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Bayesian Nonparametric (BNP) Methods

• Bayesian “nonparametric” methods?
• But, what about p(θ|y) ∝ L(θ|y)p(θ)?
• Not finite parameters (growing/infinite number of
parameters)
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Bayesian Nonparametric (BNP) Methods

• Where to start for a beginner?
• Dirichlet Process Mixture Model (DPMM)
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Bayesian Nonparametric (BNP) Methods

• Where to start for a beginner?
• Dirichlet Process Mixture Model (DPMM)
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Outline

• What BNP looks like
• Examples: DPMM as an illustrative example

1. DPpackage in R: Mixture of univariate Gaussians
2. scikit-learn in Python: multivariate Gaussians

• Computation: DPMM by Chinese Restaurant Process
1. How to program DPMM in R

• Theory: so that you can develop new methods
• Real Example: responders to end-of-life psychotherapy
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Examples:
DPpackage in R

scikit-learn.org in Python
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Mixture of Univariate Normals

• library("DPpackage"):1 dataset galaxy
• Receding velocities from 82 galaxies into 4 clusters
• Escobar & West (1995). JASA, 90, 577–88

speeds

D
en

si
ty

5 10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

> library("DPpackage")
> prior2 <- list(alpha=1,m1=rep(0,1),

psiinv2=solve(diag(0.5,1)),
nu1=4,nu2=4,tau1=1,tau2=100)

> fit1.2 <- DPdensity(y=speeds,
prior=prior2,mcmc=mcmc,
state=state,status=TRUE)

> hist(speeds, probability = T,
breaks = seq(5, 35, by =1),
col = "grey80", border = "grey60")

> lines(cbind(fit1.2$x1,fit1.2$dens),
lwd = 3)

1Jara et al. (2011), J Stats Software, 40, 1–30
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Mixture of Bivariate Normals

• scikit-learn.org: Machine Learning in Python
• Variational BayesGaussianMixture()2
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import numpy as np
from sklearn.mixture import BayesianGaussianMixture

K = 10
DProc = BayesianGaussianMixture(n_components=K,

weight_concentration_prior_type="dirichlet_process",
init_params='kmeans',
covariance_prior = 10 * np.eye(n_cols),
random_state=random_seed
).fit(csv_data)

results = DProc.predict(csv_data)
probs = DProc.predict_proba(csv_data)
print DProc.means_ # print cluster means
print DProc.covariances_ # and covariances

2scikit-learn.org/stable/modules/mixture.htm#bgmm
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Computation:
What makes DP spawn new clusters

when necessary?
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What DPMM Looks Like
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What DPMM Looks Like
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DPMM Constructed from Chinese Restaurant Process (CRP)

• Pitman & Dubins (2002): Chinese Restaurant Process3

• Gershman & Blei (2012)
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Theory
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Finite Mixture Model

Mixture of Gaussians when k is fixed 4

p(y|µ1, . . . , µk, s1, . . . , sk, π1, . . . , πk) =

k∑
j=1

πj N (µj, sj), (1)

We introduce an indicator variable ci representing each
person’s latent cluster membership. If ci = k,

p(yi|ci = k) = N (yi|µj, s−1
j ),

with priors
p(µj) ∼ N (µ0, s0),

p0(sj|γ, β) ∼ G(γ, β) ∝ sγ−1 exp(−βs).

4Rasmussen (2000), The Infinite Gaussian Mixture Model. Advances in
Neural Information Processing Systems 12. 554–560.
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Calculate Class Membership 5

p(c1, . . . , ck|π1, . . . , πk) =

k∏
j=1

π
nj
j .

p(π1, . . . , πk|α) ∼ Dirichlet(α/k, . . . , α/k) = Γ(α)

Γ(α/k)k

k∏
j=1

π
α/k−1
j .

p(c1, . . . , ck|α) =
∫

p(c1, . . . , ck|π1, . . . , πk)p(π1, . . . , πk)dπ1· · · dπk

=
Γ(α)

Γ(α/k)k

∫ k∏
j=1

π
nj+α/k−1
j dπj

=
Γ(α)

Γ(n + α)

k∏
j=1

Γ(nj + α/k)
Γ(α/k) .

p(ci = j|c−i, α) =
n−i,j + α/k
n− 1 + α

.⇐⇒ exchangeability!

