Understanding Bayesian Nonparametric Methods Through Programming a Dirichlet Process Mixture Model

Yuelin Li, PhD.^{a, b} and Elizabeth Schofield, MS.^a

^a: Department of Psychiatry & Behavioral Sciences

^b: Department of Epidemiology & Biostatistics

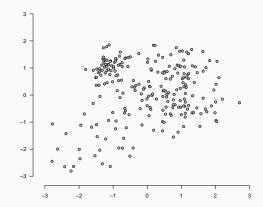
2018 UConn Modern Modeling Methods (M3) Conference Tuesday May 22, 2018

- Bayesian "nonparametric" methods?
- But, what about $p(\theta|y) \propto L(\theta|y)p(\theta)$?
- Not finite parameters (growing/infinite number of parameters)

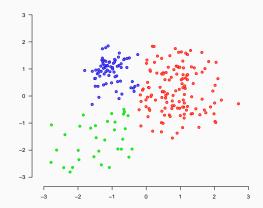
- Bayesian "nonparametric" methods?
- But, what about $p(\theta|y) \propto L(\theta|y)p(\theta)$?
- Not finite parameters (growing/infinite number of parameters)



- Where to start for a beginner?
- Dirichlet Process Mixture Model (DPMM)



- Where to start for a beginner?
- Dirichlet Process Mixture Model (DPMM)



• Number of clusters grows when necessary

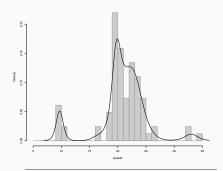
Outline

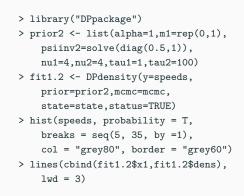
- What BNP looks like
- Examples: DPMM as an illustrative example
 - 1. DPpackage in R: Mixture of univariate Gaussians
 - 2. scikit-learn in Python: multivariate Gaussians
- Computation: DPMM by Chinese Restaurant Process
 - 1. How to program DPMM in R
- Theory: so that you can develop new methods
- Real Example: responders to end-of-life psychotherapy

Examples: DPpackage in R scikit-learn.org in Python

Mixture of Univariate Normals

- library("DPpackage"):¹ dataset galaxy
- Receding velocities from 82 galaxies into 4 clusters
- Escobar & West (1995). JASA, 90, 577-88

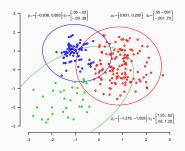




¹Jara et al. (2011), J Stats Software, 40, 1–30

Mixture of Bivariate Normals

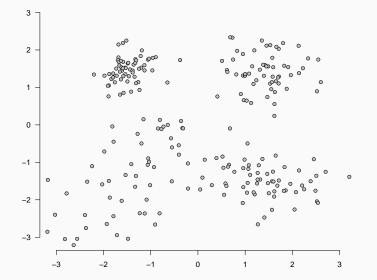
- scikit-learn.org: Machine Learning in Python
- Variational BayesGaussianMixture()²

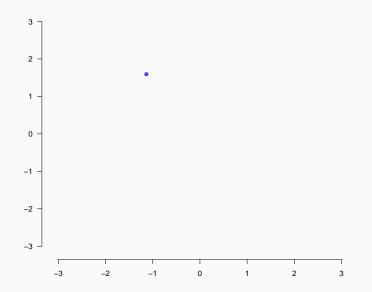


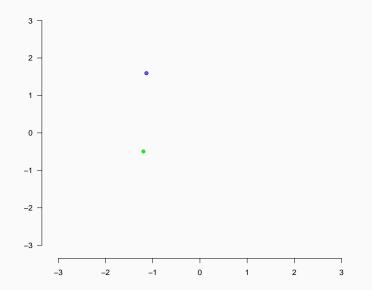
²scikit-learn.org/stable/modules/mixture.htm#bgmm

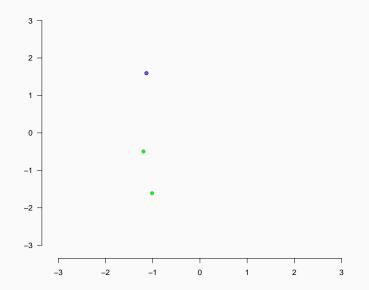
Computation:

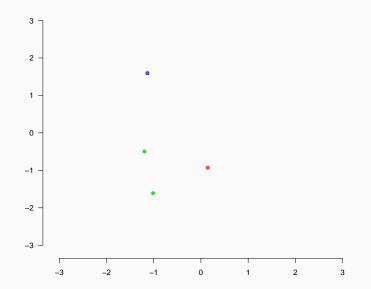
What makes DP spawn new clusters when necessary?

