Toward Understanding Contradictory Methods for Reducing Selection Bias in Longitudinal Analyses

Hua Lin \& Robert E. Larzelere Dept. of HDFS, Oklahoma State Univ.

Outline

>2 types of gain scores yield different β 's
> Lord's paradox
$>$ Counterfactuals implied by the null H_{0} of the 2 gain-score analyses
> ANCOVA assumptions and Lord's paradox

Two Controls for Selection Bias

> Simple gain: $Y_{2}-Y_{1}$

- Repeated measures ANOVA
- Linear growth model
- Differences in differences
$>$ Residualized gain: $Y_{2} \mid Y_{1}$
- Predicting Y_{2} controlling for Y_{1}
- ANCOVA
- Cross-lagged panel models

2 Control Methods: Often Contradictory Results

> Lord's paradox

Lord's Paradox

Wave-1 Weight

Differing Conclusions

> Simple change: (solid line)

- No sex difference in change
- Mean within-person change
> Residualized change (dashed lines)
- For any W1 weight, predicted W2 weight has men > women
- Bias in direction of pre-existing differences (relative to simple change)

Applies to Corrective Actions

Wave-1 Symptoms

e.g.: Disciplinary Punishment

Wave-2 Antisocial Beahvior

Wave-1 Antisocial Behavior

Opposite Biases for 2 Gain Scores:

> Age: 4 or 5 years old at Wave 1
$>$ N = 1464 (Canadian NLSCY)
>2 outcomes:

- Antisocial
- Hyperactivity
> 2-wave \& 4-wave analyses(CLPM \& LGM)
-- Larzelere, Ferrer, et al. (2010)

Larzelere, Ferrer, et al. (2010)

> 4 corrective parental actions

- Physical punishment
- Nonphysical punishment
- Scolding or yelling
- "Hostile-ineffective" (perceived behavioral difficulty)
>2 corrective actions by professionals
- Psychotherapy visits
- Ritalin

Results for Corrective Actions

> Residualized change - all "effects" detrimental

- Longitudinal net-effects - 10 of 14
- Cross-lagged latent analysis - 3 of 14, 4 marginally (p <.10)
$>$ Simple gains - all "effects" beneficial
- r with later gain - 4 of 14, 2 marginally
- Growth curve - 5 of 14

Counterfactuals: Simple (S) \& Residualized (R) Change

Counterfactuals for 3 Analyses

Counterfactuals Implied by Null H_{0} for Two Types of Change

> Simple change: $Y_{2}=0 X+Y_{1}$

- Counterfactual in null $\mathrm{H}_{0}=$ no change
$>$ Residualized change: $Y_{2}=0 X+\beta_{1} Y_{1}$
- Counterfactual in null $\mathrm{H}_{0}=$ regression of group means toward grand mean, estimated by β_{1}

2 Methods Have Opposite Biases for Professional Tx's

> Treatments for depression

- Meds for depression
- Therapy for depression
> Fragile Families data
- Mostly unmarried; 20 USA cities
- Waves 1-5: Ages 0, 1, 3, 5, \& 9
- Mom depression: 2 stem Q's, 6 symptom Q's
- Therapy or medication for depression?

2-Step Linear Growth Model

2-Step Linear Growth Model

Simulated Lord's Paradox

$>$ Means: 130 \& 160; SD = 15
$>$ Null H_{0} : No-Tx effect re simple gain scores

Simulated Reversed Lord's Paradox

$>$ Ms: 130, 160, post: 137.8, 152.2; SD = 15
$>$ Null H_{0} : No-Tx effect re ANCOVA
Reversed Lord's paradox

Mean Results (1000 Repl's)

Lord's Paradox		
	ANCOVA	DIFFS-IN-DIFFS
Predicted Sex Diff in Weight	$-15.6^{* * *}$	-.02

Reversed Lord's Paradox

ANCOVA assumptions

$>$ NID $\left(0, e^{2}\right)$ residuals
$>$ Homogeneous variance
$>$ Homogeneous stability r's
> Equal group pretest means!

- Within-group stability restimates shrinkage of means from pre- to post-test
> Linearity of regression

Variations in Pre- and Post-Test Means

> Differences in effect size is f(pre-test mean difference, stability r)
$>b_{x}-d=\left(1-r_{\text {pst,pre }}\right)\left(\bar{y}_{T x, p r e}-\bar{y}_{\text {Cntt,pre }}\right)$

- Assumes homogeneous variances
- Tx and control
- Pre-test and post-test
$>$ Some combinations in "Table 3": contrasting signs, some $p<.05$

Conclusions

> Lord's paradox related to violation of ANCOVA assumption of independence of covariate \& Tx

- Artificial equating of pre-tests may not help
- Group-centered ANCOVA = simple gain scores
- Homogenous groups \& matching = ANCOVA
> Best option? Justifying null H_{0}
- Plausibility? Differs for antisocial \& wt gain
- Predicting Tx difffs in $2+$ pre-test waves

Extra Slides Not Used

Meta-Analytic r's \& β 's: Effect of Spanking on Externalizing

	$r\left(y_{1}, x\right)$	$r\left(y_{2}, x\right)$	$r\left(y_{1}, y_{2}\right)$	$\beta\left(y_{2} x . y_{1}\right)$	$\beta\left(\left(y_{2}-y_{1}\right) x\right)$
Spanking	.20	.16	.46	$.07^{* * *}$	$-.04^{*}$

$>2 \beta$'s have opposite signs
> Same pattern after reversing occasions

- $\beta=.05 \& \beta=-.05, p s<.01$
$>$ Larzelere et al. (in press) Child Development

Mean r's \& β 's for Antisocial

	$r\left(y_{1}, x\right)$	$r\left(y_{2}, x\right)$	$r\left(y_{1}, y_{2}\right)$	$\beta\left(y_{2} x . y_{1}\right)$	$\beta\left(\left(y_{2}-y_{1}\right) x\right)$
Hostile-ineff	.49	.35	.56	.09	-.15
Disc tactics	.27	.20	.56	.05	-.07
Tx \& Ritalin	.11	.13	.56	.07	.02

> 2β 's have opposite signs

- (except corrective actions by professionals, which became non-significant)

Counterfactual for Tx to Beat

> Simple Changes (Gains)

- Any improvement in Tx group
> Residualized Changes (Gains)
- More improvement than regression toward grand mean

Simulate Lord's Paradox

Repeated Measures ANOVA

$>$ Counterfactual in Null H_{0} :

- No Tx effect: Tx \& Control = in simple change - Mean $Y_{T X}-$ Mean $Y_{C i l}$ same on post- \& on pre-test
$>$ ANCOVA (fits reversed Lord's paradox)
$>$ Counterfactual in Null H_{0} :
- No Tx effect: Group means regress toward grand mean from pre- to post-test

Mean $Y_{T X}$ - Mean $Y_{\text {Gill }}$ shrinks from pre- to post-

Simulated Lord's Paradox

Reversed Lord's Paradox

