

SINGLE-CASE EXPERIMENTAL DESIGNS (SCED)

- Researchers evaluate the effect of interventions by comparing repeated measurements on the same individual over time across one or more treatment conditions.
 - AB design (interrupted time-series design);
 - Withdrawal designs (e.g., ABA, ABAB, ABAC);
 - Changing criterion design (e.g., ABB', ABB'B");
 - Multiple probe design;
 - Alternating treatments design (multi-element design);
 - Multiple baseline design.

USE UNIVERSITY OF SUTH HEAD STUDIES

- · the trends are non-existent or linear
- the errors within a case are homogenous and either independent or firstorder autoregressive
- the case-level errors are uncorrelated
- the study-level errors are uncorrelated

Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 2014; Owen & Ferron, 2011; Petit-Bois, Baek, Van den Noortgate, Beretvas, & Ferron, 2016; Moeyaert, Rindskopf, Onghena, & Van den Noortgate, 2017

WHAT IF DATA ARE MORE COMPLEX?

What if the covariance structure at level-1 is not independent and homogeneous, but rather it is:

- First-order autoregressive
- Heterogeneous across phases
- Heterogeneous across cases

What if the covariance structure at level-2 is not diagonal, but unstructured?

What if the covariance structure at level-3 is not diagonal, but unstructured?

PURPOSE OF OUR STUDY

To compare alternative multilevel models for analyzing a series of multiple baseline studies that are characterized by multiple complexities:

- · treatment phase trajectories that are non-linear
- within-case (level-1) errors that are autocorrelated and heterogeneous across phases and across cases
- level-2 and level-3 errors that may have an unstructured covariance structure

Provide the models on convergence rates, parameter bias, and confidence interval coverage.

Townley-Cochran, D., Leaf, J. B., Leaf, R., Taubman, M., & McEachin, J. (2017). Comparing Error Correction Procedures for Children Diagnosed with Autism. *Education and Training in Autism and Developmental Disabilities*, *52*(1), 91.

• Design Factors • Level 1: number of observation per participant (16 & 32) • Level 2: number of participant per study (4 & 8) • Level 3: number of study (10 & 30)

USF STUDY DESIGN

• Conditions

	Conditions	# of Observation	# of Participant	# of Case
	1	16	4	10
	2	16	4	30
	3	16	8	10
	4	16	8	30
	5	32	4	10
	6	32	4	30
	7	32	8	10
	8	32	8	30
Num	ber of replicatio	n in each conditi	on: 2000	

USF UNIVERSITY OF SOUTH FLORIDA. MODELS FOR ANALYZING

Model 1

• Quadratic with simple errors structure:

Level-1 error:

- independence;
- homogeneity.

Level-2 error:

not correlated.

Level-3 error:

not correlated.

Model 2

• Quadratic with complex errors structure:

Level-1 error:

- autocorrelated;
- Heterogeneous (across phases and participants).

Level-2 error:

• correlated.

Level-3 error:

• correlated.

UNVERSITY OF NODELS FOR ANALYZING

Model 3	Model 4
 Piecewise with simple 	 Piecewise with complex
errors structure:	errors structure:
Level-1 error:	Level-1 error:
 independence; 	autocorrelated;
 homogeneity. 	Heterogeneous.
Level-2 error:	Level-2 error:
 not correlated. 	• correlated.
Level-3 error:	Level-3 error:
 not correlated. 	correlated.