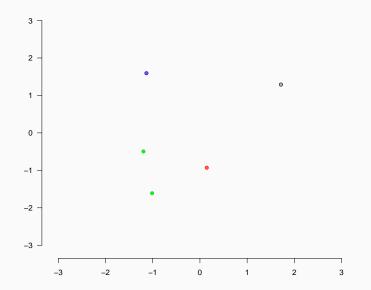


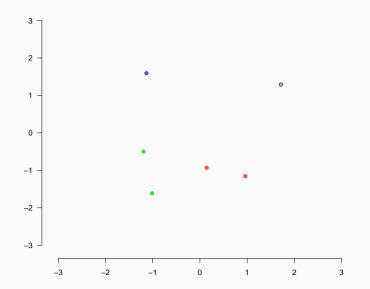


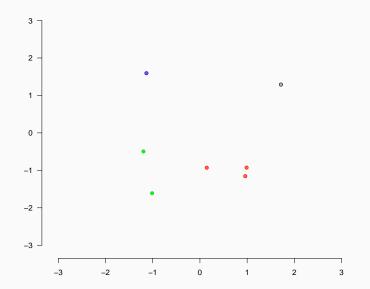


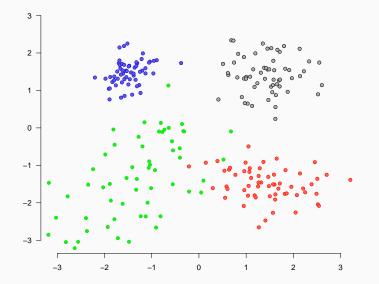


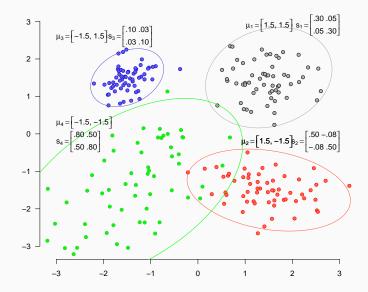






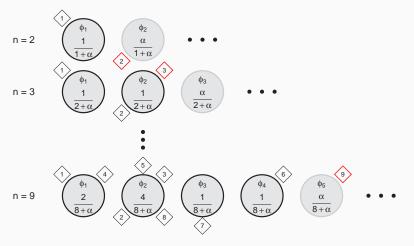






DPMM Constructed from Chinese Restaurant Process (CRP)

- Pitman & Dubins (2002): Chinese Restaurant Process³
- Gershman & Blei (2012)



³UC Berkeley Dept Stats Tech Report 621

Theory

Finite Mixture Model

Mixture of Gaussians when k is fixed ⁴

$$p(y|\mu_1, \dots, \mu_k, s_1, \dots, s_k, \pi_1, \dots, \pi_k) = \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, s_j),$$
(1)

⁴Rasmussen (2000), The Infinite Gaussian Mixture Model. Advances in Neural Information Processing Systems 12. 554–560.

Finite Mixture Model

Mixture of Gaussians when k is fixed ⁴

$$p(y|\mu_1, \dots, \mu_k, s_1, \dots, s_k, \pi_1, \dots, \pi_k) = \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, s_j),$$
 (1)

We introduce an indicator variable c_i representing each person's latent cluster membership. If $c_i = k_i$,

$$p(y_i|c_i = k) = \mathcal{N}(y_i|\mu_j, s_j^{-1}),$$

with priors

$$p(\mu_j) \sim \mathcal{N}(\mu_0, s_0),$$

$$p_0(s_j | \gamma, \beta) \sim \mathcal{G}(\gamma, \beta) \propto s^{\gamma - 1} \exp(-\beta s).$$

⁴Rasmussen (2000), The Infinite Gaussian Mixture Model. Advances in Neural Information Processing Systems 12. 554–560.

