GLMMs for Overdispersed Count Data in SCED Studies: Does Autocorrelation Matter?

Haoran Li, Wen Luo, Eunkyeng Baek, Kwok Hap Lam, Wenyi Du, Noah Koehler Texas A&M University June 28, 2023

1

Definition of Single-Case Research

Single-case research is the intensive study of a **single case** or **small samples** by **repeatedly measuring** an outcome before and after an intervention to examine treatment effects.

Multiple Baseline Design

Multiple baseline design (MBD) is comprised of interrupted time series data from multiple cases, settings, or behaviors where an intervention is introduced **sequentially** within different time series (Baek & Ferron, 2013; Ferron et al., 2010).

- The basic interrupted time series in MBD include two phases: baseline and treatment.
- Inferences about the intervention are usually made by comparing different conditions (baseline vs. treatment) presented to cases over time.

Challenges

Nonnormal outcomes in SCEDs such as count and proportion data

How to deal with autocorrelated count data with trend effects

- A false positive conclusion is likely to be obtained via visual analysis for count and proportion data due to the dependency between mean and variance.
- Visual analysis cannot appropriately deal with autocorrelation, which could lead to inconsistent results and inflated type-I error rates.

Generalized Linear Mixed Models (GLMMs)

Data consideration:

• Provide various distributions for count and proportion data (e.g., Poisson and binomial).

Examples:

- Poisson: number of problematic behaviors observed during a session.
- Binomial: number of intervals of observing social interactions out of a total number of intervals during a session.

GLMMs

GLMMs have the general form $y|u \sim Distr(\mu, V\mu), g(\mu) = X\beta + Zu$,

 $Y_{ij} \sim Poisson(\lambda_{ij})$

 $\text{Level 1:} \log(\lambda_{ij}) = \beta_{0j} + \beta_{1j} Time_{ij} + \beta_{2j} Phase_{ij} + \beta_{3j} Time'_{ij} Phase_{ij}$

Level 2: $\begin{cases} \beta_{0j} = \gamma_{00} + u_{0j} \\ \beta_{1j} = \gamma_{10} + u_{1j} \\ \beta_{2j} = \gamma_{20} + u_{2j} \\ \beta_{3j} = \gamma_{30} + u_{3j} \end{cases}$ $\begin{bmatrix} \mu_{0j} \\ \mu_{1j} \\ \mu_{2j} \\ \mu_{3j} \end{bmatrix} \sim MVN \left(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u0}^2 & \sigma_{u0u1} & \sigma_{u0u2} & \sigma_{u0u3} \\ \sigma_{u1u0} & \sigma_{u1}^2 & \sigma_{u1u2} & \sigma_{u1u3} \\ \sigma_{u2u0} & \sigma_{u2u1} & \sigma_{u2}^2 & \sigma_{u2u3} \\ \sigma_{u3u0} & \sigma_{u3u1} & \sigma_{u3u2} & \sigma_{u3}^2 \end{bmatrix} \right),$

However, the Poisson distribution assumes that the E(Y) = Var(Y), which is often violated due to a data issue called overdispersion.

Overdispersion

Overdispersion in count data occurs when there is excessive variance than what a Poisson can deal with.

• Overdispersed count data: $Var(Y) > E(Y) = \lambda$

Overdispersion source: correlated measurements, extra noise, and zero-inflation.

Overdispersion is not uncommon for count data in SCEDs (Pustejovsky et al., 2019).

Ignoring overdispersion could lead to **biased** standard errors and **inflated** Type I error rates (Hilbe, 2011, 2014; Li et al., 2023).

Models to Handle Overdispersed Count Data

Negative binomial: $Y_{ij} \sim \text{Negative binomial} (\lambda_{ij}, \theta)$

• $E(Y) = \lambda$ and $var(Y) = \lambda + \frac{\lambda^2}{\theta}, \theta > 0$

Observation-level random effects (OLRE) model: $Y_{ij} \sim \text{Poisson} (\lambda_{ij})$

- $\log(\lambda_{ij}) = \beta_{0j} + \beta_{1j} Time_{ij} + \beta_{2j} Phase_{ij} + \beta_{3j} Time'_{ij} Phase_{ij} + e_{ij}, e_{ij} \sim N(0, \sigma_e^2)$
- $E(Y) = \lambda$ and $var(Y) = \lambda + \lambda^2 [exp(\sigma_e^2) 1]$

