Understanding Bayesian Nonparametric Methods Through Programming a Dirichlet Process Mixture Model

Yuelin Li, PhD. ${ }^{\text {a, }}$ b and Elizabeth Schofield, MS. ${ }^{\text {a }}$
a: Department of Psychiatry \& Behavioral Sciences
b: Department of Epidemiology \& Biostatistics
2018 UConn Modern Modeling Methods (M3) Conference
Tuesday May 22, 2018

Bayesian Nonparametric (BNP) Methods

- Bayesian "nonparametric" methods?
- But, what about $p(\theta \mid y) \propto L(\theta \mid y) p(\theta)$?
- Not finite parameters (growing/infinite number of parameters)

Bayesian Nonparametric (BNP) Methods

- Bayesian "nonparametric" methods?
- But, what about $p(\theta \mid y) \propto L(\theta \mid y) p(\theta)$?
- Not finite parameters (growing/infinite number of parameters)

Bayesian Nonparametric (BNP) Methods

-Where to start for a beginner?

- Dirichlet Process Mixture Model (DPMM)

Bayesian Nonparametric (BNP) Methods

- Where to start for a beginner?
- Dirichlet Process Mixture Model (DPMM)

- Number of clusters grows when necessary

Outline

- What BNP looks like
- Examples: DPMM as an illustrative example

1. DPpackage in R: Mixture of univariate Gaussians
2. scikit-learn in Python: multivariate Gaussians

- Computation: DPMM by Chinese Restaurant Process

1. How to program DPMM in R

- Theory: so that you can develop new methods
- Real Example: responders to end-of-life psychotherapy

Examples:
 DPpackage in R
 scikit-learn.org in Python

Mixture of Univariate Normals

- library("DPpackage"): ${ }^{1}$ dataset galaxy
- Receding velocities from 82 galaxies into 4 clusters
- Escobar \& West (1995). JASA, 90, 577-88

```
> library("DPpackage")
> prior2 <- list(alpha=1,m1=rep(0,1),
    psiinv2=solve(diag(0.5,1)),
    nu1=4,nu2=4, tau1=1, tau2=100)
> fit1.2 <- DPdensity(y=speeds,
    prior=prior2,mcmc=mcmc,
    state=state,status=TRUE)
> hist(speeds, probability = T,
    breaks = seq(5, 35, by =1),
    col = "grey80", border = "grey60")
> lines(cbind(fit1.2$x1,fit1.2$dens),
    lwd = 3)
```

${ }^{1}$ Jara et al. (2011), J Stats Software, 40, 1-30

Mixture of Bivariate Normals

- scikit-learn.org: Machine Learning in Python
- Variational BayesGaussianMixture() ${ }^{2}$


```
import numpy as np
from sklearn.mixture import BayesianGaussianMixture
K=10
DProc = BayesianGaussianMixture(n_components=K,
    weight_concentration_prior_type="dirichlet_process",
    init_params='kmeans',
    covariance_prior = 10 * np.eye(n_cols),
    random_state=random_seed
    ).fit(csv_data)
results = DProc.predict(csv_data)
probs = DProc.predict_proba(csv_data)
print DProc.means_
    # print cluster means
print DProc.covariances_ # and covariances
```


${ }^{2}$ scikit-learn.org/stable/modules/mixture.htm\#bgmm

Computation:

What makes DP spawn new clusters when necessary?

What DPMM Looks Like

DPMM Constructed from Chinese Restaurant Process (CRP)

- Pitman \& Dubins (2002): Chinese Restaurant Process ${ }^{3}$
- Gershman \& Blei (2012)
$\mathrm{n}=2$

$\mathrm{n}=9$

Theory

Finite Mixture Model

Mixture of Gaussians when k is fixed ${ }^{4}$

$$
\begin{equation*}
p\left(y \mid \mu_{1}, \ldots, \mu_{k}, s_{1}, \ldots, s_{k}, \pi_{1}, \ldots, \pi_{k}\right)=\sum_{j=1}^{k} \pi_{j} \mathcal{N}\left(\mu_{j}, s_{j}\right) \tag{1}
\end{equation*}
$$

[^0]
Finite Mixture Model

Mixture of Gaussians when k is fixed ${ }^{4}$

$$
\begin{equation*}
p\left(y \mid \mu_{1}, \ldots, \mu_{k}, s_{1}, \ldots, s_{k}, \pi_{1}, \ldots, \pi_{k}\right)=\sum_{j=1}^{k} \pi_{j} \mathcal{N}\left(\mu_{j}, s_{j}\right) \tag{1}
\end{equation*}
$$

