Overview O	Heterogeneity 0000	Multi-VAR 00000	Subgrouping Multi-VAR 00000	Simulation Results	Future Directions

Penalized Subgrouping of Heterogeneous Time Series

Christopher Crawford, Jonathan Park, Sy-Miin Chow, & Zachary Fisher The Pennsylvania State University Department of Human Development and Family Studies cmcrawford@psu.edu

June 28, 2023

Overview	Heterogeneity	Multi-VAR	Subgrouping Multi-VAR	Simulation Results	Future Directions
●	0000	00000	00000	00000	000
Goals					

- Contextualizing Heterogeneity
- Multi-VAR
 - Goals of Multi-VAR
 - Limitations
- Multi-VAR with Subgrouping
 - Why Subgroup?
 - Simulation Results
- Next Steps

Overview 0	Heterogeneity ●000	Multi-VAR 00000	Subgrouping Multi-VAR 00000	Simulation Results	Future Directions
Outlin	ie				

Multi-VAR

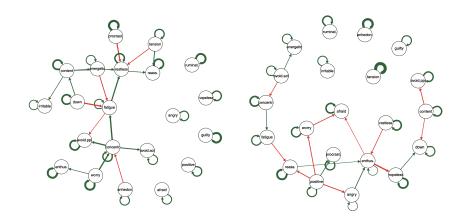
- **3** Subgrouping Multi-VAR
- **4** Simulation Results

6 Future Directions

- 一司

臣

Types of Heterogeneity


- Quantitative: Differences in magnitude
- Qualitative: Differences in structure
- Major Depressive Disorder, for example, is characterized by both types of heterogeneity
 - Two individuals with a DSM-5 diagnosis of MDD could share no single symptom
 - Symptomatology can differ in both *presence* and *degree*

Multi-VAI 00000 Subgrouping Multi-VAR

Simulation Results

Future Directions

Depression Networks

• • • • • • • •

3.5 3

Accounting for Heterogeneity

- Two ends of the heterogeneity spectrum: Nomothetic vs. Idiographic
- Multilevel models (and other flavors)
 - Account for heterogeneity in the magnitude of parameters
 - May be overly restrictive with respect to the functional form of the model
- Person-specific models
 - Allows for maximal flexibility
 - Disregards potential shared information
- Can we find a balance between these two?

Overview O	Heterogeneity 0000	Multi-VAR ●0000	Subgrouping Multi-VAR 00000	Simulation Results	Future Directions
Outlin	ie				

2 Multi-VAR

3 Subgrouping Multi-VAR

4 Simulation Results

6 Future Directions

- 一司

표 문 표

- Goal: Retain desirable features of canonical VAR while addressing concerns
- For multiple-subject ILD, we want to estimate Φ¹,..., Φ^K transition matrices for 1,..., K individuals
- Consider the following decomposition of Φ :

$$\mathbf{\Phi}^k = \mathbf{\Gamma}^0 + \mathbf{\Gamma}^k, \ k = 1, \dots, K$$

- Γ^0 is a $d \times d$ matrix of common effects across K individuals
- $\mathbf{\Gamma}^k$ is a $d \times d$ matrix of effects unique to individual k
- Quantitative and qualitative differences across individuals

Overview Heterogeneity Multi-VAR Subgrouping Multi-VAR Simulation Results Future Directions

Standard Multi-VAR

 Fisher et al. (2022) proposed one approach for estimating Φ^k using the Lasso penalty:

$$\underset{\boldsymbol{\Gamma}=(\boldsymbol{\Gamma}^{0},\boldsymbol{\Gamma}^{1},\ldots,\boldsymbol{\Gamma}^{K})}{\operatorname{argmin}} \frac{1}{N} \sum_{k=1}^{K} \|\boldsymbol{\Upsilon}^{k}-(\boldsymbol{\Gamma}^{0}+\boldsymbol{\Gamma}^{k})\boldsymbol{Z}^{k}\|_{2}^{2} + \lambda_{1}\|\boldsymbol{\Gamma}^{0}\|_{1} + \sum_{k=1}^{K} \lambda_{2}\|\boldsymbol{\Gamma}^{k}\|_{1}$$

