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The purpose of this poster is to show an application of fractional 
differencing (Beran, 1994), a recently developed technique to 
analyze long-range irregular patterns in time series data, using 
two illustrative datasets: 1. The annual discharge volume of the 
River Nile from 622 through 1245 AD (a ‘classic’ dataset), and 2. 
Daily attendance rates in one New York City high school from 
2010-2014. The main features of fractional differencing are 
explicated, and it is shown how irregularity manifests itself in the 
time series and diagnostic autocorrelation function plots of 
these data. The differencing parameter d is generated and 
interpreted for both datasets.

Abstract

• Irregularity in time series is suggestive of complex adaptive 
processes in the system of interest, with unpredictably 
recurring cycles.

• As an extension to conventional time series analysis, 
fractional differencing approaches are well within reach of 
social science research.

Datasets

• A time series plot of the annual recordings of water discharge 
levels of the River Nile near Cairo from 622 through 1245AD, 
a classic dataset that is often cited as an illustration of long-
range processes (Beran, 1994).

• Daily attendance rates in one New York City high school 
(School 1) over a four-year period, starting in the fall of 2010.

Analytical Steps

• Initial exploration of the data and conducting stationarity 
tests;

• Smoothing of the series to address extreme values 
(attendance data only);

• Comparison of statistical models, using Akaike’s Information 
Criterion and the Ljung-Box Portmanteau test;

• Analysis of residuals;

• Interpretation of the parameter estimates.

Rationale for the Study

• Assuming a time series trajectory 𝒀𝒕, 𝒀𝒕−𝟏, 𝒀𝒕−𝟐, … 𝒀𝒕−𝒏 with 𝝁 = 𝑬(𝒀𝒕) = 𝟎 and a lag operator:

𝑩(𝒀𝒕) = 𝒀𝒕−𝟏; 𝑩
𝟐 𝒀𝒕 = 𝒀𝒕−𝟐; … 𝑩𝒏 𝒀𝒕 = 𝒀𝒕−𝒏,

the fractional differencing model can be expressed as:

(𝟏 + 𝝋𝟏𝑩 + 𝝋𝟐𝑩
𝟐 +⋯+𝝋𝒑𝑩

𝒑)(𝟏 − 𝑩)𝒅𝒀𝒕 = (𝟏 + 𝜽𝟏𝑩+ 𝜽𝟐𝑩
𝟐 +⋯+ 𝜽𝒒𝑩

𝒒)𝒆𝒕.

• The autoregressive component (at p lags) and long-range memory component, respectively, are on the left; the moving average 
component (at q lags) is on the right. 

• We assume a stationary series, with − 𝟎. 𝟓 < 𝒅 < + 𝟎. 𝟓. 

• The differencing parameter d indicates long-range autocorrelation. A positive value denotes persistence, a negative value of d 
indicates anti-persistence (Sowell, 1992).

The Fractional Differencing Model Summary of Results

• Persistence is moderate in the attendance data (d = .27), 
substantial in the River Nile data (d = .39);

• The fractional differencing results suggest irregularity in both 
data sets.

Discussion

• Although short-range models also describe these data well, 
the models relying exclusively on the long-range parameter 
describe the data best in both cases indicating long-range 
dependencies.

• The significance of the differencing parameters points to a 
complex adaptive process in these systems that warrants 
further examination. 
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Results

Summary Statistics

Mean 11.48

Standard Deviation 0.89

Minimum 9.35

First Quartile 10.94

Median 11.48

Third Quartile 12.05

Maximum 14.66

Stationarity Tests

Augmented Dickey 

Fuller Test 

-5.03*

Lag Order = 8

KPSS Test

Level

Trend

1.91*

0.30*

Lag Order = 5

* p < .01. A rejection of the null hypothesis 

implies stationarity in all three tests.

Table 1. 
Summary Statistics and Stationarity Tests: 

River Nile Data (N = 623)

Model

Specification

(p, d, q)
d σ2 AIC LB TestB

I (0, 0, 0) -- .79 1724.22 1001.00*

II (1, 0, 1) -- .50 1429.04 15.48

III (0, d, 0) .39 .49 1413.07 7.30

IV (1, d, 1) .37 .49 1417.11 5.25
* p < .05
B Ljung-Box Portmanteau tested under a χ2 distribution at df=12

Preferred Model in Boldface

Table 2. 
Fractional Differencing Model Selection Process: 

River Nile Data

Summary Statistics

Uncontaminated 

Series

Mean 96.09

Standard Deviation 1.86

Minimum 88.78

First Quartile 94.95

Median 96.28

Third Quartile 97.31

Maximum 99.63

Stationarity Tests

Augmented Dickey 

Fuller Test 

-6.00*

Lag Order = 9

KPSS Test

Level

Trend

1.37*

0.35*

Lag Order = 6
* p < .01. A rejection of the null hypothesis 

implies stationarity in all three tests.

Table 3. 
Summary Statistics and Stationarity 

Tests: Daily Attendance Rates School 1 
(N = 735)

Model

Specification

(p, d, q)
d σ2 AIC LB TestB

I (0, 0, 0) -- 3.45 2998.74 371.66*

II (1, 0, 1) -- 2.83 2857.43 7.41

III (0, d, 0) .27 2.81 2850.99 6.54

IV (1, d, 1) .23 2.82 2855.86 6.65
* p < .05
B Ljung-Box Portmanteau tested under a χ2 distribution at 

df=12

Preferred Model in Boldface

Table 4. 
Fractional Differencing Model Selection Process: 

Daily Attendance Rates in School 1 


