ESEM, CFA, and Somewhere In-Between: The Effect of Measurement Quality on Model Fit Sensitivity

Tim Konold, Ph.D., University of Virginia Liz Sanders, Ph.D. University of Washington

ESEM, CFA, and Somewhere In-Between: The Effect of Measurement Quality Cross Loading Sign on Model Fit Sensitivity

Tim Konold, Ph.D., University of Virginia Liz Sanders, Ph.D. University of Washington

4

W UNIVERSITY of WASHINGTON

E =

UNIVERSITY VIRGINIA

SCHOOL of EDUCATION and HUMAN DEVELOPMENT *E* =

W

UNIVERSITY of

WASHINGTON

A strategy (Steenkamp & Maydeu-Olivares, 2023)

- ~Estimate both UFA and CFA models
- ~Compare model estimates (e.g., factor correlations, factor loadings)
- ~IFF LRT rejects the CFA model...
- ~Evaluate overall fit of each (LRT, CFI, RMSEA)
- ~Evaluate nested model comparisons (Δ LRT, Δ CFI, Δ RMSEA)

WASHINGTON

Remain the most frequently reported measures of fit in SEM (Jackson et al., 2009)

Have been emphasized in recent methodological evaluations of UFA (Steenkamp &

and HUMAN DEVELOPMENT

SCHOOL of

NIVERSITY

IRGINIA

WASHINGTON

- Briefly revisit structural bias when non-zero cross loadings in the population are constrained to zero
- Examine the degree to which GFI and ΔGFI measures are sensitive to what has been considered ignorable cross loadings
- Examine GFI and ΔGFI (in comparison to ESEM/UFA specification) measures relative to the CFA models that give rise to structural relationship bias and those that do not

Evaluating Fit

Stand-Alone Models

 $LR = (N-1)Fml \sim \chi^2_{dfH}$

 $CFI = 1 - \frac{\max[0, (\chi_H^2 - df_H)]}{\max[0, (\chi_B^2 - df_B)]}$

 $RMSEA = \sqrt{\max\left[0, \frac{\chi_{H}^{2} - df_{H}}{df_{H} \times (N)}\right]}$

 $\Delta LR = LR_B - LR_A \sim \chi^2_{dfB - dfA}$

 $\Delta CFI = CFI_A - CFI_B$

 $\Delta RMSEA = RMSEA_A - RMSEA_B$

$$RMSEA_D = \sqrt{\frac{\Delta LR - df_D}{df_D(N-1)}}$$

RMSEA_D (Browne & Du, 1992), recently re-introduced (Savalei et al., 2023)

~Integration of \triangle LR and \triangle RMSEA (replaces NCP in RMSEA with \triangle LR-df_D; and model df with df_D) ~Purports to over come limitations of \triangle LR (too restrictive) and \triangle RMSEA (too forgiving) ~Said to better focus on changes in the two nested models (relative to df) rather than common aspects ~As n \rightarrow N, RMSEA_D \rightarrow population value; rather than being overpowered for trivial differences ~On same scale as RMSEA, and provides for CIs

$$LR = (N-1)Fml \sim \chi^2_{dfH} \qquad \qquad \Delta LR = LR_B - LR_A \sim \chi^2_{dfB - dfA}$$

$$CFI = 1 - \frac{\max[0, (\chi_{H}^{2} - df_{H})]}{\max[0, (\chi_{B}^{2} - df_{B})]}$$

$$\Delta CFI = CFI_A - CFI_B$$

$$RMSEA = \sqrt{\max\left[0, \frac{\chi_{H}^{2} - df_{H}}{df_{H} \times (N)}\right]}$$

 $\Delta RMSEA = RMSEA_A - RMSEA_B$

$$RMSEA_{D} = \sqrt{\frac{\Delta LR - df_{D}}{df_{D}(N-1)}}$$

SCHOOL of EDUCATION and HUMAN DEVELOPMENT

The Current Study

Population Model

Two-Factor Models with unit normal factors and indicator scales

UFA (aka ESEM)

E =

SCHOOL of EDUCATION and HUMAN DEVELOPMENT

15

Simulation Conditions

Population Model

With an Emphasis on Measurement Quality of the Target Indicators

6-, 12- and 24-indicator models; Target Loadings: $\lambda t = .40, .50, .60, 70, .80;$ Cross Loadings: $\lambda c = .00, .15, .30;$ Cross Loading Saturation: 33%, 67% Cross Loading Sign: Positive, Negative, Mixed¹ Factor Correlations: $\varphi_{1,2} = 0, .1, .2, .3, .4, and .5;$ Sample Sizes: N = 200, 500, 1000 crossed with crossed with nearly crossed with crossed with nearly crossed with crossed with

(*N* = 1,000 data sets were generated for the 4,860 conditions)

1. Absolute cross-loading magnitudes were held constant across signs (e.g., <u>+</u>.15 was only paired with <u>+</u>.15).

