Understanding Group Effects
 Using the Co-Partner Design

David A. Kenny

University of Connecticut davidakenny.net/doc/KennyM3_23.pdf

Overview

\square Introduction

\square Model Specification

- Design Examples
- Estimation
\square Results
\square Additional Issues

Group Effects:

The Traditional Story

\square A group effect is added to each group member's score
\square Person i in group $j: Y_{i j}=m+I_{j}+e_{i j}$
$\square I_{j}$ is often called a random intercept.
\square Analogous to the common fate effect in dyadic models.

Is that how group effects work?

 An alternative model: Partner Effects\square Imagine you are playing on golf team and you can add to your team one of two persons:

Alice

Ted

Alice

- Praises you when you make good shots and does not criticize you when play poorly.
- Plays quickly but does not rush you.
- Makes humorous comments and makes you laugh.

Ted

- Complains when you make a poor shot.
- Plays slow and is overly deliberate.
- Gets angry when he makes a bad shot.

How are you going to play?

- Perhaps you would play better with Alice and poorly with Ted.
- Perhaps how well you play depends on with whom you play: a partner effect.
- Partner effects as an alternative to the random intercept formulation of group effects.
口 How can we model partner effects?

Model Specification

Model of Partner Effects

Three person group:

$$
\begin{aligned}
& Y_{1 j}=m+p_{2}+p_{3}+e_{1 j} \\
& Y_{2 j}=m+p_{1}+p_{3}+e_{2 j} \\
& Y_{3 j}=m+p_{1}+p_{2}+e_{3 j}
\end{aligned}
$$

Empirically, the partner effect model is indistinguishable from the random intercept model, unless ...

Each Person in Multiple Groups

\square That way you can see if people perform better when some people are in their group and worse if other people are in the group.

- Also in the model:
- Actor effects: Some people perform better than others, regardless of whom is in their group.
- Random intercepts

Co-Partner Model

$X_{i(k) m}=\mu+a_{i}+p_{j}+p_{k}+I_{m}+e_{i(j k) m}$ μ : overall mean a_{i} : actor effect
p_{j} and p_{k} : partner effects
I_{m} : random intercept
$e_{i(j k) m}:$ error

Model Parameters

m : overall mean
$\sigma_{a}^{2}:$ actor variance
$\sigma_{p}^{2}:$ partner variance
$\sigma_{a p}:$ actor-partner covariance
$\sigma_{I}^{2}:$ group variance
$\sigma_{e}^{2}:$ error variance

References for the Co-Partner Model

- Bond, C. F., Jr, \& Kenny, D. A. (2002). The triangle of interpersonal models. Journal of Personality \& Social Psychology, 83, 355-366.
\square Bond, C. F., Jr., \& Cross, D. (2008). Beyond the dyad: Prospects for social development. In N. A. Card, J. P. Selig, \& T. D. Little (Eds.), Modeling dyadic and interdependent data in the developmental and behavioral sciences (pp. 387-409). Routledge/Taylor \& Francis Group ${ }_{4}$

Design Examples

Data Examples

- Problem Solving Groups
- Hallmark (1991) Masters Thesis
- 108 persons in 4 3-person groups
- outcome: liking of others
- Golf Study
- 45 golfers, 432 groups, over 58 days
- 3- and 4-member teams
- outcome: individual performance`

Multiple Group Designs: Balanced

\square Rotation design used by Hallmark (1991)
\square Group of size $n ; n^{2}$ persons; each person in $n+1$ groups
\square Consider 9 persons: A,B,C,D,E,F,G,H,I

ABC	ADG	AEH	AFH
DEF	BEH	BFG	BDI
GHI	CFI	CDH	CEG

\square Each person is in four groups and with each of the other eight persons.

Multiple Group Designs: Haphazard

\square Ideally, each person is assigned to many groups

- Design used in Golf Study
- 45 golfers
- Teams with 3 or 4 members
- The typical golfer was in 29 groups with 79 partners. Some were the same person, as there were 44 playing partners available.

