FACTORIAL STRUCTURE OF ATTITUDES AND SOCIAL NORMS SGALES IN MATH

TESTING MEASUREMENT INVARIANCE ACROSS CULTURAL GROUPS

Sounghwa Walker \& Keith Widaman

Background of the Study

multiple traits in PERSONALITY CONSTURCT

Alport, 1936; Cattell, 1941; Goldberg, 1980; Costa, \& McCrae, 1992 + more

Background of the Study

How about other constructs like

attitude \& subjective norm?

Gaps in the literature

No studies have examined the construct validity of multidimensional math attitudes and perceived math social norms, together, in empirical investigation using internationally representative large-scale samples

Purpose of the Present Study

1. to evaluate the construct validity of multidimensional math attitudes [Affective, Behavioral, \& Cognitive factors] and perceived math social norms [Peer, Parent, \& Teacher factors] using 2012 PISA data
2. to test if measurement of the six factors would be invariant across national groups (USA, Hong Kong, a Singapore)

3. Math attitudes and nerceived math social norms are multidimensional constructs that are consisted with three distinctively independent factors.

HYPOTHESES OF THE CURRENT STUDY

2. Multidimensional attitudes and social norms scales in math are conveyen the same meaning across the national groups [USA, Hong Kong, and Singapore

If measurement were not invariant across groups, conclusions of a study and/or interpretations of a research finding would he hias, weak, or misleading (Hom \& McArdle, 1992; Schmitt, \& Kuljanin, 2008; Widaman \& Reise, 1997; Yap et al., 2014)

Data Source

Student Background Questionnaires from PISA 2012 database
[Programme of International student assessment Total sample [$N=15,194$, age $=15 \mathrm{yrs}$] from USA, Hong Kong, \& Singapore

2012 PISA Math Scores

■USA $\square O E C D$ - Hong Kong \square Singapore

DATA ANALYSES

\square Conducted MGCFA within SEM framework for...

- Measurement invariance across national groups
- Goal for SEM is to match the theory with model and data as closely as possible ex] testing model fit between observed data \& hypothesized model

Observed data $\mathbf{=} \mathbf{2 0 1 2}$ PISA sample data Hypothesized model = multidimensional 3- factor models of attitude \& social norm

- Evaluating tools....

Chi-square	Non significant \rightarrow desirable
TII/GFI	Good fit > .95; Acceptable > .90
RMSEA	Good fit < $\mathbf{0 6}$; Unacceptable > .10
(Hu \& Benter 1999; Kline, 2011; Raykov \& Marocolides, 2006)	

018 M3 UCONN, May $21-24$

Construct Validity

- Explicitly examine how well the instruments measure the constructs that were designed to measure
- No single method, rather several different analyses/approaches were conducted to establish the overall CV of the proposed theoretical constructs
- Confirmatory factor analysis;
- correlation analyses; convergent \& discriminant validity
(Fomell\& Larcker, 1981)

Construct Reliability

- Refers to the internal consistency of the observed test items (indicators)
- Cronbach Alpha coefficients (Cronbach, 1951)
- Composite Reliability \& Average Variance Extracted (Fomell \& Larcker, 1981)
(Abu-Hilal, Abdelfattah, Alshumrani, Abduljabbar, \& Marsh, 2013; see also Marsh, 1986)

RESULTS OF FACTOR CORRELATION						
	1	2	3	4	5	6
1. Affective	1					
2. Cognitive	. 51	1				
3. Behavioral	. 49	. 36	1			
4. Friend	. 39	. 25	. 31	1		
5. Parent	. 34	.41	. 27	. 34	1	
6. Teacher	. 33	. 28	. 32	. 27	. 21	1
All correlation coefficients are statistically significant but not alarmingly high discriminant validity Also used fornell \& Larker's methoul						
2018 M3 UCONN, May 21-24 Waker \& Wid						

DISCRIMINANT VALIDITY

DISCRIMINANT VALIDITY is being established if the square root of the average variance extracted (AVE) for each latent variable is higher than any of the bivariate correlations involving the latent variables in the proposed theories (Fornell \& Larcker, 1981)

	1	2	3	4	5	6
1. Affective	(.88)					
2.Cognitive	. 51	(.74)				
3. Behavioral	. 49	. 36	(.74)			
4. Friend	. 39	. 25	. 31	(.69)		
5. Parent	. 34	. 41	. 27	. 34	(.72)	
6. Teacher	. 33	. 28	. 32	. 27	. 21	(.79)

Measurement Invariance Testing

H\#2: Multidimensional attitudes and social norms scales in math are conveyed the same meaning across the national groups [USA, Hong Kong, and Singapore]
> In order to avoid getting the results by chance... Sample data was divided into 2 sets of data from each country
> First half [derivation] sample [$N=7,506$] was used for initial MI investigation
> Second half [cross-validation] sample [$/=7513$] was employed to replicate results

Why Measurement Invariance Testing?