Simulation Conditions

Population Model

- Data were generated and analyzed ٠ using Mplus 8 within the *MplusAutomation R* package
 - All models were estimated with ML
- Results today based on UFA with Target rotation

E =

UFA (aka ESEM)

E =

SCHOOL of EDUCATION and HUMAN DEVELOPMENT

17

Results: Factor Correlation Bias = $\psi_{Populati}$

opulation —	$\Psi_{estimated model}$

Factor Correlation Raw Bias across Models for Selected Conditions: N = 1,000 Sample Size

								33%	of Indi	cators	Cross-]	Load					67%	of Ind	icators	Cross-2	Load		
						All P	ositive	CLs	All N	egativ	e CLs	Mix P	os/Ne	g CLs	All P	ositive	e CLs	All N	egativ	e CLs	Mix P	os/Neg	g CLs
Sample	Num	F-F	TL	CL	Рор	CFA			CFA			CFA			CFA			CFA			CFA		
Size	Indic	Cor	Mag	Mag	Cor	(CS)	UFA	CFA	(CS)	UFA	CFA	(CS)	UFA	CFA	(CS)	UFA	CFA	(CS)	UFA	CFA	(CS)	UFA	CFA
1000	6	.0	.4	.15	.0	.00	.22	.27	.00	22	27	.00	.00	.00	.02	.39	.52	02	38	52	.00	.00	01
				.30	.0	.01	.38	.53	01	38	52	.00	.00	.00	.05	.44	.89	04	44	89	.00	.00	02
			.8	.15	.0	.00	.12	.13	.00	12	13	.00	.00	.00	.00	.24	.27	.00	24	26	.00	.00	.00
				.30	.0	.00	.24	.29	.00	24	29	.00	.00	.00	.00	.43	.56	.00	43	56	.00	.00	.00
		.5	.4	.15	.5	.00	.03	.17	.00	27	19	.00	09	.06	02	.07	.31	01	45	43	.01	11	.12
				.30	.5	01	.07	.29	.00	50	65	.00	13	.14	06	.03	.46	06	69	-1.19	.01	19	.33
			.8	.15	.5	.00	.08	.10	.00	11	08	.00	01	.06	.00	.16	.19	.00	21	17	.00	02	.11
				.30	.5	.00	.14	.21	.00	23	14	.00	03	.16	.00	.26	.37	.00	45	40	.00	06	.27
	24	.0	.4	.15	.0	.00	.23	.26	.00	23	26	.00	.00	.00	.00	.42	.50	.00	42	50	.00	.00	.00
				.30	.0	.00	.40	.51	.00	40	51	.00	.00	.00	.00	.59	.89	.00	59	88	.00	.00	.00
			.8	.15	.0	.00	.12	.13	.00	12	13	.00	.00	.00	.00	.24	.26	.00	24	26	.00	.00	.00
				.30	.0	.00	.24	.28	.00	24	28	.00	.00	.00	.00	.43	.54	.00	43	54	.00	.00	.00
		.5	.4	.15	.5	.00	.12	.17	.00	24	20	.00	05	.07	.00	.23	.31	.00	45	43	.00	07	.13
				.30	.5	.00	.19	.29	.00	50	51	.00	10	.23	.01	.28	.46	.00	76	-1.11	.00	16	.40
			.8	.15	.5	.00	.08	.10	.00	11	09	.00	01	.04	.00	.16	.19	.00	21	19	.00	02	.09
				.30	.5	.00	.14	.21	.00	23	.32	.00	03	.19	.00	.26	.37	.00	45	38	.00	06	.35

LIOUII

IRGINIA

= $\psi_{\text{Population}} - \psi_{\text{estimated model}}$ **Results: Factor Correlation Bias**