- Sparsity in individual transition matrices Φ^k induced and determined by penalty parameters λ₁ and λ_{2,k}
- Heterogeneity of solution determined by the competition of the two penalty parameters
- However, Lasso penalty suffers from a number of known issues (e.g., (Zhao & Yu, 2006)

Adaptive Multi-VAR

• Fisher et al. (2022) proposed an objective function for Multi-VAR with adaptive Lasso (Zou, 2006):

$$\frac{1}{N}\sum_{k=1}^{K} \|\mathbf{Y}^{k} - (\mathbf{\Gamma}^{0} + \mathbf{\Gamma}^{k})\mathbf{Z}^{k}\|_{2}^{2} + \lambda_{1}\boldsymbol{\omega}\|\mathbf{\Gamma}^{0}\|_{1} + \sum_{k=1}^{K}\lambda_{2}\boldsymbol{\nu}_{k}\|\mathbf{\Gamma}^{k}\|_{1}$$

- $\omega_j = \frac{1}{|\tilde{B}_{\ell_j,j}|}$ • $\nu_{k,j} = \frac{1}{|\tilde{B}_{k,j} - \tilde{B}_{\ell_j,j}|}$
- $\tilde{B}_{\ell_j,j} = \text{median}(\tilde{B}_{1,j}, \dots, \tilde{B}_{K,j})$
- \tilde{B}_k are some consistent initial estimate from individual-level models
 - Can be obtained via MLE, Ridge, or Lasso

・ 同 ト ・ ヨ ト ・ ヨ ト

Multi-VAR Networks

Image: A matrix and a matrix

E

Overview O	Heterogeneity 0000	Multi-VAR 00000	Subgrouping Multi-VAR ●0000	Simulation Results	Future Directions
Outlir	ie				

Multi-VAR

3 Subgrouping Multi-VAR

4 Simulation Results

6 Future Directions

- 一司

臣

- In addition to shared and unique effects, subgroups of individuals may exhibit qualitative/quantitative similarities
 - Diagnostic status
- Identification of subgroup-level effects can be of substantive interest
 - Matching prevention/intervention efforts to subgroup characteristics
 - Early warning sign for onset of depressive episode (Whichers et al., 2016, 2019)
- Subgroups are also of interest for predictive goals
 - If subgroups are present, accurate model recovery will improve predictive accuracy

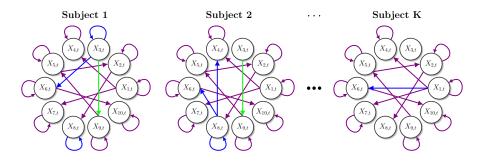
ヨト イヨト

Subgroup Partition

• We can add an additional partition:

$$\mathbf{\Phi}^{k} = \mathbf{\Gamma}^{0} + \mathbf{\Gamma}^{s} + \mathbf{\Gamma}^{k}$$
$$s = 1, \dots, S, \ k = 1, \dots, K$$

- Γ^s is a $d \times d$ matrix of subgroup effects for a given subgroup s
- Objective function now incorporates this further decomposition:


$$\frac{1}{N}\sum_{k=1}^{K} \|\mathbf{Y}^{k} - (\mathbf{\Gamma}^{0} + \mathbf{\Gamma}^{s} + \mathbf{\Gamma}^{k})\mathbf{Z}^{k}\|_{2}^{2} + \lambda_{1}\omega\|\mathbf{\Gamma}^{0}\|_{1} + \sum_{s=1}^{S}\lambda_{2}\boldsymbol{\tau}_{s}\|\mathbf{\Gamma}^{s}\|_{1} + \sum_{k=1}^{K}\lambda_{3}\boldsymbol{\nu}_{k}\|\mathbf{\Gamma}^{k}\|_{1}$$

Overview	Heterogeneity	Multi-VAR	Subgrouping Multi-VAR	Simulation Results	Future Directions
O	0000	00000	000●0	00000	000
Walkt	rap				

