A New Way for Handling Student Mobility with Longitudinal Data in Educational Research

Congying Sun Audrey J. Leroux Christopher Cappelli

Georgia State University

Three-Level Growth Curve Model (GCM)

- A three-level GCM can estimate the within-individual variability and contextual effects on individual patterns of change over time.
- E.g., repeated measures nested within students nested within schools:

© Sun, Leroux, & Cappelli (2018)

Baseline Three-Level GCM

Level 1: $Y_{tij} = \pi_{0ij} + \pi_{1ij}TIME_{tij} + e_{tij}, \qquad e_{tij} \sim N(0, \sigma_e^2)$

$$\underline{\text{Level 2}}: \begin{cases} \pi_{0ij} = \beta_{00j} + r_{0ij} \\ \pi_{1ij} = \beta_{10j} + r_{1ij} \end{cases}, \qquad \begin{bmatrix} r_{0ij} \\ r_{1ij} \end{bmatrix} \sim MVN\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{r0}^2 \\ \sigma_{r10} & \sigma_{r1}^2 \end{bmatrix}\right)$$

$$\underline{\text{Level 3}}: \begin{cases} \beta_{00j} = \gamma_{000} + u_{00j} \\ \beta_{10j} = \gamma_{100} + u_{10j} \end{cases}, \qquad \begin{bmatrix} u_{00j} \\ u_{10j} \end{bmatrix} \sim MVN \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u0}^2 \\ \sigma_{u10} \\ \sigma_{u10} \\ \sigma_{u10} \end{bmatrix} \right)$$

3

© Sun, Leroux, & Cappelli (2018)

Longitudinal Data with Multiple Membership

- Individual mobility in longitudinal studies leads to multiple membership data structure, which challenges the conventional three-level GCM.
- Multiple membership data structure: Some units of a lower-level classification (e.g., student) are members of more than one higherlevel classification (e.g., school).

	School				
Student	6 th Grade	7 th Grade	8 th Grade		
А	S1	S1	S1		
В	S1	S2	S2		
С	S1	S1	S2		
D	S1	S2	S1		
Е	S1	S2	S3		

© Sun, Leroux, & Cappelli (2018)

Handling Individual Mobility in Longitudinal Data

- Common approaches:
 - <u>Delete</u>: delete mobile students from data, and conduct analyses only with students who have stayed in the same school throughout the study.
 - <u>Single school</u>: keep data for mobile students, but model only one of the set of schools (e.g., first or last school) that students attended.
- Misspecification of multiple membership longitudinal data structures can lead to inaccurate estimates of between-cluster growth variance components and cluster-level fixed effects on the growth (Grady, 2010; Grady & Beretvas, 2010; Leroux, in press; Leroux & Beretvas, 2018, in press).

Handling Individual Mobility in Longitudinal Data

- Models proposed in these prior studies:
 - Can only be estimated if *TIME* is coded so that the intercept represents initial status; *and*
 - Assume noncumulative school effect on student growth; or
 - Cannot be estimated using MLwiN, which is the only software package that can estimate multiple membership random effects models.

Purpose of Current Study

- Therefore, we propose a multiple membership GCM (MM-GCM) to handle student mobility in longitudinal studies.
- This model can be estimated with the intercept representing final status.
 - Researchers and educators might be more concerned about students' final status and the contextual effects on the final status.
- The proposed MM-GCM will be derived, justified, and explained using a large-scale longitudinal dataset.

Baseline MM-GCM

Level 1:
$$Y_{ti\{j\}} = \pi_{0i\{j\}} + \pi_{1i\{j\}} TIME_{ti\{j\}} + e_{ti\{j\}}$$

Subscript {*j*} indexes set of schools attended by a student

Level 2:
$$\begin{cases} \pi_{0i\{j\}} = \beta_{00\{j\}} + r_{0i\{j\}} \\ \pi_{1i\{j\}} = \beta_{10\{j\}} + r_{1i\{j\}} \end{cases}$$

TIME coded so that intercept represents final status

Weighted random school effects on final status

Level 3: $\begin{cases} \beta_{00\{j\}} = \gamma_{000} + \sum_{h \in \{j\}} w_{ih} u_{00h} \\ \beta_{10\{j\}} = \gamma_{100} + \sum_{h \in \{j\}} w_{ih} u_{10h} \end{cases}$ Weighted random school effects on growth rate

8

Method

- Compared baseline and conditional results from the following approaches:
 - <u>MM-GCM</u>: took into account multiple membership structure
 - Final school-GCM: three-level GCM that ignores mobility by only modeling effect of final school attended
 - <u>Delete-GCM</u>: three-level GCM that deletes mobile students
- Weights for the MM-GCM were based on the proportion of timepoints a student was associated with a school.

Coding Schemes for MM Weights

	School			Weights		
Student	6 th Grade	7 th Grade	8 th Grade	1 st School	2 nd School	3 rd School
А	S1	S1	S1	1	0	0
В	S1	S2	S2	1/3	2/3	0
С	S1	S1	S2	2/3	1/3	0
D	S1	S2	S1	2/3	1/3	0
Е	S1	S2	S3	1/3	1/3	1/3

Data

- Tennessee Student/Teacher Achievement Ratio (STAR) data
 - Repeated measures nested within students nested within schools
 - <u>Time-points</u>: 6th, 7th, and 8th grades
 - Final sample: 3,123 students from 266 schools
 - <u>43.7% mobile students</u>: 1,247 attended two schools and 117 attended three schools.
- Variables
 - Outcome: social sciences achievement
 - <u>Student-level predictor</u>: dummy-coded gender (male referent category)
 - <u>School-level predictor</u>: dummy-coded urbanicity (rural referent category)
 - Coding of TIME: $-2 = 6^{\text{th}}$ grade, $-1 = 7^{\text{th}}$ grade, $0 = 8^{\text{th}}$ grade

Estimation Procedures

- Models were fit using MLwiN software with Bayesian estimation via the Monte Carlo Markov chain (MCMC) method.
 - Default MLwiN priors used for estimation.
 - Raftery-Lewis and Brooks-Draper indices suggested a burn-in length of 5,000 with 50,000 iterations.
- Models were compared on posterior mean and standard error values, as well as model fit using the deviance information criterion value (DIC).