Calculate Class Membership ⁵

$$p(c_1, \dots, c_k | \pi_1, \dots, \pi_k) = \prod_{j=1}^k \pi_j^{n_j}.$$

$$p(\pi_1, \dots, \pi_k | \alpha) \sim \text{Dirichlet}(\alpha/k, \dots, \alpha/k) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \prod_{j=1}^k \pi_j^{\alpha/k-1}.$$

$$p(c_1, \dots, c_k | \alpha) = \int p(c_1, \dots, c_k | \pi_1, \dots, \pi_k) p(\pi_1, \dots, \pi_k) d\pi_1 \cdots d\pi_k$$

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \int \prod_{j=1}^k \pi_j^{n_j + \alpha/k-1} d\pi_j$$

$$= \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^k \frac{\Gamma(n_j + \alpha/k)}{\Gamma(\alpha/k)}.$$

⁵Li, Schofield & Gonen, in preparation.

Calculate Class Membership ⁵

$$p(c_1, \dots, c_k | \pi_1, \dots, \pi_k) = \prod_{j=1}^k \pi_j^{n_j}.$$

$$p(\pi_1, \dots, \pi_k | \alpha) \sim \text{Dirichlet}(\alpha/k, \dots, \alpha/k) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \prod_{j=1}^k \pi_j^{\alpha/k-1}.$$

$$p(c_1, \dots, c_k | \alpha) = \int p(c_1, \dots, c_k | \pi_1, \dots, \pi_k) p(\pi_1, \dots, \pi_k) d\pi_1 \cdots d\pi_k$$

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \int \prod_{j=1}^k \pi_j^{n_j + \alpha/k-1} d\pi_j$$

$$= \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^k \frac{\Gamma(n_j + \alpha/k)}{\Gamma(\alpha/k)}.$$

$$p(c_i = j | \mathbf{c}_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha}.$$

⁵Li, Schofield & Gonen, in preparation.

Calculate Class Membership ⁵

$$p(c_1, \dots, c_k | \pi_1, \dots, \pi_k) = \prod_{j=1}^k \pi_j^{n_j}.$$

$$p(\pi_1, \dots, \pi_k | \alpha) \sim \text{Dirichlet}(\alpha/k, \dots, \alpha/k) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \prod_{j=1}^k \pi_j^{\alpha/k-1}.$$

$$p(c_1, \dots, c_k | \alpha) = \int p(c_1, \dots, c_k | \pi_1, \dots, \pi_k) p(\pi_1, \dots, \pi_k) d\pi_1 \cdots d\pi_k$$

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \int \prod_{j=1}^k \pi_j^{n_j + \alpha/k-1} d\pi_j$$

$$= \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^k \frac{\Gamma(n_j + \alpha/k)}{\Gamma(\alpha/k)}.$$

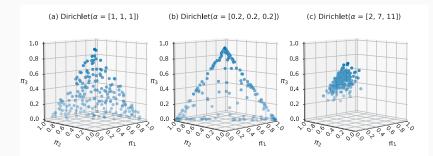
$$p(c_i = j | c_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha}. \iff exchangeability!$$

⁵Li, Schofield & Gonen, in preparation.

Dirichlet Distribution

• A symmetric Dirichlet distribution (uniform prior)

$$\operatorname{Dirichlet}(\alpha/k,\ldots,\alpha/k) = \operatorname{Dirichlet}(\alpha/k = [1,1,1]).$$



Finite Mixture to Infinite Mixture of DPMM

$$p(c_i = j | \mathbf{c}_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha}, \quad \text{letting } k \to \infty,$$
$$\lim_{k \to \infty} \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha} = \frac{n_{-i,j}}{n - 1 + \alpha},$$

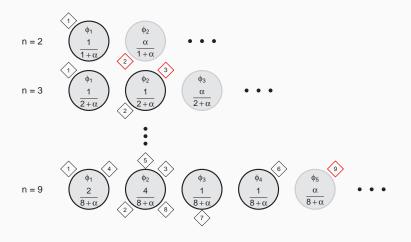
Finite Mixture to Infinite Mixture of DPMM

$$p(c_i = j | \boldsymbol{c}_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha}, \quad \text{letting } k \to \infty,$$
$$\lim_{k \to \infty} \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha} = \frac{n_{-i,j}}{n - 1 + \alpha},$$