5Li, Schofield & Gonen, in preparation.
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Dirichlet Distribution

• A symmetric Dirichlet distribution (uniform prior)

Dirichlet(α/k, . . . , α/k) = Dirichlet(α/k = [1, 1, 1]).

13 / 30



Finite Mixture to Infinite Mixture of DPMM

p(ci = j|c−i, α) =
n−i,j + α/k
n− 1 + α

, letting k→∞,

lim
k→∞

n−i,j + α/k
n− 1 + α

=
n−i,j

n− 1 + α
,

already occupied clusters : p(ci|c−i, α) =
n−i,j

n−1+α ,

a new cluster : p(ci ̸= cj ∀j ̸= i|c−i, α) = α
n−1+α .
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CRP Revisited

{
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Conditional Posterior Distribution of ci

p(ci|c−i) has to be weighted by N (ȳj, sj + s0), the posterior
probability of newly observed values given the data you have
already seen:

clusters where n−i,j > 0 :

p(ci|c−i, µj, sj, α) ∝ p(ci|c−i, α)p(ỹi|µj, sj, c−i)

∝ n−i,j
n− 1 + α

N (ȳj, sj + s0),

all other clusters combined :

p(ci ̸= cj ∀j ̸= i|c−i, µ0, s0, γ, β, α) ∝

p(ci ̸= cj ∀j ̸= i|c−i, α)

∫
p(ỹi|µj, sj)p(µj, sj|µ0, s0, γ, β)dµjdsj

∝ α

n− 1 + α

∫
N (ỹi, ϕ)dG0(ϕ).

6

6priors µ0, s−1
0 (MacEachern & Müller, 1998)
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probability of newly observed values given the data you have
already seen:

clusters where n−i,j > 0 :

p(ci|c−i, µj, sj, α) ∝ p(ci|c−i, α)p(ỹi|µj, sj, c−i)
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p(ỹi|µj, sj)p(µj, sj|µ0, s0, γ, β)dµjdsj

∝ α

n− 1 + α

∫
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∝ n−i,j
n− 1 + α
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DPMM Algorithm 7

Algorithm 1: DPMM algorithm

Let the state of the Markov chain consist of c = (c1, · · · , cn)

and ϕ = (ϕc : c ∈ {c1, · · · , cn}). Repeatedly sample:
for i← 1 to n do
· Remove yi from cluster ci because we are going to
sample a new ci.
· draw ci|c−i, y from:
if c = cj for some j ̸= i then

p(ci = c|c−i, yi) ∝ n−i,c
n−1+α

∫
N (ỹi, ϕ)dH−i,c(ϕ)

else
p(ci ̸= cj ∀j ̸= i|ci, yi) ∝ α

n−1+α

∫
N (ỹi, ϕ)dG0(ϕ)

end
return ci
7Neal (2000), algorithm 3. J Compu Graph Stats, 9(2), 249–265.
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R Program
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R Implementation of the CRP 8

....
# already occupied table, n/(N + alpha) * mvnorm() density
log_weights[c.idx] <- log(counts[c.idx]) +

dmvnorm(data[n, ], mean = c_mean,
sigma = c_Sig + Sig, log = TRUE)

....
# new table, alpha/(N + alpha) weighted by mvnorm() density
log_weights[Nclust + 1] <- log(alpha) +

dmvnorm(data[n, ], mean = mu0, sigma = Sig0 + Sig,
log = TRUE)

....

8Modified from the R program by Tamara Broderick
https://people.csail.mit.edu/tbroderick/tutorial_2017/mitll.html
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Application:
Individual Meaning-Centered Psychotherapy

Trial (IMCP)
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IMCP Design and Data

• A randomized controlled trial (R01 CA128134, PI: Breitbart)
• Patients with advanced or terminal cancer
• Randomization

1. Individual Meaning Centered Psychotherapy (IMCP, n = 109)
2. Supportive Psychotherapy (SP, n = 108)
3. Enhanced Usual Care (EUC, n = 104)

• Help patients develop/increase a sense of meaning near
end of life

• Psychological outcome measures
1. Meaning Making, Hopelessness, Desire for Hastened Death,

