INTRODUCTION

- Fit indices are used to describe model fit in structural equation modeling (SEM).
- For instance, the standardized root mean squared residual (SRMR) measures the mean value of residual correlation left after an SEM model has been fit to the data.
- Fit indices were meant to be used as effect sizes but often function as informal check tests (ICTs).
- To disentangle fit indices from ICTs, an inferential test, like an equivalence test (ET), may be introduced to evaluate model fit.
- There are already ETs for certain fit indices but there is not yet one for SRMR.

The present study had two goals:
- Propose variations of SRMR ETs.
- Compare the performance of these tests to one another and to ICTs using a Monte Carlo simulation study.

DEVELOPING EQUIVALENCE TESTS

- In SEM, equivalence tests compare the misspecification in an identified model to a minimally tolerable size of misspecification.
- This involves comparing a given bound of a fit index’s confidence interval (CI) to an equivalence bound (EB; one bound of an equivalence interval).

PROPOSED EQUIVALENCE TESTS

- EBs were either unmodified or modified:
 - Unmodified EBs: .05 or .08.
 - Modified EBs: proposed by Shi et al. (2018) and Shi et al. (2022) where .05 or .10 was multiplied by the average R^2 of the observed indicators (\bar{R}^2).
- The ET was based on either the original SRMR (Bentler, 1995) or the unbiased SRMR (Maydeu-Olivares, 2017).
- The confidence interval was either computed via a YHY bootstrap (Yuan et al., 2007) or via a method derived by Maydeu-Olivares (2017).

MONTE CARLO METHOD

- We adapted three population generating models from Chen et al. (2007) for our simulation study.
- The two primary factors manipulated were sample size and model misspecification:
 - $N = 50, 75, 100, 200, 400, 800, 1000, and 5000$.
 - Misspecification type = (1) non-negligible (SRMR \geq EB), (2) negligible (SRMR < EB), and (3) perfect.
- Replications = 1000 & bootstraps samples = 500.

Example population generating model.

RESULTS

Non-Negligible Misspecification
- Error rates were generally higher in small sample sizes for all ETs with errors occurring under 5% of the time for all models/sample sizes.
- ICTs tended to have error rates that were similar or higher than the corresponding equivalence tests.
- When misspecification was set at the EB, tests using the Maydeu-Olivares CI had error control within the Bradley (1978) liberal criterion.

Model 3. $N = 50.$

Negligible Misspecification
- All ETs reached a power of ~1 by $N = 5000$.
- $ESRMR_{0.05}$ reached the power ceiling the quickest of all ETs, but $ESRMR_{0.08}$ had the highest power at the lowest sample sizes, and was comparable to $ESRMR_{0.08}$ by $N = 200$.

Model 1. $N = 100.$

Perfect Fit
- Most ETs reached a power of 1 by $N = 1000$.
- Again, $ESRMR_{0.05}$ reached the power ceiling the quickest, but $ESRMR_{0.08}$ was relatively comparable to $ESRMR_{0.08}$ at all sample sizes and models.

DISCUSSION

- We recommend the $ESRMR_{0.08}$ ET due to its good combination of power and Type I error control.
- We hope equivalence tests for SRMR assist SEM researchers evaluating model fit.