi
Imputation Saved / on Sun Apr 16 15:39:22 2017	Imp
Imputation Saved 9 on Sun Apr 16 15:349:42 2017	name
Imputation Saved 10 on Sun Apr 16 15:40:26 2017	"
Imputation Saved 11 on Sun Apr 16 15:40:47 2017	""
Imputation Saved 12 on Sun Apr 16 15:41:08 2017	impu
Imputation Saved 13 on Sun Apr 16 15:41:31 2017	
Imputation Saved 14 on Sun Apr 10 13:41:33 2017	
Implication Saved 15 on Sun Apr 16 15:42:40 2017	# Ar
Imputation Saved 17 on Sun Apr 16 15:43:02 2017	mode
Imputation Saved 18 on Sun Apr 16 15:43:24 2017	es
Imputation Saved 19 on Sun Apr 16 15:43:47 2017	impl
Imputation Saved 20 on Sun Apr 16 15:44:10 2017	mlm
Variable Order: imp# school condition esolvercent student abilityley female stanmath frlunch wave	est
time condbytime probsolve efficacy	
	# Di
	esti

ooling with R Package mitml equired packages rary(mitml) rary(lme4) ead data utations <- read.csv("~/desktop/Blimp Examples/Imps3Level.csv", header = F) es(imputations) <- c("imputation", "school", "condition", "esolpercent", student", "abilitylev", "female", "stanmath", "frlunch", "wave", "time", condbytime", "probsolve", "efficacy") utations\$abilitylev <- factor(imputations\$abilitylev)</pre> nalyze data and pool estimates el <- "probsolve ~ efficacy + time + condbytime + abilitylev + female + solpercent + condition + (time|student:school) + (time|school)" list <- as.mitml.list(split(imputations, imputations\$imputation))</pre> <- with(implist, lmer(model, REML = F)) imates <- testEstimates(mlm, var.comp = T, df.com = NULL)</pre> isplay estimates imates

mitml Output

	Estimate	Std.Error	t.value	df	p.value	RIV
(Intercept)	92.715	1.917	48.373	549.605	0.000	0.228
efficacy	0.765	0.144	5.326	56.231	0.000	1.388
time	0.686	0.172	3.985	934.853	0.000	0.166
condbytime	0.549	0.222	2.470	1995.448	0.007	0.108
abilitylev2	0.747	0.886	0.843	321.312	0.200	0.321
abilitylev3	6.974	0.967	7.210	441.810	0.000	0.262
female	-0.530	0.439	-1.207	968.110	0.114	0.163
esolpercent	0.051	0.023	2.194	1003.065	0.014	0.160
condition	0.083	1.085	0.077	2741.808	0.469	0.091

mitml Output

	Estimate
Intercept~~Intercept student:school	23.532
Intercept~~time student:school	0.529
time~~time student:school	0.131
Intercept~~Intercept school	5.038
Intercept~~time school	-0.167
time~~time school	0.255
Residual~~Residual	62.353
ICC school	0.274
NA	0.075

Unadjusted hypothesis test as appropriate in larger samples.

Centering constants (e.g., grand or group mean)

Pooling with R Package mitml

Required packages
library(mitml)
library(lme4)

Read data imputations <- read.csv("~/Desktop/ex/Imps3Level.csv", header = F) names(imputations) <- c("imputation", "school", "condition", "esolpercent", "student", "abilitylev", "female", "stanmath", "frlunch", "wave", "time", "condbytime", "probsolve", "efficacy")

Create Dummy codes (Factor 1 is reference)
imputations%abilitylev <- factor(imputations%abilitylev)
dummyCodes <- model.matrix(~ imputations%abilityleveD)
imputations%abilityleveD1 <- dummyCodes[,2]
imputations%abilityleveD2 <- dummyCodes[,3]</pre>

Create imputations as a list imputationList <- split(imputations, imputations\$imputation)</pre>

mitml Output Final parameter estimates and inferences obtained from 20 imputed data sets. Estimate Std.Error t.value df p.value RIV 0.000 0.132 (Intercept) 101.891 1.361 74.840 1398.955 0.000 0.765 0.144 5.326 56.231 1.388 efficacy 0.686 0.172 3.985 934.854 0.000 0.166 time condbytime 0.549 0.222 2.470 1995.446 0.007 0.108 abilitylev2 0.843 321.312 0.321 0.747 0.886 0.200 abilitylev3 6.974 0.967 7.210 441.809 0.000 0.262 female -0.530 0.439 -1.207 968.111 0.114 0.163 0.051 0.023 2.194 1003.064 0.014 0.160 esolpercent condition 3.380 1.462 2.312 20385.340 0.010 0.031

Pooling with R Package mitml, Cont.

Linb	histent (- Tappiy (ImputationList, function (dat) {
	# Variables needing grand mean centering
	<pre>vars <- c("efficacy", "esoipercent", "female","abilityleveD1", "abilityleveD2") # Get grand means</pre>
	<pre>mns <- colMeans(dat[,vars])</pre>
	# Grand Mean Center
	<pre>dat[,vars] <- sweep(dat[,vars],2,mns)</pre>
	## Center interaction
	# Time centering constant
	timeC <- 6
	# Condition constant
	condC <- 0
	# Center Time
	dat\$time <- dat\$time - timeC
	# Center Condition
	dat\$condition <- dat\$condition - condC
	# Center condbytime
	dat\$condbytime <- dat\$condbytime - (dat\$condition*timeC) - (dat\$time*condC) + (condC*timeC
	# Return data
	return (dat)
)	
А	nalyze data and pool estimates
od	el <- "probsolve ~ efficacy + time + condbytime + abilitylev + female +
e	solpercent + condition + (time student:school) + (time school)"
mp	list <- as.mitml.list(impListCent)