 $\begin{cases} \text{already occupied clusters} : p(c_i | \mathbf{c}_{-i}, \alpha) &= \frac{n_{-i,j}}{n-1+\alpha}, \\ \text{a new cluster} : p(c_i \neq c_j \forall j \neq i | \mathbf{c}_{-i}, \alpha) &= \frac{\alpha}{n-1+\alpha}. \end{cases}$

CRP Revisited

 $\begin{cases} \text{already occupied clusters} : \quad p(c_i | \boldsymbol{c}_{-i}, \alpha) &= \frac{n_{-i,j}}{n-1+\alpha}, \\ \text{a new cluster} : \quad p(c_i \neq c_j \forall j \neq i | \boldsymbol{c}_{-i}, \alpha) &= \frac{\alpha}{n-1+\alpha}. \end{cases}$



 $p(c_i|c_{-i})$ has to be weighted by $\mathcal{N}(\bar{y}_j, s_j + s_0)$, the posterior probability of *newly observed* values given the data you have already seen:

clusters where
$$n_{-i,j} > 0$$
:
 $p(c_i | \boldsymbol{c}_{-i}, \mu_j, s_j, \alpha) \propto p(c_i | \boldsymbol{c}_{-i}, \alpha) p(\tilde{y}_i | \mu_j, s_j, \boldsymbol{c}_{-i})$
 $\propto \frac{n_{-i,j}}{n-1+\alpha} \mathcal{N}(\bar{y}_j, s_j + s_0),$

all other clusters combined :

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \mu_{0}, s_{0}, \gamma, \beta, \alpha) \propto$$

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \alpha) \int p(\tilde{y}_{i} | \mu_{j}, s_{j}) p(\mu_{j}, s_{j} | \mu_{0}, s_{0}, \gamma, \beta) d\mu_{j} ds_{j}$$

$$\propto \frac{\alpha}{n - 1 + \alpha} \int \mathcal{N}(\tilde{y}_{i}, \phi) dG_{0}(\phi).^{6}$$

 $p(c_i|c_{-i})$ has to be weighted by $\mathcal{N}(\bar{y}_j, s_j + s_0)$, the posterior probability of *newly observed* values given the data you have already seen:

clusters where
$$n_{-i,j} > 0$$
:
 $p(c_i | \boldsymbol{c}_{-i}, \mu_j, s_j, \alpha) \propto p(c_i | \boldsymbol{c}_{-i}, \alpha) p(\tilde{y}_i | \mu_j, s_j, \boldsymbol{c}_{-i})$
 $\propto \frac{n_{-i,j}}{n-1+\alpha} \mathcal{N}(\bar{y}_j, s_j + s_0),$

all other clusters combined :

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \mu_{0}, s_{0}, \gamma, \beta, \alpha) \propto$$

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \alpha) \int p(\tilde{y}_{i} | \mu_{j}, s_{j}) p(\mu_{j}, s_{j} | \mu_{0}, s_{0}, \gamma, \beta) d\mu_{j} ds_{j}$$

$$\propto \frac{\alpha}{n - 1 + \alpha} \int \mathcal{N}(\tilde{y}_{i}, \phi) dG_{0}(\phi).^{6}$$

 $p(c_i|c_{-i})$ has to be weighted by $\mathcal{N}(\bar{y}_j, s_j + s_0)$, the posterior probability of *newly observed* values given the data you have already seen:

clusters where
$$n_{-i,j} > 0$$
:
 $p(c_i | \boldsymbol{c}_{-i}, \mu_j, s_j, \alpha) \propto p(c_i | \boldsymbol{c}_{-i}, \alpha) p(\tilde{y}_i | \mu_j, s_j, \boldsymbol{c}_{-i})$
 $\propto \frac{n_{-i,j}}{n-1+\alpha} \mathcal{N}(\bar{y}_j, s_j + s_0),$

all other clusters combined :

