Toward Understanding Contradictory Methods for Reducing Selection Bias in Longitudinal Analyses

Hua Lin & Robert E. Larzelere Dept. of HDFS, Oklahoma State Univ.

Outline

- > 2 types of gain scores yield different β 's
- Lord's paradox
- Counterfactuals implied by the null H₀ of the 2 gain-score analyses
- > ANCOVA assumptions and Lord's paradox

Two Controls for Selection Bias

- > Simple gain: $Y_2 Y_1$
 - Repeated measures ANOVA
 - Linear growth model
 - Differences in differences
- > Residualized gain: $Y_2 | Y_1$
 - Predicting Y₂ controlling for Y₁
 - ANCOVA
 - Cross-lagged panel models

2 Control Methods: Often Contradictory Results

> Lord's paradox

Opposite Biases for 2 Gain Scores:

- > Age: 4 or 5 years old at Wave 1
- > N = 1464 (Canadian NLSCY)
- > 2 outcomes:
 - Antisocial
 - Hyperactivity
- > 2-wave & 4-wave analyses(CLPM & LGM)
 -- Larzelere, Ferrer, et al. (2010)

Larzelere, Ferrer, et al. (2010)

> 4 corrective parental actions

- Physical punishment
- Nonphysical punishment
- Scolding or yelling
- "Hostile-ineffective" (perceived behavioral difficulty)

> 2 corrective actions by professionals

- Psychotherapy visits
- Ritalin

Counterfactuals Implied by Null H₀ for Two Types of Change

> Simple change: $Y_2 = 0X + Y_1$

- Counterfactual in null $H_0 =$ no change
- > Residualized change: $Y_2 = 0X + \beta_1 Y_1$
 - Counterfactual in null H₀= regression of group means toward grand mean, estimated by β₁

2 Methods Have Opposite Biases for Professional Tx's

- > Treatments for depression
 - Meds for depression
 - Therapy for depression
- Fragile Families data
 - Mostly unmarried; 20 USA cities
 - Waves 1-5: Ages 0, 1, 3, 5, & 9
 - Mom depression: 2 stem Q's, 6 symptom Q's
 - Therapy or medication for depression?

Simulated Lord's Paradox

> Means: 130 & 160; *SD* = 15

> Null H₀: No-Tx effect re simple gain scores

Mean Results	(1000	Repl's)								
Lord's Paradox										
	ANCOVA	DIFFS-IN-DIFFS								
Predicted Sex Diff in Weight	-15.6***	02								
Reversed Lo	ord's Parado	x								
	ANCOVA	DIFFS-IN-DIFFS								
Predicted Sex Diff in Weight	.02	15.61								

		32(0)	Corr(g)	Corr(b)	y0(g)	y0(b)	yl(g)	y1(b)	d	b ₁	
		1	Data settings		Simulated results						
Pretest mean	s are differen	nt: mean of	girls' pretest v	veight (130), m	ean of boy	s' pretest	weight (1	160)			
Assuming	the simple g	ain score nu	ll H ₀ is correc	t, setting mean	of girls' po	osttest we	ight to 13	0, & mea	n of boys' po	osttest weight	
to 160 Ver	5	15	0	0.49	120.01	160.00	120.00	150.00	0.00	17.05888	
Vas	15	15	0	0.46	120.02	160.00	129.99	150.00	0.00	-17.05***	- 1
1 es	15	15	0.40	0.48	120.02	160.00	129.96	150.00	-0.03	-22.81	SI
res	2	15	0.48	0	130.01	160.01	150.00	159.99	0.01	-28.54	
Yes	15	15	0.48	0	130.02	160.01	129.99	159.99	-0.01	-22.79***	
Yes	5	15	0.48	0.48	130.01	160.00	130.00	159.99	0.00	-15.60***	S
Yes	15	15	0.48	0.48	130.02	160.00	129.99	159.99	-0.02	-15.60***	
No	5	15	0	0.48	85.00	92.50	82.00	88.00	1.50	-5.98***	
No	15	15	0	0.48	85.00	92.50	82.01	88.00	1.50	-5.97***	
No	5	15	0.48	0	85.00	92.50	82.00	88.00	1.51	-5.99***	
No	15	15	0.48	0	85.00	92.50	82.00	88.00	1.51	-5.97***	
No	5	15	0.48	0.48	85.00	92.50	82.00	88.00	1.50	-5.97***	
No	15	15	0.48	0.48	85.00	92.50	82.00	88.00	1.50	-5.96***	N
Assuming	the ANCOV	JA null H ₀ i	s correct by se	tting means of	girls' and l	boys' pos	ttest weig	to tho	se predicted	by slope of 0.48	
Yes	5	15	0.48	0.48	130.00	160.01	137.80	152.20	15.61***	0.05	ty
Ves	15	15	0.48	0.48	129.99	160.01	137.80	152.20	15.61***	0.02	
		10	0.40	0.40		200/01					