We introduce an indicator variable c_{i} representing each person's latent cluster membership. If $c_{i}=k$,

$$
\begin{aligned}
p\left(y_{i} \mid c_{i}=k\right) & =\mathcal{N}\left(y_{i} \mid \mu_{j}, s_{j}^{-1}\right) \\
\text { with priors } & \\
p\left(\mu_{j}\right) & \sim \mathcal{N}\left(\mu_{0}, s_{0}\right) \\
p_{0}\left(s_{j} \mid \gamma, \beta\right) & \sim \mathcal{G}(\gamma, \beta) \propto s^{\gamma-1} \exp (-\beta s)
\end{aligned}
$$

[^1]
Calculate Class Membership ${ }^{5}$

$$
\begin{aligned}
p\left(c_{1}, \ldots, c_{k} \mid \pi_{1}, \ldots, \pi_{k}\right) & =\prod_{j=1}^{k} \pi_{j}^{n_{j}} \\
p\left(\pi_{1}, \ldots, \pi_{k} \mid \alpha\right) & \sim \operatorname{Dirichlet}(\alpha / k, \ldots, \alpha / k)=\frac{\Gamma(\alpha)}{\Gamma(\alpha / k)^{k}} \prod_{j=1}^{k} \pi_{j}^{\alpha / k-1} \\
p\left(c_{1}, \ldots, c_{k} \mid \alpha\right) & =\int p\left(c_{1}, \ldots, c_{k} \mid \pi_{1}, \ldots, \pi_{k}\right) p\left(\pi_{1}, \ldots, \pi_{k}\right) d \pi_{1} \cdots d \pi_{k} \\
& =\frac{\Gamma(\alpha)}{\Gamma(\alpha / k)^{k}} \int \prod_{j=1}^{k} \pi_{j}^{n_{j}+\alpha / k-1} d \pi_{j} \\
& =\frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^{k} \frac{\Gamma\left(n_{j}+\alpha / k\right)}{\Gamma(\alpha / k)}
\end{aligned}
$$

${ }^{5}$ Li, Schofield \& Gonen, in preparation.

Calculate Class Membership ${ }^{5}$

$$
\begin{aligned}
p\left(c_{1}, \ldots, c_{k} \mid \pi_{1}, \ldots, \pi_{k}\right) & =\prod_{j=1}^{k} \pi_{j}^{n_{j}} \\
p\left(\pi_{1}, \ldots, \pi_{k} \mid \alpha\right) & \sim \operatorname{Dirichlet}(\alpha / k, \ldots, \alpha / k)=\frac{\Gamma(\alpha)}{\Gamma(\alpha / k)^{k}} \prod_{j=1}^{k} \pi_{j}^{\alpha / k-1} \\
p\left(c_{1}, \ldots, c_{k} \mid \alpha\right) & =\int p\left(c_{1}, \ldots, c_{k} \mid \pi_{1}, \ldots, \pi_{k}\right) p\left(\pi_{1}, \ldots, \pi_{k}\right) d \pi_{1} \cdots d \pi_{k} \\
& =\frac{\Gamma(\alpha)}{\Gamma(\alpha / k)^{k}} \int \prod_{j=1}^{k} \pi_{j}^{n_{j}+\alpha / k-1} d \pi_{j} \\
& =\frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^{k} \frac{\Gamma\left(n_{j}+\alpha / k\right)}{\Gamma(\alpha / k)} \\
p\left(c_{i}=j \mid c_{-i}, \alpha\right) & =\frac{n-i, j+\alpha / k}{n-1+\alpha}
\end{aligned}
$$

${ }^{5}$ Li, Schofield \& Gonen, in preparation.