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \mu_{0}, s_{0}, \gamma, \beta, \alpha) \propto$$

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \alpha) \int p(\tilde{y}_{i} | \mu_{j}, s_{j}) p(\mu_{j}, s_{j} | \mu_{0}, s_{0}, \gamma, \beta) d\mu_{j} ds_{j}$$

$$\propto \frac{\alpha}{n - 1 + \alpha} \int \mathcal{N}(\tilde{y}_{i}, \phi) dG_{0}(\phi).^{6}$$

 $p(c_i|\mathbf{c}_{-i})$ has to be weighted by $\mathcal{N}(\bar{y}_j, s_j + s_0)$, the posterior probability of *newly observed* values given the data you have already seen:

clusters where
$$n_{-i,j} > 0$$
:
 $p(c_i | \boldsymbol{c}_{-i}, \mu_j, s_j, \alpha) \propto p(c_i | \boldsymbol{c}_{-i}, \alpha) p(\tilde{y}_i | \mu_j, s_j, \boldsymbol{c}_{-i})$
 $\propto \frac{n_{-i,j}}{n - 1 + \alpha} \mathcal{N}(\bar{y}_j, s_j + s_0),$

all other clusters combined :

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \mu_{0}, s_{0}, \gamma, \beta, \alpha) \propto$$

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \alpha) \int p(\tilde{y}_{i} | \mu_{j}, s_{j}) p(\mu_{j}, s_{j} | \mu_{0}, s_{0}, \gamma, \beta) d\mu_{j} ds_{j}$$

$$\propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}(\tilde{y}_{i}, \phi) dG_{0}(\phi).^{6}$$

 $p(c_i|c_{-i})$ has to be weighted by $\mathcal{N}(\bar{y}_j, s_j + s_0)$, the posterior probability of *newly observed* values given the data you have already seen:

clusters where
$$n_{-i,j} > 0$$
:
 $p(c_i | \boldsymbol{c}_{-i}, \mu_j, s_j, \alpha) \propto p(c_i | \boldsymbol{c}_{-i}, \alpha) p(\tilde{y}_i | \mu_j, s_j, \boldsymbol{c}_{-i})$
 $\propto \frac{n_{-i,j}}{n-1+\alpha} \mathcal{N}(\bar{y}_j, s_j + s_0),$

all other clusters combined :

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \mu_{0}, s_{0}, \gamma, \beta, \alpha) \propto$$

$$p(c_{i} \neq c_{j} \forall j \neq i | \boldsymbol{c}_{-i}, \alpha) \int p(\tilde{y}_{i} | \mu_{j}, s_{j}) p(\mu_{j}, s_{j} | \mu_{0}, s_{0}, \gamma, \beta) d\mu_{j} ds_{j}$$

$$\propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}(\tilde{y}_{i}, \phi) dG_{0}(\phi).^{6}$$

⁶priors μ_0, s_0^{-1} (MacEachern & Müller, 1998)

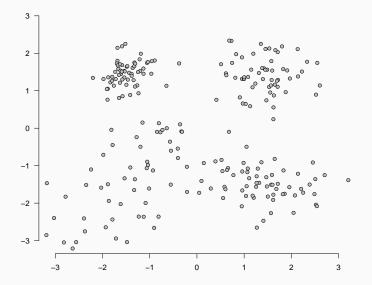
Algorithm 1: DPMM algorithm

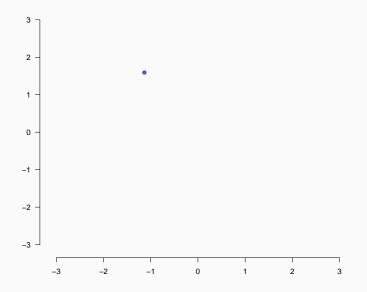
Let the state of the Markov chain consist of $c = (c_1, \cdots, c_n)$ and $\phi = (\phi_c : c \in \{c_1, \cdots, c_n\})$. Repeatedly sample: for $i \leftarrow 1$ to n do \cdot Remove y_i from cluster c_i because we are going to sample a new c_i . · draw $c_i | c_{-i}, y$ from: if $c = c_i$ for some $i \neq i$ then $p(c_i = c | c_{-i}, y_i) \propto \frac{n_{-i,c}}{n_{-1+\alpha}} \int \mathcal{N}(\tilde{y}_i, \phi) dH_{-i,c}(\phi)$ else $p(c_i \neq c_i \forall j \neq i | c_i, y_i) \propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}(\tilde{y}_i, \phi) dG_0(\phi)$

