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§ The power of favorable attitudes toward science (science attitudes) 
is that they reinforce higher performance.

§ There continue to be gender disparity in science attitudes across 
many countries (Provasnik et al, 2012). 

§ Most research related to science attitudes have been based on the 
TIMSS Student Questionnaire. 

§ However, there remain two open questions about TIMSS science 
attitudes items: (1) the latent factor structure, and (2) the existence 
of measurement invariance across genders.

INTRODUCTION



§ What is TIMSS? 
– The Trends in International Mathematics and Science Study
– Conducted by the International Association for the Evaluation of 

Educational Achievement (IEA)
– Measuring students’ mathematics and science achievement
– TIMSS Student Questionnaire: student attitudes, home 

background, and school experiences

§ TIMSS 2015 Student Questionnaire 
§ USA sample - 10,221 students (50.1% girls, 49.9% boys)
§ Eighth grade students

DATASOURCE



STEP 1: Identifying the Best Fitting Model

§ Bifactor structure
– A general factor and three secondary factors (Foy, 2017)

• Students Enjoy Learning Science (SES)
• Students’ Confidence in Science (SCS)
• Students’ Perceived Value of Learning Science (SVS)

§ Independent-clusters model of confirmatory factor analysis (ICM-CFA)
§ Exploratory structural equation modeling (ESEM)
§ Model comparison: approximate fit indices, general and local fits, and

interpretability of each model
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MODELINGMETHODS

STEP 1: Identifying the Best Fitting Model

§ Bifactor ICM-CFA Model

Figure 1. Path Diagram for Bifactor ICM-CFA Model 



MODELINGMETHODS

STEP 1: Identifying the Best Fitting Model

§ Bifactor ESEM Model

Figure 2. Path Diagram for Bifactor ESEM Model 



STEP 2: Examining Measurement Invariance

§ Nested models were tested progressively (Meredith, 1993)
§ Configural invariance model
– Same factor structure, and similar pattern of factor loadings

§ Metric invariance model

– Same factor structure, and equal factor loadings 
§ Strict invariance model
– Same factor structure, equal factor loadings, and equal intercept 

values

MODELINGMETHODS



STEP 2: Examining Measurement Invariance

§ Changes in goodness-of-fit indices were examined to make 
comparison between nested models.

§ A diminution of .010 and .015 for CFI and RMSEA are respectively 
indicative of a preferred model (Chen, 2007).

§ Models with lower Baysian information criterion (BIC) values are 
considered superior in terms of fit and parsimony. 

MODELINGMETHODS



RESULTS

STEP 1: Identifying the Best Fitting Model

§ Model fit comparison

χ² df SCF RMSEA RMSEA 90% CI CFI TLI SRMR BIC

ICM-CFA 
Bifactor 11880 273 1.331 .065 .064 to .066 .910 .893 .067 539618

ESEM 
Bifactor 7821 227 1.343 .058 .057 to .059 .941 .915 .025 534258

Note. χ² = adjusted chi-square fit statistic with robust standard errors; df = degrees of freedom; SCF = Scale correction
factor; RMSEA = root mean square error of approximation; CI = confidence interval; CFI = comparative fit index; TLI =
Tucker-Lewis index; SRMR = standardized root mean residual; BIC = Bayesian information correction.

Table 1. Goodness-of-fit Indices for ICM-CFA and ESEM Models
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RESULTS

STEP 1: Identifying the Best Fitting Model

§ Factor loadings for bifactor ICM-CFA

Figure 3. Standardized Bifactor 
ICM-CFA Factor Loadings 



RESULTS

STEP 1: Identifying the Best Fitting Model

§ Factor loadings for bifactor ESEM

Figure 4. Standardized Bifactor 
ESEM Factor Loadings 



RESULTS

STEP 1: Identifying the Best Fitting Model

§ All items in the bifactor ESEM had substantial loadings on the 
general factor (λ = .42 to .85.; M = .59) as well as most questions had 
specific factor loadings that exceeded .30.

§ The bifactor ESEM yielded an improved level of fit in comparison 
to the corresponding ICM-CFA model.

§ Interpretability of the model – science attitudes are general and 
enduring feelings about science, and predisposition to learn science 
(Lovelace & Brickman, 2013).



STEP 2: Examining Measurement Invariance

§ The model fit for each gender group

χ² df SCF RMSEA RMSEA 90% CI CFI TLI SRMR BIC

Female 4304 227 1.280 .060 .058 to .061 .939 .912 .025 274166

Male 3669 227 1.399 .055 .054 to .057 .944 .921 .025 260061

Note. χ² = adjusted chi-square fit statistic with robust standard errors; df = degrees of freedom; SCF = Scale correction
factor; RMSEA = root mean square error of approximation; CI = confidence interval; CFI = comparative fit index; TLI =
Tucker-Lewis index; SRMR = standardized root mean residual; BIC = Bayesian information correction.

Table 2. Goodness-of-fit Indices for the Baseline Model across Genders
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STEP 2: Examining Measurement Invariance

χ2 df SCF RMSEA RMSEA
90% CI CFI TLI SRMR BIC p ΔCFI ΔRMSEA

M1 7822 227 1.343 .058 .057 to .059 .941 .915 .025 534258

M2 7944 454 1.339 .057 .056 to .058 .942 .916 .025 534436 0 .001 –.001

M3 8193 542 1.338 .053 .052 to .054 .940 .929 .028 533950 0 –.002 –.004

M4 8594 564 1.325 .053 .052 to .054 .937 .928 .030 534171 0 –.003 0

Note. χ² = adjusted chi-square fit statistic with robust standard errors; df = degrees of freedom; SCF = Scale correction factor; RMSEA
= root mean square error of approximation; CI = confidence interval; CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR =
standardized root mean residual; BIC = Bayesian information correction; M1 = baseline model (no invariance imposed); M2 =
configural invariance; M3 = metric invariance; M4 = scalar invariance.

Table 3. Goodness-of-fit Indices for Measurement Invariance across Genders
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RESULTS

STEP 2: Examining Measurement Invariance

§ All the configural, metric, and scalar invariance models were tenable.
– All the changes between nested models in CFIs and RMSEAs 

were less than .010 and .015 respectively.
§ The results support the constraints of equal factor structure, factor 

loadings, and intercepts for the TIMSS science attitude items across 
genders.



§ The bifactor ESEM should be the model of choice.
– An excellent level of good-of-fit indices
– Considerable general factor loadings and reasonable local fits
– Information about both a composite score and residualized

subscores
– The substantive interpretability of the model

§ The model allows more in-depth analyses of the relationship between 
student attitudes and other external variables.

§ The TIMSS science attitudes items can be safely used when inspecting 
the effect of genders on science attitudes-related issues. 
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DISCUSSION



§ This study is focused only on science attitudes in USA eighth grade
students. 

§ The direction of future research can be applied to other content areas 
such as mathematics, and to samples derived from other countries.

§ More in-depth qualitative analyses of each construct – general factor, 
SES, SCS, and SVS – should be performed in future studies. 

LIMITATIONS
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