Calculate Class Membership ${ }^{5}$

$$
\begin{aligned}
p\left(c_{1}, \ldots, c_{k} \mid \pi_{1}, \ldots, \pi_{k}\right) & =\prod_{j=1}^{k} \pi_{j}^{n_{j}} . \\
p\left(\pi_{1}, \ldots, \pi_{k} \mid \alpha\right) & \sim \operatorname{Dirichlet}(\alpha / k, \ldots, \alpha / k)=\frac{\Gamma(\alpha)}{\Gamma(\alpha / k)^{k}} \prod_{j=1}^{k} \pi_{j}^{\alpha / k-1} \\
p\left(c_{1}, \ldots, c_{k} \mid \alpha\right) & =\int p\left(c_{1}, \ldots, c_{k} \mid \pi_{1}, \ldots, \pi_{k}\right) p\left(\pi_{1}, \ldots, \pi_{k}\right) d \pi_{1} \cdots d \pi_{k} \\
& =\frac{\Gamma(\alpha)}{\Gamma(\alpha / k)^{k}} \int \prod_{j=1}^{k} \pi_{j}^{n_{j}+\alpha / k-1} d \pi_{j} \\
& =\frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^{k} \frac{\Gamma\left(n_{j}+\alpha / k\right)}{\Gamma(\alpha / k)} \\
p\left(c_{i}=j \mid c_{-i}, \alpha\right) & =\frac{n-i, j+\alpha / k}{n-1+\alpha} . \Longleftrightarrow \text { exchangeability!}
\end{aligned}
$$

${ }^{5}$ Li, Schofield \& Gonen, in preparation.

Dirichlet Distribution

- A symmetric Dirichlet distribution (uniform prior)
$\operatorname{Dirichlet}(\alpha / k, \ldots, \alpha / k)=\operatorname{Dirichlet}(\alpha / k=[1,1,1])$.
(a) $\operatorname{Dirichlet}(\alpha=[1,1,1])$
(b) Dirichlet $(\alpha=[0.2,0.2,0.2])$
(c) Dirichlet $(\alpha=[2,7,11])$

Finite Mixture to Infinite Mixture of DPMM

$$
\begin{aligned}
p\left(c_{i}=j \mid c_{-i}, \alpha\right) & =\frac{n_{-i, j}+\alpha / k}{n-1+\alpha}, \quad \text { letting } k \rightarrow \infty \\
\lim _{k \rightarrow \infty} \frac{n_{-i, j}+\alpha / k}{n-1+\alpha} & =\frac{n_{-i, j}}{n-1+\alpha}
\end{aligned}
$$

Finite Mixture to Infinite Mixture of DPMM

$$
\begin{aligned}
p\left(c_{i}=j \mid c_{-i}, \alpha\right) & =\frac{n_{-i, j}+\alpha / k}{n-1+\alpha}, \quad \text { letting } k \rightarrow \infty \\
\lim _{k \rightarrow \infty} \frac{n_{-i, j}+\alpha / k}{n-1+\alpha} & =\frac{n_{-i, j}}{n-1+\alpha},
\end{aligned}
$$

$$
\begin{cases}\text { already occupied clusters : } \quad p\left(c_{i} \mid \boldsymbol{c}_{-i}, \alpha\right) & =\frac{n_{-i, j}}{n-1+\alpha} \\ \text { a new cluster : } p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i}, \alpha\right) & =\frac{\alpha}{n-1+\alpha} .\end{cases}
$$

CRP Revisited

$$
\begin{cases}\text { already occupied clusters : } \quad p\left(c_{i} \mid c_{-i}, \alpha\right) & =\frac{n_{-i, j}}{n-1+\alpha}, \\ \text { a new cluster : } p\left(c_{i} \neq c_{j} \forall j \neq i \mid c_{-i}, \alpha\right) & =\frac{\alpha}{n-1+\alpha} .\end{cases}
$$

Conditional Posterior Distribution of c_{i}

$p\left(c_{i} \mid \boldsymbol{c}_{-i}\right)$ has to be weighted by $\mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)$, the posterior probability of newly observed values given the data you have already seen:
clusters where $n_{-i, j}>0$:

$$
\begin{aligned}
p\left(c_{i} \mid \boldsymbol{c}_{-i}, \mu_{j}, s_{j}, \alpha\right) & \propto p\left(c_{i} \mid \boldsymbol{c}_{-i}, \alpha\right) p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}, \boldsymbol{c}_{-i}\right) \\
& \propto \frac{n_{-i, j}}{n-1+\alpha} \mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)
\end{aligned}
$$

all other clusters combined :

$$
\begin{aligned}
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i},\right. & \left.\mu_{0}, s_{0}, \gamma, \beta, \alpha\right) \propto \\
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i}, \alpha\right) & \int p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}\right) p\left(\mu_{j}, s_{j} \mid \mu_{0}, s_{0}, \gamma, \beta\right) d \mu_{j} d s_{j} \\
& \propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}\left(\tilde{y}_{i}, \phi\right) d G_{0}(\phi) .^{6}
\end{aligned}
$$