GLMMs with SCED count data

Performance

	Data generation	Fitted model	Estimation method	Estimates accurate?	Inferential results reliable?
Data generation Prited model Estimation method accurate? Negative binomial Poisson ✓ Negative binomial Negative binomial Laplace (Wald test) ✓ OLRE ✓ ✓ Negative binomial Poisson ✓ Negative binomial Poisson ✓ OLRE ✓ ✓ OLRE ✓ ✓ OLRE OLRE ✓ OLRE ✓ ✓ OLRE ✓ ✓		Poisson		\checkmark	X
	Negative	Negative binomial	Laplace (Wald test)	\checkmark	Х
	Х				
	Negative binomial	Poisson	Pseudo likelihood	\checkmark	\checkmark
		Negative binomial	(t test with Kenward-	\checkmark	\checkmark
		OLRE	Roger)	\checkmark	\checkmark
Count data		Poisson		\checkmark	Х
	OLRE	Negative binomial	Laplace (Wald test)	\checkmark	Х
		OLRE		\checkmark	Х
	OLRE	Poisson	Pseudo likelihood	\checkmark	\checkmark
		Negative binomial	(t test with Kenward-	\checkmark	\checkmark
		OLRE	Koger)	\checkmark	\checkmark

9

When count data are **Not** overdispersed:

Li, H., Luo, W., Baek, E., Thompson, C. G., & Lam, K. (in press). Multilevel modeling in single-case studies with count and proportion data: A demonstration and evaluation. *Psychological Methods*.

GLMMs with SCED count data

Performance

	Data generation	Fitted model	Estimation method	Estimates accurate?	Inferential results reliable?
		Poisson		\checkmark	Х
	Negative binomial	Negative binomial	Laplace (Wald test)	\checkmark	Х
Count		OLRE		\checkmark	Х
data	Negative binomial	Poisson	Pseudo likelihood	\checkmark	X
		Negative binomial	(t test with Kenward-	\checkmark	\checkmark
		OLRE	Roger)	\checkmark	\checkmark
	OLRE	Poisson		\checkmark	Х
		Negative binomial	Laplace (Wald test)	\checkmark	Х
Count		OLRE		\checkmark	Х
data	OLRE	Poisson	Pseudo likelihood	\checkmark	X
		Negative binomial	(t test with Kenward-	\checkmark	\checkmark
		OLRE	Roger)	\checkmark	\checkmark

When count data are **Overdispersed**:

A Remaining Issue

- Did not consider autocorrelations in the data generation process. In fact, previous reviews found that the overall magnitude of autocorrelation among SCED data was small (ρ=.20, Shadish & Sullivan, 2011) to moderate (ρ=.46, Barnard-Bark et al., 2021).
- Some researchers argued that GLMMs with distributions for overdispersion (e.g., NB models) can account for autocorrelated errors because one potential source for overdispersion is autocorrelation (Barron, 1992; Hilbe, 2011), this has not been tested in the context of SCEDs.

A Promising Solution

Observation-level random effect model with an AR(1) error structure (OLRE_AR1): $Y_{ij} \sim \text{Poisson}(\lambda_{ij})$

- $\log(\lambda_{ij}) = \beta_{0j} + \beta_{1j}Time_{ij} + \beta_{2j}Phase_{ij} + \beta_{3j}Time'_{ij}Phase_{ij} + \frac{e_{ij}}{e_{ij}} AR(1)$
- $E(Y) = \lambda$ and $var(Y) = \lambda + \lambda^2 [exp(\sigma_e^2) 1]$

GLMMs with SCED autocorrelated count data

Purpose: Performance of GLMMs

1) Are the estimates of treatment effects from Poisson, NB, and OLRE models still accurate ?

2) Can we still trust inferential results?

3) Does the newly introduced OLRE_AR model have better performance?