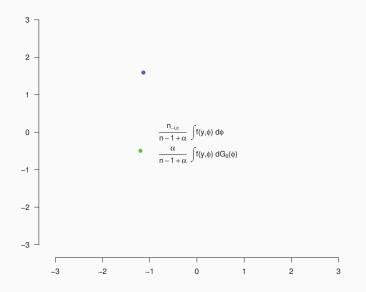
end

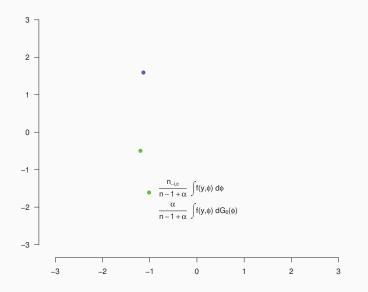
return c_i

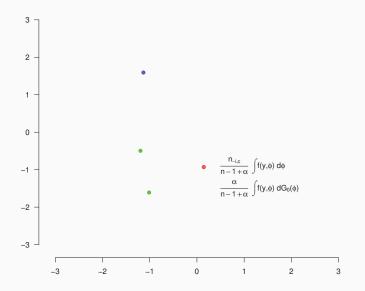
⁷Neal (2000), algorithm 3. *J Compu Graph Stats*, 9(2), 249–265.

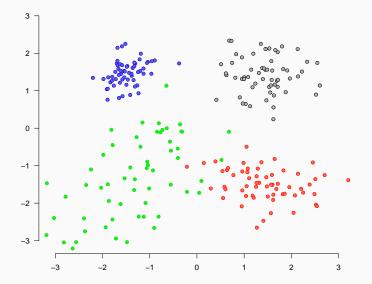












R Program

```
. . . .
# already occupied table, n/(N + alpha) * mvnorm() density
log weights[c.idx] <- log(counts[c.idx]) +</pre>
      dmvnorm(data[n, ], mean = c mean,
               sigma = c_Sig + Sig, log = TRUE)
. . . .
# new table, alpha/(N + alpha) weighted by mvnorm() density
log_weights[Nclust + 1] <- log(alpha) +</pre>
      dmvnorm(data[n, ], mean = mu0, sigma = Sig0 + Sig,
      log = TRUE)
. . . .
```

⁸Modified from the R program by Tamara Broderick https://people.csail.mit.edu/tbroderick/tutorial_2017/mitll.html

Application: Individual Meaning-Centered Psychotherapy Trial (IMCP)

IMCP Design and Data

- A randomized controlled trial (R01 CA128134, PI: Breitbart)
- Patients with advanced or terminal cancer
- Randomization
 - 1. Individual Meaning Centered Psychotherapy (IMCP, n = 109)
 - 2. Supportive Psychotherapy (SP, n = 108)
 - 3. Enhanced Usual Care (EUC, n = 104)
- Help patients develop/increase a sense of meaning near end of life

IMCP Design and Data

- A randomized controlled trial (R01 CA128134, PI: Breitbart)
- Patients with advanced or terminal cancer
- Randomization
 - 1. Individual Meaning Centered Psychotherapy (IMCP, n = 109)
 - 2. Supportive Psychotherapy (SP, n = 108)
 - 3. Enhanced Usual Care (EUC, n = 104)
- Help patients develop/increase a sense of meaning near end of life
- Psychological outcome measures
 - 1. Meaning Making, Hopelessness, Desire for Hastened Death, Anxiety and Depression
 - 2. Pre-intervention baseline, mid-intv (week 4), post-intv (week 7), and 2-months post-intv (week 15)

Baseline Psychosocial Profiles by DPMM

.