[^2]
Conditional Posterior Distribution of c_{i}

$p\left(c_{i} \mid \boldsymbol{c}_{-i}\right)$ has to be weighted by $\mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)$, the posterior probability of newly observed values given the data you have already seen:
clusters where $n_{-i, j}>0$:

$$
\begin{aligned}
p\left(c_{i} \mid \boldsymbol{c}_{-i}, \mu_{j}, s_{j}, \alpha\right) & \propto p\left(c_{i} \mid \boldsymbol{c}_{-i}, \alpha\right) p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}, \boldsymbol{c}_{-i}\right) \\
& \propto \frac{n_{-i, j}}{n-1+\alpha} \mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)
\end{aligned}
$$

all other clusters combined :

$$
\begin{aligned}
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i},\right. & \left.\mu_{0}, s_{0}, \gamma, \beta, \alpha\right) \propto \\
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i}, \alpha\right) & \int p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}\right) p\left(\mu_{j}, s_{j} \mid \mu_{0}, s_{0}, \gamma, \beta\right) d \mu_{j} d s_{j} \\
& \propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}\left(\tilde{y}_{i}, \phi\right) d G_{0}(\phi) .^{6}
\end{aligned}
$$

[^3]
Conditional Posterior Distribution of c_{i}

$p\left(c_{i} \mid \boldsymbol{c}_{-i}\right)$ has to be weighted by $\mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)$, the posterior probability of newly observed values given the data you have already seen:
clusters where $n_{-i, j}>0$:

$$
\begin{aligned}
p\left(c_{i} \mid \boldsymbol{c}_{-i}, \mu_{j}, s_{j}, \alpha\right) & \propto p\left(c_{i} \mid \boldsymbol{c}_{-i}, \alpha\right) p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}, \boldsymbol{c}_{-i}\right) \\
& \propto \frac{n_{-i, j}}{n-1+\alpha} \mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)
\end{aligned}
$$

all other clusters combined :

$$
\begin{aligned}
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i},\right. & \left.\mu_{0}, s_{0}, \gamma, \beta, \alpha\right) \propto \\
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i}, \alpha\right) & \int p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}\right) p\left(\mu_{j}, s_{j} \mid \mu_{0}, s_{0}, \gamma, \beta\right) d \mu_{j} d s_{j} \\
& \propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}\left(\tilde{y}_{i}, \phi\right) d G_{0}(\phi) .^{6}
\end{aligned}
$$

[^4]
Conditional Posterior Distribution of c_{i}

$p\left(c_{i} \mid \boldsymbol{c}_{-i}\right)$ has to be weighted by $\mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)$, the posterior probability of newly observed values given the data you have already seen:
clusters where $n_{-i, j}>0$:

$$
\begin{aligned}
p\left(c_{i} \mid \boldsymbol{c}_{-i}, \mu_{j}, s_{j}, \alpha\right) & \propto p\left(c_{i} \mid \boldsymbol{c}_{-i}, \alpha\right) p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}, \boldsymbol{c}_{-i}\right) \\
& \propto \frac{n_{-i, j}}{n-1+\alpha} \mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)
\end{aligned}
$$

all other clusters combined :

$$
\begin{aligned}
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i},\right. & \left.\mu_{0}, s_{0}, \gamma, \beta, \alpha\right) \propto \\
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i}, \alpha\right) & \int p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}\right) p\left(\mu_{j}, s_{j} \mid \mu_{0}, s_{0}, \gamma, \beta\right) d \mu_{j} d s_{j} \\
& \propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}\left(\tilde{y}_{i}, \phi\right) d G_{0}(\phi) .^{6}
\end{aligned}
$$

[^5]
Conditional Posterior Distribution of c_{i}

$p\left(c_{i} \mid \boldsymbol{c}_{-i}\right)$ has to be weighted by $\mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)$, the posterior probability of newly observed values given the data you have already seen:
clusters where $n_{-i, j}>0$:

$$
\begin{aligned}
p\left(c_{i} \mid \boldsymbol{c}_{-i}, \mu_{j}, s_{j}, \alpha\right) & \propto p\left(c_{i} \mid \boldsymbol{c}_{-i}, \alpha\right) p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}, \boldsymbol{c}_{-i}\right) \\
& \propto \frac{n_{-i, j}}{n-1+\alpha} \mathcal{N}\left(\bar{y}_{j}, s_{j}+s_{0}\right)
\end{aligned}
$$

all other clusters combined :

$$
\begin{aligned}
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i},\right. & \left.\mu_{0}, s_{0}, \gamma, \beta, \alpha\right) \propto \\
p\left(c_{i} \neq c_{j} \forall j \neq i \mid \boldsymbol{c}_{-i}, \alpha\right) & \int p\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}\right) p\left(\mu_{j}, s_{j} \mid \mu_{0}, s_{0}, \gamma, \beta\right) d \mu_{j} d s_{j} \\
& \propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}\left(\tilde{y}_{i}, \phi\right) d G_{0}(\phi) .^{6}
\end{aligned}
$$