Estimation

Estimation of the Partner Model: ANOVA with a Balanced Design

ㅁ Steps

- Estimate actor, partner, group, and residual effects.
- Compute their variance (mean squares) and the actor-partner covariance (mean crossproducts).
- Determine what the these quantities equal in terms of the models' parameters.
- Problematic with missing data and covariates 20

Estimation of the Partner Model: MLM with a Haphazard Design

- Adopts the strategy discussed in Snijders \& Kenny (1999).
\square Uses dummy variables $\{0,1\}$ for actor and partner effects for each person.
- Constrains variance-covariance matrix of random effects (tau matrix).
- Requires SAS or MLwiN.

Covariance Matrix of Random Effects

$$
\begin{array}{l|llllll}
a_{1} & s_{a}^{2} & & & & & \\
a_{2} & 0 & s_{a}^{2} & & & & \\
a_{3} & 0 & 0 & s_{a}^{2} & & & \\
p_{1} & s_{a p} & 0 & 0 & s_{p}^{2} & & \\
p_{2} & 0 & s_{a p} & 0 & 0 & s_{p}^{2} & \\
p_{3} & 0 & 0 & s_{a p} & 0 & 0 & s_{p}^{2} \\
\hline & a_{1} & a_{2} & a_{3} & p_{1} & p_{2} & p_{3}
\end{array}
$$

Files: Hallmark Study

ㅁ Data

- davidakenny.net/doc/hallmark.sas7bdat
- SAS (MLM analysis)
- davidakenny.net/doc/co_partner_SAS.pdf
\square R (ANOVA analysis)
- davidakenny.net/doc/co_partner_R.pdf

Results

Hallmark Study: Actor and Partner Effects

\square Outcome: Sum of two measures across two partners

- To what extent would you be willing to talk intimately with this person?
- To what extent would you be willing to meet this person?
- Effects
- Actor Effect: Does a person consistency like or dislike others in the group?
- Partner Effect: Does having a particular person in the group lead to more or less liking of group members?
- Group Effect: Do people in some groups get along better than people in other groups?

Hallmark Study: Liking of Others

Component Percent Variance
Actor
51.6*

Partner 6.7*

Group
6.9*

Residual
34.8

Actor-Partner Correlation: . 061 (ns)
Fixed effect of time: 0.11*

$$
* p<.05
$$

Golf Study: Actor and Partner Effects

\square Outcome: Points earned: Stableford system

- Effects
- Actor Effect: Does a golfer consistently play better or worse?
- Partner Effect: Does playing with a particular golfer lead one to play better or worse?
- Group Effects: Do some groups play better than others?
- Day Effect: Do golfers play better on some days than others?

Golf Study: Points Earned

Component Percent Variance

Actor
Partner
Team
Day
Error
68.7*
0.1
1.5*
3.0*
26.8

Actor-Partner Correlation: -. 411 (ns)

$$
* p<.05
$$

Golfer DAK's Performance?

- Actor Effect: 16 out of 45
- Partner Effect: 38 out of 45

Additional Issues

Design Issues

- Distinguishable Members
- Doctor, Nurse, Pharmacist
- Unequal Group Sizes: Effect of Partner
- Sum
\square Average

Relation to the Social Relations Model

\square For groups with two members, the model becomes the Social Relations Model.

- The dyadic reciprocity in the Social Relations Model becomes the group effect in the Co-Partner Model.
\square Can add dyadic terms to the model.
- Dave plays better golf when Bruce is on his team, but others do not play better with Bruce.

Estimation Alternatives

\square Partner effects could be estimated using "multiple membership" strategy; however, unable to estimate covariance of actor and partner effects.

- Possibility of using a strategy developed by Andrew Knight to use lmer in R to estimate the model.
- Bayesian Estimation

Thank You!

davidakenny.net/doc/KennyM3_23.pdf