USE SIMULATION RESULTS

Model 1	Quadratic with simple errors structure	

Observation	Participant	Study	Effect	Bias	Relative	Coverage	Std. E	Convergence
			Est		Bias			Rate
16	4	10	0.505	0.005	.009	.921	0.008	1
		30	0.506	0.004	.009	.841	0.004	1
	8	10	0.505	0.005	.009	.918	0.005	1
		30	0.506	0.004	.009	.735	0.003	1
32	4	10	0.456	0.044	.088	0	0.005	1
		30	0.456	0.044	.088	0	0.003	1
	8	10	0.456	0.044	.088	0	0.004	1
		30	0.456	0.044	.088	0	0.002	1

USF SIMULATION RESULTS

16	4	10 30	0.496	0.005	009	020	0.007	
	8	30	0 10 0		.007	.920	0.007	1
	8		0.496	0.004	.009	.818	0.004	1
	0	10	0.496	0.004	.008	.894	0.005	1
		30	0.496	0.004	.009	.663	0.003	1
32	4	10	0.497	0.003	.005	.934	0.005	1
	-	30	0.497	0.003	.005	.863	0.003	1
	8	10	0.497	0.003	.006	.896	0.004	1
		30	0.497	0.003	.006	.749	0.002	1

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mode	4 Piece	wise wit	th comple	ex errors	structure			
Lest Bias Rate 16 4 10 0.496 $.004$ $.007$ $.96$ 0.007 $.90$ 30 0.496 $.004$ $.007$ $.87$ 0.004 $.99$ 8 10 0.497 $.003$ $.007$ $.93$ 0.005 $.71$ 30 Simulation is still running 32 4 10 0.498 0.002 $.005$ $.96$ $.005$ $.95$ 30 0.498 0.003 $.006$ $.889$ $.003$ $.97$ 8 10 0.496 0.004 $.007$ $.76$ $.003$ $.84$	Observation	Participant	Study	Effect	Bias	Relative	Coverage	Std. E	Convergence
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1	10	Est	004	Bias	96	0.007	Rate
8 10 0.497 .003 .007 .93 0.005 .71 30 .002 .005 .96 .005 .96 .95 32 4 10 0.498 0.002 .005 .96 .005 .95 30 0.498 0.002 .005 .96 .005 .95 30 0.498 0.003 .006 .889 .003 .97 8 10 0.496 0.004 .007 .76 .003 .84	10	-	30	0.496	004	.007	87	0.007	99
30 Simulation is still running 32 4 10 0.498 0.002 .005 .96 .005 .95 30 0.498 0.003 .006 .895 .97 8 10 0.496 0.004 .007 .76 .003 .84		8	10	0.497	.003	.007	.93	0.005	.71
32 4 10 0.498 0.002 .005 .96 .005 .95 30 0.498 0.003 .006 .89 .003 .97 8 10 0.496 0.004 .007 .76 .003 .84		-	30			Simulatio	n is still runn	ing	
30 0.498 0.003 .006 .89 .003 .97 8 10 0.496 0.004 .007 .76 .003 .84	32	4	10	0.498	0.002	.005	.96	.005	.95
8 10 0.496 <u>0.004</u> .007 .76 .003 .84			30	0.498	0.003	.006	.89	.003	.97
		8	10	0.496	0.004	.007	.76	.003	.84
30 Simulation is still running			30			Simulation	n is still runn	ing	

USF SIMULATION RESULTS

Summary

Model 1: 32 Observations -- more bias, and coverage is 0.

- Riggerwise trajectory has less bias and better 95% confidence interval coverage across all the conditions than quadratic tradectory muthe treatment of the nominal .95.

Model 4: Will conclude it after get the final simulation results. - For the model with a piecewise trajectory in the treatment phase and a simpler error structure, the coverage was lower than the nominal .95.

FURTHER RESEARCH DESIGN

- 1. Only limited conditions were examined;
- 2. Future research should examine:
 - Other non-linear treatment trajectories
 - Non-normally distributed error structure (level-1, level-2, and level-3)
 - Other methods of estimating the model (such as Bayesian estimation)
 - Other dependent error structures in level-1 (moving average; 2nd order autoregressive)

Dr. John Ferron: <u>ferron@usf.edu</u>

Ke Cheng: kecheng@mail.usf.edu

Zhiyao Yi: zhiyao@mail.usf.edu