[^6]
DPMM Algorithm ${ }^{7}$

Algorithm 1: DPMM algorithm

Let the state of the Markov chain consist of $\boldsymbol{c}=\left(c_{1}, \cdots, c_{n}\right)$ and $\phi=\left(\phi_{c}: c \in\left\{c_{1}, \cdots, c_{n}\right\}\right)$. Repeatedly sample:
for $i \leftarrow 1$ to n do

- Remove y_{i} from cluster c_{i} because we are going to sample a new c_{i}.
- draw $c_{i} \mid c_{-i}, y$ from:
if $c=c_{j}$ for some $j \neq i$ then
$p\left(c_{i}=c \mid c_{-i}, y_{i}\right) \propto \frac{n_{-i, c}}{n-1+\alpha} \int \mathcal{N}\left(\tilde{y}_{i}, \phi\right) d H_{-i, c}(\phi)$
else

$$
p\left(c_{i} \neq c_{j} \forall j \neq i \mid c_{i}, y_{i}\right) \propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}\left(\tilde{y}_{i}, \phi\right) d G_{0}(\phi)
$$

end
return c_{i}
${ }^{7}$ Neal (2000), algorithm 3. J Compu Graph Stats, 9(2), 249-265.

R Program

R Implementation of the CRP ${ }^{8}$

```
# already occupied table, n/(N + alpha) * mvnorm() density
log_weights[c.idx] <- log(counts[c.idx]) +
    dmvnorm(data[n, ], mean = c_mean,
    sigma = c_Sig + Sig, log = TRUE)
```

\# new table, alpha/($N+$ alpha) weighted by mvnorm() density
$\log _{\text {_weights }}[N c l u s t+1]$ <- log(alpha) +
dmvnorm(data[n,], mean $=$ mu0, sigma $=$ Sig0 + Sig,
$\log =$ TRUE)
${ }^{8}$ Modified from the R program by Tamara Broderick
https://people.csail.mit.edu/tbroderick/tutorial_2017/mitll.html

Application:
 Individual Meaning-Centered Psychotherapy
 Trial (IMCP)

IMCP Design and Data

- A randomized controlled trial (R01 CA128134, PI: Breitbart)
- Patients with advanced or terminal cancer
- Randomization

1. Individual Meaning Centered Psychotherapy (IMCP, $n=109$)
2. Supportive Psychotherapy (SP, $n=108$)
3. Enhanced Usual Care (EUC, $n=104$)

- Help patients develop/increase a sense of meaning near end of life

IMCP Design and Data

- A randomized controlled trial (R01 CA128134, PI: Breitbart)
- Patients with advanced or terminal cancer
- Randomization

1. Individual Meaning Centered Psychotherapy (IMCP, $n=109$)
2. Supportive Psychotherapy (SP, $n=108$)
3. Enhanced Usual Care (EUC, $n=104$)

- Help patients develop/increase a sense of meaning near end of life
- Psychological outcome measures

1. Meaning Making, Hopelessness, Desire for Hastened Death, Anxiety and Depression
2. Pre-intervention baseline, mid-intv (week 4), post-intv (week 7), and 2-months post-intv (week 15)

Baseline Psychosocial Profiles by DPMM

- BayesianGaussianMixture() in Python
- Constraining $k \leq 5$ to control sparseness

Baseline psychosocial profiles identified by BayesianGaussianMixture()								
(n)	age	KPRS	Hopelessness	Hastened Death	Anxiety	Depression	Personal Meaning	Existential Transcendence
1 (22)	63.9	73.7	5.9	2.5	8.5	8.0	82.5	86.4
2 (17)	56.8	77.4	10.7	5.6	13.0	9.9	47.0	20.9
3 (131)	58.2	81.8	3.1	1.3	7.0	3.7	82.4	88.2
4 (10)	63.5	81.2	4.1	3.4	6.0	5.4	93.5	123.5
5 (72)	56.3	81.5	6.7	4.4	10.0	7.6	66.8	65.6
2: "Acutely Distressed" cluster 5: "Moderately Distressed" cluster								

Responders to IMCP?

