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Traditional seasonal time series models estimate short-range 
regularities (e. g., days of the week), but are not equipped to 
address long-range dependencies, nested seasonal cycles, or 
modeling periods including fractions, such as the 365.25 days 
per year in the Gregorian calendar (De Livera, Hyndman, & 
Snyder, 2012). The forecast package (ibid.) in R makes such 
analyses possible. This poster shows how with two datasets: 1. 
Daily high school attendance rates in one New York City High 
School (2009-2014), modeling autocorrelations over a school 
year of 177 days, and 2. Daily recordings of births to teens in the 
state of Texas (1964-1999), requiring a model that estimates 
weekly as well as annual dependencies. R script for forecast is 
provided.

Abstract

Until recently, the estimation of long-range regularities in time 
series was cumbersome at best. This poster illustrates: 

• how the Trigonometric Box-Cox ARMA Trend Seasonal 
(TBATS) model addresses this problem, and 

• how the forecast package in R implements this model to 
analyze long-range dependencies statistically.

Datasets

• Daily high school attendance rates in one New York City high 
school (School 2) from 2009 to 2014;

• Daily recordings of births to teens in the state of Texas from 
1964 to 1999 (Hamilton et al., 1997).

Plan of the Analysis

• Initial exploration of the data, including stationarity tests;

• Outlier removal (attendance data only);

• Estimating short-range processes and long-range irregularity;

• Conventional ARIMA estimates with d =1 and weekly; 
seasonal estimates (teen birth data only);

• Estimation of long-range regularity with TBATS;

• Analysis of residuals.

Rationale for the Study

The Trigonometric Box-Cox ARMA Trend Seasonal (TBATS) model can be expressed as follows:

The TBATS Model

Results
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R Script for Modeling Daily Attendance (School 2)

>library(forecast) ##call the forecast package 

>attach(school 2)   ##call the dataset for school 2  

>summery(rate)      ##generate attendance summary statistics  

>tsoutliers(rate,iterate = 2)  ##identify outliers 

>urate<-tsclean(rate,replace.missing = TRUE)  

##replace outliers 

>urate.m1<-tbats(urate,use.box.cox = T, use.trend = F, 

use.damped.trend = F, use.arma.errors = F) 

>urate.m1       ##fit model 1 and generate output 

>checkresiduals(urate.m1)  

>urate.m2<-tbats(urate, use.box.cox = T, use.trend = F, 

use.damped.trend = F, use.arma.errors = T) 

>urate.m2   ##fit model 2 and generate output 

>checkresiduals(urate.m2) 

>urate.msts<-msts(urate, seasonal.periods=177)  

##adjustment for annual cycle 

>urate.m3<-tbats(urate.msts, use.box.cox=T, 

  use.trend=F, use.damped.trend=F, use.arma.errors = T) 

>urate.m3   ##fit model 3 and generate output 

>checkresiduals(urate.m3) 
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Analyzing Time Series with Long-Range Dependencies 2: Using Exponential Smoothing to Model Complex Periodic Patterns

The Box-Cox transformation (1a) stabilizes the variance by ω; 𝓁𝑡 estimates the local level at t, 𝑏𝑡 the short-range trend at t, and b the long-range trend across the series; 

𝑑𝑡 represents the ARMA (p, q) process; 𝑠𝑗,𝑡
(𝑖)

models the seasonal component as a Fourier series with 𝜆𝑗
(𝑖)
= 2𝜋𝑗/𝑚𝑖 with 𝑚𝑖 representing the seasonal period; 

𝑠𝑗,𝑡
(𝑖)

captures the level variance at the 𝑖𝑡ℎ seasonal cycle, and 𝑠𝑗,𝑡
∗(𝑖)

models the change in seasonal variability over time; 𝛼, 𝛽, 𝛾1
(𝑖)

and 𝛾2
(𝑖)

are smoothing parameters, and 

𝜀𝑡 is Gaussian white noise with zero mean and constant variance σ2 (De Livera, Hyndman, & Snyder, 2012).

