

	1	2	3	4	5	6
1. Affective	1					
2. Cognitive	.51	1				
3. Behavioral	.49	.36	1			
4. Friend	.39	.25	.31	1		
5. Parent	.34	.41	.27	.34	1	
6. Teacher	.33	.28	.32	.27	.21	1

1. aff1	1	2	3	4	5	6	7	8		10
2. aff2	67	- 60	hitta	TION MA	TRIX F	UK TH	EUBSI	RVED	VAKIA	ales
3. aff3	.72	.75								
4. aff4	.72	.75	.77							
4. anu 5. cog1	.33	.37	.36	.38						
6. cog2	.33	.37	.30	.38	.54					
7. cog3	.20	.30	.28	.23	.54	.51				
7. cogs 8. beh1	.30	.30	.32	.33	.23	.51	.16			
9. beh2	.21	.41	.38	.25	.23	.10	.10	.63		
9. benz 10. beh3	.32	.41	.36	.36	.29	.19	.20	.03	.54	
10. bens 11. frd1	.32	.30	.34	.34	.22	.15	.14	.40	.54	.14
11. frd1 12. frd2	.17	.20	.10	.18	.10	.13	.13	.12	.16	.14
12. frd2 13. frd3	.22	.20	.23	.24	.19	.13	.14	.14	.24	.22
	.18	.35	.18	.32	.11	.11	.10	.09	.18	.23
14. prt1	.18	.23	.18	.24	.30	.22	.24	.14	.20	.16
15. prt2 16. prt3	.22	.26	.21	.29	.28	.22	.23	.13	.20	.18
16. prt3 17. teh1	.31	.31		.33	.21		.17	.14	.19	
17. ten1 18. teh2			.21		.18	.14				.19
	.18	.26	.20	.22		.14	.14	.19	.23	.16
19. teh3	.17	.26	.20	.21	.20	.14	.13	.18	.22	.16
20. teh4	.23	.31	.24	.26	.20	.16	.15	.17	.21	.18
	11	12	13	14	15	16	17	18	19	20
11. frd1										
12. frd2	.55									
13. frd3	.42	.44								
14. prt1	.20	.23	.12							
15. prt2	.20	.21	.16	.72						
16. prt3	.20	.20	.27	.38	.40					
17. teh1	.15	.18	.15	.13	.12	.15				
18. teh2	.15	.17	.11	.15	.13	.12	.57			
19. teh3	.14	.17	.10	.16	.14	.13	.58	.72	-	
20. teh4	.15	.18	.14	.12	.13	.14	.54	.59	.64	
<u>, X X X</u> ,	<u> </u>	UX XO	X.X.X.	$\langle X X X \rangle$	XXX	<u>aaa</u>	<u>, X.X.X</u>	XX)		.X.X.

the square roo itent variable is ie latent variab	s higher tha	in any of	the bivar	iate corr	elations	involvin
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	2	3	4	5	6
1. Affective	(.88)					
2. Cognitive	.51	(.74)				
3. Behavioral	.49	.36	(.74)			
4. Friend	.39	.25	.31	(.69)		
5. Parent	.34	.41	.27	.34	(.72)	
6. Teacher	.33	.28	.32	.27	.21	(.79)

Measurement Invariance Testing

H#2: Multidimensional attitudes and social norms scales in math are conveyed the same meaning across the national groups (USA, Hong Kong, and Singapore)

- In order to avoid getting the results by chance...
 Sample data was divided into 2 sets of data from each country
- First half (derivation) sample (N=7,506) was used for initial MI investigation

Walker & W

Second half (cross-validation) sample (N= 7513) was employed to replicate results

2018 M3 UCONN, May 21 - 24

	X ²	df	RMSEA (90% CI)	CFI	TLI
	Fir	st Half S	amples (Derivation)		
Nodel 1	1119.24	462	.036 (.034037)	.967	.959
Conside	rably good fit	to data	<mark>del</mark> (baseline model) o or greater than .95)		
the sam	e way across	groups	tructs (latent factors) had be	×××	red