Baseline Results – Fixed Effects

	MM-GCM		Final schoo	o/-GCM	Delete-0	Delete-GCM	
Fixed effect Parameter	Estimate	(<i>SE</i>)	Estimate	(<i>SE</i>)	Estimate	(<i>SE</i>)	
Model for final status							
Intercept (γ_{000})	763.38	(1.89)	764.33	(1.78)	773.40	(2.00)	
Model for growth rate							
Intercept (γ_{100})	8.08	(0.59)	8.46	(0.56)	11.14	(0.65)	

Baseline Results – Random Effects

	MM-GCM		Final school-GCM		Delete-GCM	
Random Effect Parameter	Estimate	(SE)	Estimate	(<i>SE</i>)	Estimate	(SE)
Level-1 variance						
Measures (σ_e^2)	572.28	(14.19)	572.75	(14.22)	553.13	(18.63)
Final status variance						
Students (σ_{r0}^2)	981.15	(39.97)	992.30	(39.94)	1,136.69	(57.75)
Schools (σ_{u0}^2)	535.28	(81.89)	349.70	(52.91)	205.95	(53.12)
Growth rate variance						
Students (σ_{r1}^2)	36.47	(10.08)	36.89	(10.38)	54.40	(14.52)
Schools (σ_{u1}^2)	35.08	(7.42)	24.79	(5.05)	12.63	(4.53)
Final status/growth covariance						
Students (σ_{r10})	37.34	(14.99)	37.67	(15.18)	30.89	(21.55)
Schools (σ_{u10})	96.63	(20.95)	65.26	(13.72)	23.93	(12.38)
Model fit						
DIC	87,8	10	87,82	26	49,5	81

© Sun, Leroux, & Cappelli (2018)

New Way for Handling Student Mobility with Longitudinal Data

14

Conditional Results – Fixed Effects

	MM-GCM	Final school-GCM	Delete-GCM	
Fixed Effect Parameter	Estimate (SE)	Estimate (SE)	Estimate (SE)	
Model for final status				
Intercept (γ_{000})	772.25 (2.38)	772.00 (2.20)	774.69 (2.48)	
FEMALE (γ_{010})	2.57 (1.41)	2.56 (1.43)	1.59 (1.97)	
INNER_CITY (γ_{001})	-36.18 (4.35)	-32.33 (4.16)	-31.08 (9.31)	
SUBURBAN (γ_{002})	-4.66 (3.80)	-5.09 (3.50)	3.18 (4.59)	
URBAN (γ_{003})	-3.70 (5.78)	-4.45 (5.25)	-5.59 (6.34)	
Model for growth rate				
Intercept (γ_{100})	11.15 (0.75)	11.11 (0.72)	11.85 (0.80)	
FEMALE (γ_{110})	1.78 (0.66)	1.72 (0.66)	1.44 (0.88)	
$INNER_CITY(\gamma_{101})$	-9.82 (1.45)	-9.32 (1.41)	-9.70 (3.20)	
SUBURBAN (γ_{102})	-3.27 (1.26)	-2.96 (1.20)	-0.30 (1.56)	
URBAN (γ_{103})	-2.88 (1.89)	-2.17 (1.76)	-2.09 (2.08)	

© Sun, Leroux, & Cappelli (2018)

Conditional Results – Random Effects

	MM-GCM		Final school-GCM		Delete-GCM	
Random Effect Parameter	Estimate	(<i>SE</i>)	Estimate	(<i>SE</i>)	Estimate	(SE)
Level-1 variance						
Measures (σ_e^2)	572.23	(14.46)	571.61	(14.14)	553.56	(18.52)
Final status variance						
Students (σ_{r0}^2)	984.31	(40.10)	995.11	(40.26)	1,136.13	(57.26)
Schools (σ_{u0}^2)	297.61	(55.45)	206.49	(37.00)	167.98	(47.55)
Growth rate variance						
Students (σ_{r1}^2)	36.21	(11.01)	37.70	(10.48)	52.89	(14.15)
Schools (σ_{u1}^2)	19.21	(5.29)	14.17	(3.76)	10.90	(4.16)
Final status/growth covariance						
Students (σ_{r10})	37.70	(5.84)	38.51	(15.20)	29.44	(20.83)
Schools (σ_{u10})	33.98	(5.29)	24.98	(9.44)	12.61	(11.03)
Model fit						
DIC	87,7	98	87,80)5	49,5	80

© Sun, Leroux, & Cappelli (2018)

New Way for Handling Student Mobility with Longitudinal Data

16

Discussion

- Advantages of MM-GCM:
 - Explicitly incorporates mobile data in GCM.
 - Helpful for researchers and educators who are more concerned about students' final status instead of their initial status.
 - Assumes and estimates the cumulative school effect on student growth.
 - Can be estimated using MLwiN.

Implications

- Ignoring mobility seemed to only alter the school-level fixed effects and school-level variability when compared to the MM-GCM, which corresponds to prior simulation studies.
- Most of the fixed and random effects as well as their associated SEs differed under the *delete-GCM* when compared to the MM-GCM and *final school*-GCM.

Thanks you !