Simulation Conditions

Parameter	Value	Rationale
Series length (I)	10 (starting points of the intervention: 3, 4, 6, 7) or 20 (starting points of the intervention: 6, 8, 12, 14)	Typical SCED setting
Number of cases (J)	4 or 8	Typical SCED setting
γ10	log (1.00)	
γ ₂₀	log (1.00), log (1.50) or log (3.00)	Zero, medium, and large immediate treatment effects
Y ₃₀	log (1.00), log (1.05) or log (1.10)	Zero, medium, and large treatment effects on the trend
σ_{u0}^2	0.1	
σ_{u1}^2	0.0001	Mate englytical regults of SCEDs with count data
σ_{u2}^2	0.1	Meta-analytical results of SCEDs with could data
σ_{u3}^2	0.0001	
Autocorrelation (ρ)	0.1, 0.3, 0.5, 0.7, or 0.9	Review of SCEDs
$[\gamma_{00},\sigma_e^2]$	[log (4.77), 0.095], [log (4.57), 0.182] or [log (4.39), 0.262]	Baseline level: $\exp(\gamma_{00} + \sigma_e^2/2) = 5.00$ Dispersion ratio: 1.5, 2.0, 2.5

There was a total of 540 conditions, and each had 1000 independent datasets (i.e., replications) generated from the OLRE_AR model.

Data Analysis for the Primary Simulation

We fitted Poisson, NB, OLRE and OLRE_AR models estimated by pseudo-likelihood using SAS GLIMMIX Procedure.

- Convergence issues for OLRE_AR models. Random effects for the trend effects are removed
- The t test with Kenward Roger adjustment was adopted to conduct statistical inference for treatment effects.

Performance measures:

- Bias, MSE and coverage rate of the immediate treatment effect and treatment effect on the trend
- Type I error rates

Results of Simulation

• Bias, Coverage Rate, and MSE

Table 2

Bias, Coverage Rate, and MSE of Estimators of Immediate Treatment Effect and Treatment Effect on the Trend

Performance	AR	Immediate treatment effect (γ_{20})				Treatment effect on the trend (γ_{20})			
		Poisson	NB	OLRE	OLRE_AR	Poisson	NB	OLRE	OLRE_AR
Bias		-0.011	-0.008	-0.011	-0.009	-0.009	-0.006	-0.006	-0.002
Coverage rate	0.1	.908	.941	.944	.954	.924	.956	.959	.937
	0.3	.907	.934	.937	.954	.915	.942	.945	.931
	0.5	.908	.925	.928	.952	.907	.927	.930	.922
	0.7	.918	.928	.928	.952	.905	.914	.915	.904
	0.9	.931	.938	.938	.954	.915	.922	.923	.882
MSE		0.117	0.116	0.113	0.117	0.011	0.010	0.010	0.009

Note. NB = negative binomial; OLRE = observation-level random effects.

Results of Simulation

• Type I Error Rate

Table 3

Type I Error Rates of Tests for Immediate Treatment Effect/Treatment Effect on the Trend with Count Data

Performance	AR	Immediate treatment effect (γ_{20})				Treatment effect on the trend (γ_{30})			
		Poisson	NB	OLRE	OLRE_AR	Poisson	NB	OLRE	OLRE_AR
Type I error rate	0.1	.090	.057	.054	.053	.076	.044	.041	.065
	0.3	.095	.064	.062	.055	.085	.057	.053	.072
	0.5	.094	.074	.071	.055	.092	.073	.071	.080
	0.7	.084	.071	.071	.057	.095	.085	.083	.101
	0.9	.068	.060	.060	.049	.083	.077	.076	.121

Note. NB = negative binomial; OLRE = observation-level random effects.

Implications and Discussion

- Overall, all models yield accurate estimates for the immediate treatment effect and treatment effect on the trend.
- For immediate treatment effects, OLRE_AR models can successfully control type I error rate at all levels of autocorrelation, while inferential statistics from Poisson models are anticonservative. NB and OLRE models can still control type I error rate when the autocorrelation is small (0.1 or 0.3).
- For treatment effects on the trend, the inferential statistics from OLRE_AR models do not outperform than other models in terms of controlling type I error rates.

Limitations and Future Research Agenda

- Simulated data based on the MBD across cases, which is the most common design in SCEDs. However, other designs such as ABAB designs are not uncommon in single-case studies.
- Only considered the positive valance outcomes.
- Convergence issues were frequently encountered for OLRE_AR models when adding random effects for trend effects.

Thank You