2. Multidimensional attitudes and social norms scales in math are conveyed the same meaning across the national groups [USA, Hong Kong, and Singapore]

If measurement were not invariant across groups, conclusions of a study and/or interpretations of a research finding would he hias, weak, or misleading
(Hom \& McArdle, 1992; Schmitt, \& Kuljanin, 2008; Widaman \& Reise, 1997; Yap et al, 2014)

SEQUENTIAL FACTORIAL MEASUREMENT INVARIANCE TESTING

	Types of invariance	descrintion
Step 1:	Configural	Same pattern of fixed and free loadings
Step 2:	Weak (Metric)	Factor loadings are constrained
Step 3:	Strong (Scalar)	Item intercepts are constrained + Step 2
Step 4:	Strict	Unique variances are constrained + Step 3

Step $4 \boldsymbol{\rightarrow}$ This occurs hardly ever in empirical research (Schmitt \& Kuljanin, 2008;Widaman \& Reise, 1997)

Ex] common factor model

RESULTS OF SEQUENTIAL FACTORIAL MEASUREMENT INVARIANCE TESTING

Model	X 2	df	RMSEA (90\% CI)	CFI	TLI
First Half Samples (Derivation)					
Model 1	1119.24	462	$.036(.034-.037)$.967	.959

RMSEA = Root Mean Square Error of Approximation; CFI = Comparative Fit Index; TLI = Tucker-Lewis index (also called the non-normed fit index)

Step 1:Configural invariance model thaseline model]

- Considerably good fit to data
\rightarrow [RMSEA: less than .06; CFI: close to or greater than .95]
- Facture structure of the all constructs [latent factors) had heen measured the same way across groups
\rightarrow i.i.., patterns of indicator-latent factor relations were equivalent

RESULTS OF SEQUENTIAL FACTORIAL MEASUREMENT INVARIANCE TESTING					
Model	x^{2}	df	RMSEA (90\% CI)	CFI	TLI
First Half Samples (Derivation)					
Model 1	1119.24	462	. 036 (.034-.037)	. 967	. 959
Model 2	2114.87	490	. 036 (.035-.038)	. 963	. 957
Step 2: Weak [metric] invariance model factor loadings are constrai - Results of Model 2 did not differ much from the haseline model \rightarrow Still good fit to data [RMSEA: less than .06; CFI: greater than .95] - 6 latent factors being measured by the same items across groups [USA, Hong Kong, \& Singapore]					
2018 M3 UCONN, May 21-24 Walker \& Widam					

TESTING MEASUREMENT INUARIANGE mULTIGROUP CONFIRMATORY FAGTOR ANALYSIS APPROACH

Step 3: Strong [Scalar) invariance = same intercepts [+ step2] across groups

$$
\operatorname{ExI} \tau^{A}{ }_{a f f l}=\tau^{B}{ }_{a f f l}=\tau^{C}{ }_{a f f l}
$$

2018 M3 UCONN, May 21-24
Walker \& Widaman

DISCUSSIONS \& IMPLICATIONS

- Results confirmed that the measurements hold equivalence across national groups [USA, Hong Kong, and Singapore] at the level of strong/scalar factorial invariance
- The factorial structures of attitude and social norm scales reflected well as hypothesized as multidimensional constructs
- Thus, the current study findings contributed to the theory and measurement development of multidimensional attitude and social Norm constructs

LIMITATIONS \& FUTURE RESEARCH

- 15 years old students from USA, Hong Kong, \& Singapore
-Gender comparisons?
- Other PISA participating countries?
- The 3 factor- model of attitudes and social norms in math may serve as valuable instruments in the future research to study which components of math attitude/social norm would he associated with math achievement
- The 3 factor-model of attitude and social norm may applied to different disciplines instead of math

THANK YOU FOR COMING

Any questions or concerns??
keith.widaman@ucr.edu;
Distinguished Professor \& Associate Dean
sounghwa.walker@ucr.edu Lecturer