Model	X ²	df	RMSEA (90% CI)	CFI	TLI
	Fir	st Half S	amples (Derivation)		
Model 1	1119.24	462	.036 (.034037)	.967	.959
Model 2	2114.87	490	.036(.035038)	.963	.957
C X X X X	eak (metric)	invariance	<mark>e model</mark> (factor loadings are d	constrained	
 Results 	eak (metric) of Model 2 dia	<u>invarianc</u> d not differ	<u>e model</u> (factor loadings are (much from the baseline mo	constrained	
• Results → Still g	e <mark>ak (metric)</mark> of Model 2 diu ood fit to data (invariance d not differ <i>RMISEA</i> : less	<u>e model</u> (factor loadings are much from the baseline mo than .06; <i>CFI</i> : greater than .951	constrained Iel	
 Results → Still g 6 latent 	e <mark>ak (metric)</mark> of Model 2 diu ood fit to data (<mark>invariancu</mark> d not differ <i>RMSEA</i> : less 1 measured	<u>e model</u> (factor loadings are (much from the baseline mo	constrained Iel	

Model	X ²	df	RMSEA (90% CI)	CFI	TLI
	Fir	st Half \$	Samples (Derivation)		
Model 1	1119.24	462	.036 (.034037)	.967	.959
Model 2	2114.87	490	.036 (.035038)	.963	.957
Model 3	2778.36	517	.042 (.040043)	.948	.943
	Second	l Half Sa	mples (Cross-Validation)	
Model 1	1849.21	462	.035 (.033036)	.966	.959
Model 2	2010.74	490	.035 (.034037)	.963	.957
Model 3	2701.81	517	.041 (.040043)	.947	.942
Significa	nt findings of	i MGCFA fo	or testing measurement in	<u>variance</u>	
Replication	samples (cros	s-validation	n) yielded the similar results from	n the initial	
MCCEA anal	vees which sur	mest that t	he findings are not by chance		

Model	X ²	df	RMSEA (90% CI)	CFI	TLI
	Fir	st Half S	amples (Derivation)		
Model 1	1119.24	462	.036 (.034037)	.967	.959
Model 2	2114.87	490	.036 (.035038)	.963	.957
Model 3	2778.36	517	.042(.040043)	.948	.943
XXXX	* * * * * * *	XXXXX	<u>Bl</u> (litem intercepts are constrained from Medical Constrained from M	ined)	
- results	of Model 3 did	not differ	<mark>el</mark> litem intercepts are constra much from Model 2 <i>RMSEA</i> = less than .06 , <i>CFI</i> = clo		

	Enjoy reading about math
Affective	Look forward to my math lessons
Factor	Do math because I enjoy it
	Interested in the things I learn in math
Cognitive	If putting in enough effort, I can succeed in math
Factor	Doing well in math is completely up to me
1 40101	If I wanted to, I could do well in math
Behavioral	Finish my math homework in time
Factor	Work hard on my math homework Study hard for math guizzes
200000	Most of my friends do well in math
Friend Factor	Most of my friends work hard at math
Friend Factor	Most of my friends work hard at math My friends enjoy taking math tests
Friend Factor	Most of my friends work hard at math
	Most of my friends work hard at math My friends enjoy taking math tests
	Most of my friends work hard at math My friends enjoy taking math tests My parents believe math is important to study
	Most of ^m y friends work hard at math My friends enjoy taking math tests My parents believe math is important to study My parents believe math is important for career
Parent Factor	Most of my friends work hard at math My friends enjoy taking math tests My parents believe math is important to study My parents believe math is important for career My parents like math
Friend Factor Parent Factor Teacher Factor	Most of my friends work hard at math My friends enjoy taking math tests My parents believe math is important to study My parents believe math is important for career My parents like math Shows an interest in student's math learning