- BayesianGaussianMixture() in Python
- Constraining $k \leq 5$ to control sparseness

Baseline psychosocial profiles identified by BayesianGaussianMixture()										
		age	KPRS	Hopelessness	Hastened	Anxiety	Depression	Personal	Existential	
	(n)				Death			Meaning	Transcendence	
1	(22)	63.9	73.7	5.9	2.5	8.5	8.0	82.5	86.4	
2	(17)	56.8	77.4	10.7	5.6	13.0	9.9	47.0	20.9	
3	(131)	58.2	81.8	3.1	1.3	7.0	3.7	82.4	88.2	
4	(10)	63.5	81.2	4.1	3.4	6.0	5.4	93.5	123.5	
5	(72)	56.3	81.5	6.7	4.4	10.0	7.6	66.8	65.6	

2: "Acutely Distressed" cluster

5: "Moderately Distressed" cluster

Responders to IMCP?

• Personal Meaning subscale scores at post-Tx

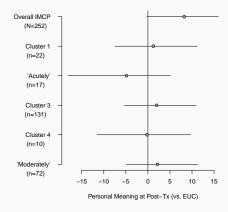
Post-Tx Personal Meaning subscale scores cf. baseline										
	Baseline		Post-Tx (week 7)							
		(N)		EUC	(n)	Meaning	(n)	Suprt	(n)	
	1	(22)	82.5	78.5	6	88.8	5	83.3	11	
"Acutely"	2	(17)	47.0	51.3	5	51.4	6	61.0	6	
	3	(131)	82.4	81.9	46	92.0	48	87.5	37	
	4	(10)	93.5	95.0	1	84.0	2	91.0	7	
"Moderately"	5	(72)	66.8	71.4	16	84.1	31	75.8	25	

Clusters Responded to IMCP Differently

• "random intervention effects" model ⁹

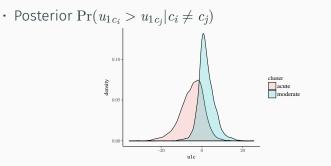
 $y_{c[i]} = \beta_0 + \beta \operatorname{Tx}_{c[i]} + u_{0c} + u_{1c} \operatorname{Tx}_{c[i]} + \epsilon_{c[i]}, \qquad [u_{0c}, u_{1c}] \sim \mathcal{N}(0, \Sigma).$

 \cdot stan_lmer(PersMeaningT3 \sim Tx + (1 + Tx | clus), prior = NULL)



⁹Lee & Thompson (2005), *Clin Trials*, 2(2), 163-73.

Probability of Intervention Fit



clusters	1	2	3	4	5
1	-	0.81			
"Acutely" 2	0.19	-			
3	0.58	0.84	-		
4	0.42	0.74	0.34	-	
"Moderately" 5	0.58	0.88	0.52	0.65	-

- Overall IMCP effect ¹⁰
- Subtle effect: IMCP works better in moderately than acutely distressed
- Help guide future interventions
- Randomization is important: DPMM cannot replace it

¹⁰Rosenfeld, Breitbart *et al., Cancer*, in press.

Conclusions

- I hope I have given you enough info on DPMM
- DPMM and R to make things explicit
- Derivations from finite mixture to infinite mixture
- DP prior $DP(\alpha G_0)$ to posterior
 - CRP yields DP posterior
 - A stochastic process controlled by α , G_0 , and $\mathcal{N}(\tilde{y}_i|\mu_j, s_i^{-1})$
- Scratched the surface only
- I have not covered
 - Hyperpriors
 - Posterior on α (Escobar & West, 1995)
 - Other construction methods (e.g., stick-breaking)

- Gershman & Blei (2012); Neal (2000); Rasmussen (2000)
- Explore other tools in BNP, e.g., George Karabatsos
- BNP by Measure Theory (Jara, 2016, Int J Approx Reasoning)
- More abstract representations (Ferguson, 1973)

 $y_i | \theta_i \sim \mathcal{N}(\theta_i)$ $\theta_i | G \sim G$ $G \sim DP(G_0, \alpha)$

Thanks

- Funding
 - NIH R01 CA128134 (W. B.)
 - NIH P30 CA008748 for Memorial Sloan Kettering Cancer Center
- DP mixture clustering computer program in R
 - Tamara Broderick https://people.csail.mit.edu/ tbroderick/tutorial_2017/mitll.html