Analyzing Time Series with Long-Range Dependencies 2: Using Exponential Smoothing to Model Complex Periodic Patterns

Matthijs Koopmans – *Mercy College*

Poster Presented at the Annual Modern Modeling Methods (M³) Conference, Storrs, CT. May 22, 2018.

Abstract

Traditional seasonal time series models estimate short-range regularities (e. g., days of the week), but are not equipped to address long-range dependencies, nested seasonal cycles, or modeling periods including fractions, such as the 365.25 days per year in the Gregorian calendar (De Livera, Hyndman, & Snyder, 2012). The *forecast* package (ibid.) in *R* makes such analyses possible. This poster shows how with two datasets: 1. Daily high school attendance rates in one New York City High School (2009-2014), modeling autocorrelations over a school year of 177 days, and 2. Daily recordings of births to teens in the state of Texas (1964-1999), requiring a model that estimates weekly as well as annual dependencies. R script for *forecast* is provided.

Rationale for the Study

Until recently, the estimation of long-range regularities in time series was cumbersome at best. This poster illustrates:

- how the Trigonometric Box-Cox ARMA Trend Seasonal (TBATS) model addresses this problem, and
- how the *forecast* package in *R* implements this model to analyze long-range dependencies statistically.

Datasets

- Daily high school attendance rates in one New York City high school (School 2) from 2009 to 2014;
- Daily recordings of births to teens in the state of Texas from 1964 to 1999 (Hamilton *et al.*, 1997).

Plan of the Analysis

- Initial exploration of the data, including stationarity tests;
- Outlier removal (attendance data only);
- Estimating short-range processes and long-range irregularity;
- Conventional ARIMA estimates with d =1 and weekly;
 seasonal estimates (teen birth data only);
- Estimation of long-range regularity with TBATS;
- Analysis of residuals.

The TBATS Model

The Trigonometric Box-Cox ARMA Trend Seasonal (TBATS) model can be expressed as follows:

$$Y_t^{(\omega)} = (Y_t^{\omega} - 1)/\omega \tag{1a}$$

$$Y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^T s_{t-1}^{(i)} + d_t$$
 (1b)

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \delta_t \tag{1c}$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$
 (1d)

$$s_t^{(i)} = \sum_{j=1}^{k_i} s_{j,t}^{(i)}$$
 (1e)

$$s_{j,t}^{(i)} = s_{j,t-1}^{(i)} cos\lambda_j^{(i)} + s_{j,t-1}^{*(i)} sin\lambda_j^{(i)} + \gamma_1^{(i)} d_t$$
 (1f)

$$s_{j,t}^{*(i)} = -s_{j,t-1}^{(i)} sin\lambda_j^{(i)} + s_{j,t-1}^{*(i)} cos\lambda_j^{(i)} + \gamma_2^{(i)} d_t$$
 (1g)

$$d_t = \sum_{i=1}^p \varphi_i d_{t-i} + \sum_{i=1}^q \theta_i \, \varepsilon_{t-i} + \varepsilon_t \tag{1h}$$

The Box-Cox transformation (1a) stabilizes the variance by ω ; ℓ_t estimates the local level at t, b_t the short-range trend at t, and b the long-range trend across the series; d_t represents the ARMA (p,q) process; $s_{j,t}^{(i)}$ models the seasonal component as a Fourier series with $\lambda_j^{(i)} = 2\pi j/m_i$ with m_i representing the seasonal period; $s_{j,t}^{(i)}$ captures the level variance at the i^{th} seasonal cycle, and $s_{j,t}^{*(i)}$ models the change in seasonal variability over time; α , β , $\gamma_1^{(i)}$ and $\gamma_2^{(i)}$ are smoothing parameters, and ε_t is Gaussian white noise with zero mean and constant variance σ^2 (De Livera, Hyndman, & Snyder, 2012).

Results

Table 1.
Summary Statistics and Stationarity Tests:
Daily Attendance in School 2 (N = 885)

Summary Statistics	Uncontaminated Series				
Mean	91.65				
Standard Deviation	2.63				
Minimum	82.60				
First Quartile	90.28				
Median	91.84				
Third Quartile	93.56				
Maximum	97.47				
Stationarity Tests					
Augmented Dickey	-6.07*				
Fuller Test	Lag Order = 9				
KPSS Test					
Level	4.32*				
Trend	0.66*				
	Lag Order = 6				
* p < .01. A rejection of the null hypothesis implies					
stationarity in all three tests.					