- Procedure for identifying subgroups and estimating subgroup-specific effects in a data-driven manner:
 - 1 Estimate transition matrices via Multi-VAR without subgrouping
 - ② Create adjacency matrix where each element represents the number of shared effects between two people (presence and sign)
 - O Apply Walktrap algorithm to the adjacency matrix
 - **4** Estimate transition matrices via Multi-VAR using derived subgroups
- Walktrap is a random walk approach that merges communities in a bottom-up fashion using Ward's clustering (Pons & Lapaty, 2006; Ward, 1963)
- Performs well in other methodological frameworks characterized by heterogeneous time series (e.g., Gates et al., 2017; Lane et al., 2019; Park et al., 2022)

Overview O	Heterogeneity 0000	Multi-VAR 00000	Subgrouping Multi-VAR 0000●	Simulation Results	Future Directions

Subgroup Networks

◆□▶ ◆□▶ ◆□▶ ◆□▶

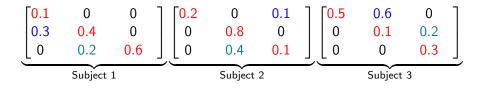
E

Overview O	Heterogeneity 0000	Multi-VAR 00000	Subgrouping Multi-VAR	Simulation Results ●0000	Future Directions
Outlin	e				

- Multi-VAR
- **3** Subgrouping Multi-VAR
- G Simulation Results

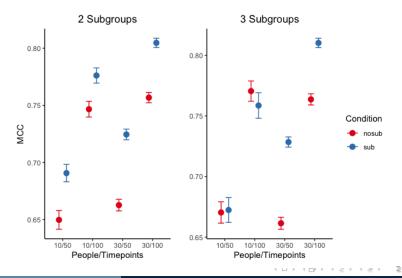
6 Future Directions

Э


Simulation Design

- Number of timepoints: 50, 100
- Number of individuals: 10. 30 •
- Number of subgroups: 2, 3
- For 3 subgroup condition: 20%, 20%, 60%
- 10 variables for each condition
- 50 iterations for each condition
- Data with subgroups present simulated
- Adaptive Multi-VAR with and without subgrouping fit to data
- Initial estimates for adaptive weights obtained using Lasso

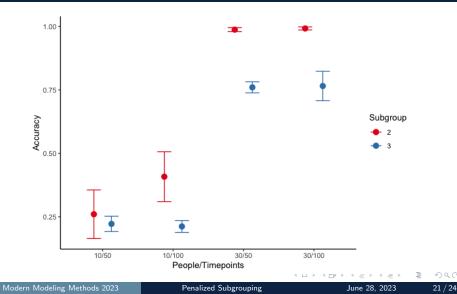
Simulation Design


- Group Effects: All autoregressive paths
- Subgroup Effects: 5% of possible paths
- Individual Effects: 5% of possible paths
- All effects drawn from $\mathcal{U}(0,1)$

 $\exists \rightarrow$

Overview	Heterogeneity	Multi-VAR	Subgrouping Multi-VAR	Simulation Results	Future Directions
O	0000	00000	00000	000●0	

Confirmatory Results



Modern Modeling Methods 2023

20 / 24

Overview	Heterogeneity	Multi-VAR	Subgrouping Multi-VAR	Simulation Results	Future Directions
O	0000	00000	00000	0000●	

Subgroup Recovery

Overview O	Heterogeneity 0000	Multi-VAR 00000	Subgrouping Multi-VAR	Simulation Results	Future Directions ●00
Outlin	e				

- 2 Multi-VAR
- **B** Subgrouping Multi-VAR
- O Simulation Results

6 Future Directions

Э

< ∃ →

Future Directions

- Possible remedies to poor subgroup recovery in small-sample and unbalanced scenarios
- Multi-VAR with subgrouping applied to real data
 - E.g., Diagnostic data
- Exploration of alternative algorithms for data-driven subgrouping
 - E.g., Fused Lasso

→ < ∃ >

geneity

Multi-VAR

Subgrouping Multi-VAR

Simulation Results

Future Directions

Thank you!

< 口 > < 同 >

E