𝒀𝒕
(𝝎)

=  (𝒀𝒕
𝝎 − 𝟏)/𝝎                                                (1a) 

𝒀𝒕
(𝝎)

=  𝓵𝒕−𝟏 +  𝝓𝒃𝒕−𝟏 +  𝒔𝒕−𝟏
(𝒊)𝑻

𝒊=𝟏 +  𝒅𝒕                            (1b) 

𝓵𝒕 = 𝓵𝒕−𝟏 +𝝓𝒃𝒕−𝟏 + 𝜶𝜹𝒕                                           (1c) 

𝒃𝒕 = (𝟏 − 𝝓)𝒃 +  𝝓𝒃𝒕−𝟏 + 𝜷𝒅𝒕                                    (1d) 

𝒔𝒕
(𝒊)

=   𝒔𝒋,𝒕
(𝒊)𝒌𝒊

𝒋=𝟏                                                     (1e) 

𝒔𝒋,𝒕
(𝒊)

= 𝒔𝒋,𝒕−𝟏
(𝒊)

𝒄𝒐𝒔𝝀𝒋
(𝒊)

+ 𝒔𝒋,𝒕−𝟏
∗(𝒊)

𝒔𝒊𝒏𝝀𝒋
(𝒊)

+ 𝜸𝟏
(𝒊)
𝒅𝒕                         (1f) 

𝒔𝒋,𝒕
∗(𝒊)

=  −𝒔𝒋,𝒕−𝟏
(𝒊) 𝒔𝒊𝒏𝝀𝒋

(𝒊) + 𝒔𝒋,𝒕−𝟏
∗(𝒊) 𝒄𝒐𝒔𝝀𝒋

(𝒊)
+ 𝜸𝟐

(𝒊)
𝒅𝒕                     (1g) 

𝒅𝒕 =   𝝋𝒊𝒅𝒕−𝒊
𝒑
𝒊=𝟏 +   𝜽𝒊

𝒒
𝒊=𝟏 𝜺𝒕−𝒊 + 𝜺𝒕                            (1h) 

Summary Statistics Uncontaminated Series

Mean 91.65

Standard Deviation 2.63

Minimum 82.60

First Quartile 90.28

Median 91.84

Third Quartile 93.56

Maximum 97.47

Stationarity Tests 

Augmented Dickey 

Fuller Test 

-6.07*

Lag Order = 9

KPSS Test

Level

Trend

4.32*

0.66*

Lag Order = 6
* p < .01. A rejection of the null hypothesis implies 

stationarity in all three tests.

Table 1. 
Summary Statistics and Stationarity Tests: 

Daily Attendance in School 2 (N = 885)

Model

ARMA

(p, q)

Period
σ2 AIC LB Test

I -- -- 5.14 7460.77 34.45

II (0, 1) -- 5.04 7446.82 21.55

III (0, 1) 177 4.12 7383.55 25.82
P < .05

Ljung-Box (LB) Portmanteau tested under a χ2 distribution at 

df = 12

Preferred Model in Boldface

Table 2. 
Model Fitting with TBATS:

Attendance in School 2 (Uncontaminated)

Summary Statistics

Mean 132.2

Standard Deviation 21.04

Minimum 73.0

First Quartile 117.0

Median 131.0

Third Quartile 145.0

Maximum 226.0

Stationarity Tests

Augmented Dickey Fuller 

Test 

-8.25*

Lag Order = 23

KPSS Test

Level

Trend

24.23*

1.08*

Lag Order = 26
* p < .01. A rejection of the null hypothesis implies 

stationarity in all three tests.

Table 3. 
Summary Statistics and Stationarity Tests: 

Texas Teen Births Data (N = 13,149)

Model Specification σ2 LB

I (0, 0, 0) 442.50 29,486.00*

II (1, 0, 1) 264.40 6,719.10*

III (0, d, 0) 269.96 4,989.70*

IV (1, d, 1) 266.53 3,690.90*

V (1, 0, 1) X (0, 0, 1)7 234.30 2,004.80*

VI (1, 0, 1) X (0, 1, 1)7 161.80 42.56*

VII (1, 1, 1) X (0, 1, 1)7 162.50 20.87*

VIII Residuals Model VII

Seasonal Period = 365.25
158.36 17.70

* p < .05

Ljung-Box (LB) Portmanteau tested under a χ2 distribution at df = 12

Preferred Model in Boldface

Table 4.
Model Fitting with Fractional Differencing and TBATS: 

Texas Teen Births Data