Facto	or Co	rre	lati	on K	aw I	sias d	icros	S MO	odels.	for S	selec	ted C	ond	tions.	: / v =	1,00	v Sa	mple	Size	2			
						_		33%	of Indi	icators	Cross-	Load					67%	of Indi	cators	Cross-l	Load		
				_		All I	Positive	e CLs	All N	egative	e CLs	Mix I	Pos/Neg	g CLs	All P	ositive	CLs	All N	egative	CLs	Mix P	os/Neg	g CLs
Sample	Num	F-F	TL	CL	Pop	CFA			CFA			CFA			CFA			CFA			CFA		
Size	Indic	Cor	Mag	Mag	Cor	(CS)	UFA	CFA	(CS)	UFA	CFA	(CS)	UFA	CFA	(CS)	UFA	CFA	(CS)	UFA	CFA	(CS)	UFA	CFA
1000	6	.0	.4	.15	.0	.00	.22	.27	.00	22	27	.00	.00	.00	.02	.39	.52	02	38	52	.00	.00	01
				.30	.0	.01	.38	.53	01	38	52	.00	.00	.00	.05	.44	.89	04	44	89	.00	.00	02
			.8	.15	.0	.00	.12	.13	.00	12	13	.00	.00	.00	.00	.24	.27	.00	24	26	.00	.00	.00
				.30	.0	.00	.24	.29	.00	24	29	.00	.00	.00	.00	.43	.56	.00	43	56	.00	.00	.00
		.5	.4	.15	.5	.00	.03	.17	.00	27	19	.00	09	.06	02	.07	.31	01	45	43	.01	11	.12
				.30	.5	01	.07	.29	.00	50	65	.00	13	.14	06	.03	.46	06	69	-1.19	.01	19	.33
			.8	.15	.5	.00	.08	.10	.00	11	08	.00	01	.06	.00	.16	.19	.00	21	17	.00	02	.11
				.30	.5	.00	.14	.21	.00	23	14	.00	03	.16	.00	.26	.37	.00	45	40	.00	06	.27
	24	.0	.4	.15	.0	.00	.23	.26	.00	23	26	.00	.00	.00	.00	.42	.50	.00	42	50	.00	.00	.00
				.30	.0	.00	.40	.51	.00	40	51	.00	.00	.00	.00	.59	.89	.00	59	88	.00	.00	.00
			.8	.15	.0	.00	.12	.13	.00	12	13	.00	.00	.00	.00	.24	.26	.00	24	26	.00	.00	.00
				.30	.0	.00	.24	.28	.00	24	28	.00	.00	.00	.00	.43	.54	.00	43	54	.00	.00	.00
		.5	.4	.15	.5	.00	.12	.17	.00	24	20	.00	05	.07	.00	.23	.31	.00	45	43	.00	07	.13
				.30	.5	.00	.19	.29	.00	50	51	.00	10	.23	.01	.28	.46	.00	76	-1.11	.00	16	.40
			.8	.15	.5	.00	.08	.10	.00	11	09	.00	01	.04	.00	.16	.19	.00	21	19	.00	02	.09
				.30	.5	.00	.14	.21	.00	23	.32	.00	03	.19	.00	.26	.37	.00	45	38	.00	06	.35

D • 1... 1 0. 1 .. 1 000 0 ~ 1 \sim 1 T T

VIRGINIA

Results

Bias = $\Psi_{Population} - \Psi_{estimated model}$

W

UNIVERSITY of

WASHINGTON

Factor Correlation Raw Bias across Models for Selected Conditions: N = 1,000 Sample Size

	33% of Indicators Cross-Load															67%	of Indi	cators	Cross-]	Load			
				_		All P	'osi ve	e C s	All N	ega	e C s	Mix I	Pos Je	g Ls	All P	os iv	'e (Ls	All N	ega	ve C s	Mix F	?oste	g 🕻 Ls
Sample 1	Num	F-F	TL	CL	Рор	CFA		CFA	CFA		CFA	CFA		CFA	CFA	_	CFA	CFA	_	CFA	CFA		CFA
Size	Indic	Cor	Mag	Ma	Cor	(CS)	UFA	(IS)	(CS)	UFA	(IS)	(CS)	UFA	(IS)	(CS)	UFA	(IS)	(CS)	UFA	(IS)	(CS)	UFA	(IS)
1000	6	.0	.4	.15	.0	.00	.22	.27	.00	22	27	.00	.00	.00	.02	.39	.52	02	38	52	.00	.00	.00
				.30	.0	.01	.38	.53	01	38	52	.00	.00	.00	.05	.44	.89	04	44	89	.00	.00	.01
			.8	.15	.0	.00	.12	.13	.00	12	13	.00	.00	.00	.00	.24	.27	.00	24	26	.00	.00	.00
				.30	.0	.00	.24	.29	.00	24	29	.00	.00	.00	.00	.43	.56	.00	43	56	.00	.00	.00
		.5	.4	.15	.5	.00	.03	.67	.00	27	.31	.00	09	.56	02	.07	.81	01	45	.07	.01	11	.62
				.30	.5	01	.07	.79	.00	50	15	.00	13	.64	06	.03	.96	06	69	69	.01	19	.83
			.8	.15	.5	.00	.08	.60	.00	11	.42	.00	01	.56	.00	.16	.69	.00	21	.33	.00	02	.61
				.30	.5	.00	.14	.71	.00	23	.36	.00	03	.66	.00	.26	.87	.00	45	.10	.00	06	.77
	24	.0	.4	.15	.0	.00	.23	.26	.00	23	26	.00	.00	.00	.00	.42	.50	.00	42	50	.00	.00	.00
				.30	.0	.00	.40	.51	.00	40	51	.00	.00	.00	.00	.59	.89	.00	59	88	.00	.00	.00
			.8	.15	.0	.00	.12	.13	.00	12	13	.00	.00	.00	.00	.24	.26	.00	24	26	.00	.00	.00
				.30	.0	.00	.24	.28	.00	24	28	.00	.00	.00	.00	.43	.54	.00	43	54	.00	.00	.00
		.5	.4	.15	.5	.00	.12	.67	.00	24	.30	.00	05	.57	.00	.23	.81	.00	45	.07	.00	07	.63
				.30	.5	.00	.19	.79	.00	50	01	.00	10	.73	.01	.28	.96	.00	76	61	.00	16	.90
			.8	.15	.5	.00	.08	.60	.00	11	.41	.00	01	.54	.00	.16	.69	.00	21	.31	.00	02	.59
				.30	.5	.00	.14	.71	.00	23	.32	.00	03	.69	.00	.26	.87	.00	45	.12	.00	06	.85