Normality S	D(g)	SD(b) C	ur(g)	Corr(b)	y0(g)	y0(b)	yl(g)	y1(b)	d	b_1	
		Data	settings			•	S	imulated	results	-	-
·Pretest means a	re the sar	ne: mean of girls	' pretest we	ight (145), mea	n of boys'	pretest w	eight (14	5)			
Assuming	the null H	I ₀ is correct while	e setting the	means of girls	' and boys'	posttest	weights t	o 145 wit	h slope coeff	icient of 0.48	
Yes	5	15	0.48	0.48	145.00	145.01	145.00	145.00	0.01	0.00	
Yes	15	15	0.48	0.48	144.99	145.01	145.00	145.00	0.01	0.00	
No	5	15	0.48	0.48	88.75	88.75	85.00	85.00	0.01	0.00	
No	15	15	0.48	0.48	88.74	88.75	85.00	85.00	0.01	0.00	
	p	Assuming altern osttest weight to	ative H∧ is∉ 160	correct, setting	the mean (of girls' p	osttest w	eight to 1	30 & the mea	n of boys'	
Yes	5	15	0	0.48	145.01	145.00	129.99	159.99	-30.00***	-30.00***	
Yes	15	15	0	0.48	145.02	145.00	129.98	159.99	-30.03***	-30.02***	
Yes	5	15	0.48	0	145.01	145.01	130.00	159.99	-29.99***	-30.00***	_
Yes	15	15	0.48	0	145.02	145.01	129.99	159.99	-30.01***	-30.01***	
Yes	5	15	0.48	0.48	145.01	145.00	130.00	150.00	-30 00***	-30.00***	
Tes N-	5	15	0.48	0.48	143.02	145.00	129.99	109.99	-30.02***	-30.01***	
No	15	15	0	0.48	88.7J 99.75	00.75	82.00	88.00	-0.00*	5 00***	
No	5	15	0.48	0.48	88.7J 88.75	00.7J 00.75	82.01	88.00	-0.00*	5 00***	
No	15	15	0.48	0	88.75	88.75	82.00	88.00	-5.99*	-5.00***	
No	5	15	0.48	0.48	88 75	88 75	82.00	88.00	-6.00*	-5.99***	
No	15	15	0.48	0.48	88.75	88.75	82.00	88.00	-6.00*	-5.99***	

Variations in Pre- and Post-Test Means

 Differences in effect size is f(pre-test mean difference, stability r)

> $b_x - d = (1 - r_{pst,pre}) (\overline{y}_{Tx,pre} - \overline{y}_{Cntl,pre})$

- Assumes homogeneous variances
 - Tx and control
 - Pre-test and post-test

Some combinations in "Table 3": contrasting signs, some p < .05</p>

Conclusions

 Lord's paradox related to violation of ANCOVA assumption of independence of covariate & Tx

- Artificial equating of pre-tests may not help
 - Group-centered ANCOVA = simple gain scores
 - Homogenous groups & matching = ANCOVA

> Best option? Justifying null H_0

- Plausibility? Differs for antisocial & wt gain
- Predicting Tx diffs in 2+ pre-test waves

Mean *r*'s & β 's for Antisocial

	$r(y_1, x)$	$r(y_2, x)$	$r(y_1, y_2)$	$\beta(y_2 x. y_1)$	$\beta((y_2 - y_1)x)$
Hostile-ineff	.49	.35	.56	.09	15
Disc tactics	.27	.20	.56	.05	07
Tx & Ritalin	.11	.13	.56	.07	.02

> 2 β 's have opposite signs

 (except corrective actions by professionals, which became non-significant)

Simulate Lord's Paradox

- > Repeated Measures ANOVA
- > Counterfactual in Null H₀:
 - No Tx effect: Tx & Control = in simple change
 Mean Y_{Tx} Mean Y_{Ctl} same on post- & on pre-test
- > ANCOVA (fits reversed Lord's paradox)
- > Counterfactual in Null H₀:
 - No Tx effect: Group means regress toward grand mean from pre- to post-test
 - Mean Y_{Tx} Mean Y_{Ctl} shrinks from pre- to post-