- Personal Meaning subscale scores at post-Tx

Post-Tx Personal Meaning subscale scores cf. baseline									
		Baseline		Post-Tx (week 7)					
		(N)		EUC (n)		Meaning (n)		Suprt (n)	
	1	(22)	82.5	78.5	6	88.8	5	83.3	11
"Acutely"	2	(17)	47.0	51.3	5	51.4	6	61.0	6
	3	(131)	82.4	81.9	46	92.0	48	87.5	37
	4	(10)	93.5	95.0	1	84.0	2	91.0	7
"Moderately"	5	(72)	66.8	71.4		84.1	31	75.8	25

Clusters Responded to IMCP Differently

- "random intervention effects" model ${ }^{9}$

$$
\begin{gathered}
y_{c[i]}=\beta_{0}+\beta \operatorname{Tx}_{c[i]}+u_{0 c}+u_{1 c} \operatorname{Tx}_{c[i]}+\epsilon_{c[i]}, \quad\left[u_{0 c}, u_{1 c}\right] \sim \mathcal{N}(0, \Sigma) . \\
\cdot \text { stan_lmer(PersMeaningT3 } \sim \operatorname{Tx}+(1+\operatorname{Tx} \mid \text { clus }), \text { prior }=\text { NULL })
\end{gathered}
$$

[^7]
Probability of Intervention Fit

- Posterior $\operatorname{Pr}\left(u_{1 c_{i}}>u_{1 c_{j}} \mid c_{i} \neq c_{j}\right)$

clusters	1	2	3	4	5
1	-	0.81			
"Acutely" 2	0.19	-			
3	0.58	0.84	-		
4	0.42	0.74	0.34	-	
"Moderately" 5	0.58	0.88	0.52	0.65	-

Summary on the IMCP Trial

- Overall IMCP effect ${ }^{10}$
- Subtle effect: IMCP works better in moderately than acutely distressed
- Help guide future interventions
- Randomization is important: DPMM cannot replace it
${ }^{10}$ Rosenfeld, Breitbart et al., Cancer, in press.

Conclusions

- I hope I have given you enough info on DPMM
- DPMM and R to make things explicit
- Derivations from finite mixture to infinite mixture
- DP prior $D P\left(\alpha G_{0}\right)$ to posterior
- CRP yields DP posterior
- A stochastic process controlled by α, G_{0}, and $\mathcal{N}\left(\tilde{y}_{i} \mid \mu_{j}, s_{j}^{-1}\right)$
- Scratched the surface only
- I have not covered
- Hyperpriors
- Posterior on α (Escobar \& West, 1995)
- Other construction methods (e.g., stick-breaking)

Next steps?

- Gershman \& Blei (2012); Neal (2000); Rasmussen (2000)
- Explore other tools in BNP, e.g., George Karabatsos
- BNP by Measure Theory (Jara, 2016, Int J Approx Reasoning)
- More abstract representations (Ferguson, 1973)

$$
\begin{aligned}
y_{i} \mid \theta_{i} & \sim \mathcal{N}\left(\theta_{i}\right) \\
\theta_{i} \mid G & \sim G \\
G & \sim D P\left(G_{0}, \alpha\right)
\end{aligned}
$$

Thanks

- Funding
- NIH R01 CA128134 (W. B.)
- NIH P30 CA008748 for Memorial Sloan Kettering Cancer Center
- DP mixture clustering computer program in R
- Tamara Broderick https://people.csail.mit.edu/ tbroderick/tutorial_2017/mitll.html

[^0]: ${ }^{4}$ Rasmussen (2000), The Infinite Gaussian Mixture Model. Advances in Neural Information Processing Systems 12. 554-560.

[^1]: ${ }^{4}$ Rasmussen (2000), The Infinite Gaussian Mixture Model. Advances in Neural Information Processing Systems 12. 554-560.

[^2]: ${ }^{6}$ priors μ_{0}, s_{0}^{-1} (MacEachern \& Müller, 1998)

[^3]: ${ }^{6}$ priors μ_{0}, s_{0}^{-1} (MacEachern \& Müller, 1998)

[^4]: ${ }^{6}$ priors μ_{0}, s_{0}^{-1} (MacEachern \& Müller, 1998)

[^5]: ${ }^{6}$ priors μ_{0}, s_{0}^{-1} (MacEachern \& Müller, 1998)

[^6]: ${ }^{6}$ priors μ_{0}, s_{0}^{-1} (MacEachern \& Müller, 1998)

[^7]: ${ }^{9}$ Lee \& Thompson (2005), Clin Trials, 2(2), 163-73.