Anxiety and Depression
2. Pre-intervention baseline, mid-intv (week 4), post-intv

(week 7), and 2-months post-intv (week 15)
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Baseline Psychosocial Profiles by DPMM

• BayesianGaussianMixture() in Python
• Constraining k ≤ 5 to control sparseness

Baseline psychosocial profiles identified by BayesianGaussianMixture()
age KPRS Hopelessness Hastened Anxiety Depression Personal Existential

(n) Death Meaning Transcendence
1 (22) 63.9 73.7 5.9 2.5 8.5 8.0 82.5 86.4
2 (17) 56.8 77.4 10.7 5.6 13.0 9.9 47.0 20.9
3 (131) 58.2 81.8 3.1 1.3 7.0 3.7 82.4 88.2
4 (10) 63.5 81.2 4.1 3.4 6.0 5.4 93.5 123.5
5 (72) 56.3 81.5 6.7 4.4 10.0 7.6 66.8 65.6
2: “Acutely Distressed” cluster
5: “Moderately Distressed” cluster
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Responders to IMCP?

• Personal Meaning subscale scores at post-Tx

Post-Tx Personal Meaning subscale scores cf. baseline
Baseline Post-Tx (week 7)
(N) EUC (n) Meaning (n) Suprt (n)

1 (22) 82.5 78.5 6 88.8 5 83.3 11
“Acutely” 2 (17) 47.0 51.3 5 51.4 6 61.0 6

3 (131) 82.4 81.9 46 92.0 48 87.5 37
4 (10) 93.5 95.0 1 84.0 2 91.0 7

“Moderately” 5 (72) 66.8 71.4 16 84.1 31 75.8 25
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Clusters Responded to IMCP Differently

• “random intervention effects” model 9

yc[i] = β0+βTxc[i]+u0c+u1cTxc[i]+ϵc[i], [u0c, u1c] ∼ N (0,Σ).

• stan_lmer(PersMeaningT3 ∼ Tx + (1 + Tx | clus), prior = NULL)

●

●

●

●

●

●

−15 −10 −5 0 5 10 15

Overall IMCP

Cluster 1

'Acutely'

Cluster 3

Cluster 4

'Moderately'

(N=252)

(n=22)

(n=17)

(n=131)

(n=10)

(n=72)

Personal Meaning at Post−Tx (vs. EUC)

9Lee & Thompson (2005), Clin Trials, 2(2), 163-73.
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Probability of Intervention Fit

• Posterior Pr(u1ci > u1cj |ci ̸= cj)

0.00

0.05

0.10

−20 0 20
u1c

de
ns

ity

cluster

acute
moderate

clusters 1 2 3 4 5
1 - 0.81

“Acutely” 2 0.19 -
3 0.58 0.84 -
4 0.42 0.74 0.34 -

“Moderately” 5 0.58 0.88 0.52 0.65 -
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Summary on the IMCP Trial

• Overall IMCP effect 10

• Subtle effect: IMCP works better in moderately than
acutely distressed

• Help guide future interventions
• Randomization is important: DPMM cannot replace it

10Rosenfeld, Breitbart et al., Cancer, in press.
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Conclusions

• I hope I have given you enough info on DPMM
• DPMM and R to make things explicit
• Derivations from finite mixture to infinite mixture
• DP prior DP(αG0) to posterior

• CRP yields DP posterior
• A stochastic process controlled by α, G0, and N (ỹi|µj, s−1

j )

• Scratched the surface only
• I have not covered

• Hyperpriors
• Posterior on α (Escobar & West, 1995)
• Other construction methods (e.g., stick-breaking)
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Next steps?

• Gershman & Blei (2012); Neal (2000); Rasmussen (2000)
• Explore other tools in BNP, e.g., George Karabatsos
• BNP by Measure Theory (Jara, 2016, Int J Approx Reasoning)
• More abstract representations (Ferguson, 1973)

yi|θi ∼ N (θi)

θi|G ∼ G
G ∼ DP(G0, α)
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Thanks

• Funding
• NIH R01 CA128134 (W. B.)
• NIH P30 CA008748 for Memorial Sloan Kettering Cancer
Center

• DP mixture clustering computer program in R
• Tamara Broderick https://people.csail.mit.edu/
tbroderick/tutorial_2017/mitll.html
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