Table 2.

Model Fitting with TBATS:

Attendance in School 2 (Uncontaminated)

Model	ARMA (p, q)	Period	σ^2	AIC	LB Test			
1			5.14	7460.77	34.45			
П	(0, 1)		5.04	7446.82	21.55			
	(0, 1)	177	4.12	7383.55	25.82			
P < .05								
Ljung-Box (LB) Portmanteau tested under a χ^2 distribution at df = 12								

Preferred Model in Boldface

Table 3. ummary Statistics and Stationarity Tests: Texas Teen Births Data (N = 13,149)

Summary Statistics				
Mean	132.2			
Standard Deviation	21.04			
Minimum	73.0			
First Quartile	117.0			
Median	131.0			
Third Quartile	145.0			
Maximum	226.0			
Stationarity Tests				
Augmented Dickey Fuller	-8.25*			
Test	Lag Order = 23			
KPSS Test				
Level	24.23*			
Trend	1.08*			
	Lag Order = 26			
* p < .01. A rejection of the null hypothesis implies				
stationarity in all three tests.				

Table 4. Model Fitting with Fractional Differencing and TBATS: Texas Teen Births Data

Texas Teen Births Data					
Model	Specification	σ^2	LB		
1	(0, 0, 0)	442.50	29,486.00*		
П	(1, 0, 1)	264.40	6,719.10*		
Ш	(0, d, 0)	269.96	4,989.70*		
IV	(1, d, 1)	266.53	3,690.90*		
V	(1, 0, 1) X (0, 0, 1) ₇	234.30	2,004.80*		
VI	(1, 0, 1) X (0, 1, 1) ₇	161.80	42.56*		
VII	(1, 1, 1) X (0, 1, 1) ₇	162.50	20.87*		
VIII	Residuals Model VII	150 26	17.70		
	Seasonal Period = 365.25	156.50			
* p < .05					
	I II III IV V V VI VII VIII	Model Specification I (0, 0, 0) II (1, 0, 1) III (0, d, 0) IV (1, d, 1) V (1, 0, 1) X (0, 0, 1) ₇ VI (1, 0, 1) X (0, 1, 1) ₇ VII (1, 1, 1) X (0, 1, 1) ₇ VIII Residuals Model VII Seasonal Period = 365.25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

* p < .05 Ljung-Box (LB) Portmanteau tested under a χ^2 distribution at df = 12 **Preferred Model in Boldface**

References

De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2012). Forecasting time series with complex seasonal patterns using exponential smoothing. *Journal of the American Statistical Association*, 106, 1513-1527.

Hamilton, P., Pollock, J. E., Mitchell, D. A., Vincenzi, A. E., & West, B. J. (1997). The application of nonlinear dynamics to nursing research. *Nonlinear Dynamics, Psychology, and Life Sciences*, 1, 237-261.

R Script for Modeling Daily Attendance (School 2)

>library(forecast) ##call the forecast package >attach(school 2) ##call the dataset for school 2 ##generate attendance summary statistics >tsoutliers(rate,iterate = 2) ##identify outliers >urate<-tsclean(rate, replace.missing = TRUE)</pre> ##replace outliers >urate.m1<-tbats(urate, use.box.cox = T, use.trend = F,</pre> use.damped.trend = F, use.arma.errors = F) ##fit model 1 and generate output >checkresiduals(urate.ml) >urate.m2<-tbats(urate, use.box.cox = T, use.trend = F,</pre> use.damped.trend = F, use.arma.errors = T) ##fit model 2 and generate output >checkresiduals(urate.m2) >urate.msts<-msts(urate, seasonal.periods=177)</pre> ##adjustment for annual cycle >urate.m3<-tbats(urate.msts, use.box.cox=T,</pre> use.trend=F, use.damped.trend=F, use.arma.errors = T) ##fit model 3 and generate output >checkresiduals(urate.m3)