Factor-Factor Correlation Bias across Analysis

CL Magnitude

F-F Correlation

UNIVERSITY VIRGINIA and HUMAN DEVELOPMENT

	Raw FF R
Population Design Conditions	Bias
Main Effects	
Ν	0.00
Model Size	0.01
Factor Correlation (FC)	0.21
Target Loadings (TL)	0.20
Cross Loading (CL) Value	0.20
CL Sign	1.00
CL Saturation	0.01
Two-Way Interactions	
N * Model Size	0.00
N * FC	0.00
N * TL	0.00
N * CL Value	0.00
N * CL Sign	0.00
N * CL Saturation	0.00
Model Size * FC	0.01
Model Size * TL	0.02
Model Size * CL Value	0.03
Model Size * CL Sign	0.04
Model Size * CL Saturation	0.00
FC * TL	<u>0.26</u>
FC * CL Value	0.12
FC * CL Sign	0.85
FC * CL Saturation	0.07
TL * CL Value	0.11
TL * CL Sign	0.92
TL * CL Saturation	0.04
CL Value * CL Sign	0.96
CL Value * CL Saturation	0.00
CL Sign * CL Saturation	0.95

 $= \psi_{\text{Population}} - \psi_{\text{CFA}}$

Partial Eta-Squared Values for Raw CFA Factor-Factor Correlation Bias

					All P	ositive	Cross-Loa	dings	All Ne	egative	Cross-Loa	adings	Mix of	Pos/Ne	eg Cross-Lo	oadings
Sample	Num	F-F	TL	CL	4	nalvsi	s	UFA vs.	Δ	nalysi	s	UFA vs.	Δ	nalysi	S	UFA vs.
Size	Indic	Cor	Mag	Mag	CFA (CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS)	CFA (IS)
1000	6	.0	.4	.15	<mark>.008</mark>	<mark>.008</mark>	.026	018	<mark>.008</mark>	<mark>.008</mark>	.025	017	<mark>.009</mark>	<mark>.009</mark>	.066	057
				.30	.007	.007	<mark>.029</mark>	022	<mark>.006</mark>	<mark>.006</mark>	.028	022	<mark>.010</mark>	.010	.122	113
			.8	.15	<mark>.010</mark>	.010	.090	080	<mark>.009</mark>	<mark>.009</mark>	.089	080	<mark>.010</mark>	<mark>.010</mark>	.162	153
				.30	<mark>.010</mark>	.010	.164	154	<mark>.009</mark>	<mark>.009</mark>	.163	154	<mark>.010</mark>	.010	.326	316
		.5	.4	.15	<mark>.006</mark>	<mark>.006</mark>	<mark>.014</mark>	<mark>008</mark>	<mark>.008</mark>	<mark>.008</mark>	<mark>.030</mark>	022	<mark>.009</mark>	.009	<mark>.037</mark>	028
				.30	<mark>.004</mark>	.004	<mark>.015</mark>	011	.007	.007	.043	036	<mark>.009</mark>	<mark>.009</mark>	.065	056
			.8	.15	<mark>.010</mark>	<mark>.010</mark>	.071	061	<mark>.009</mark>	<mark>.009</mark>	.076	067	<mark>.010</mark>	<mark>.010</mark>	.123	113
				.30	<mark>.010</mark>	.010	.158	148	<mark>.009</mark>	<mark>.009</mark>	.155	146	<mark>.010</mark>	.010	.211	201
	24	.0	.4	.15	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	<mark>.004</mark>	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.035</mark>	031
				.30	<mark>.004</mark>	<mark>.004</mark>	<mark>.025</mark>	021	<mark>.004</mark>	<mark>.004</mark>	<mark>.025</mark>	021	<mark>.004</mark>	.004	.072	068
			.8	.15	<mark>.004</mark>	<mark>.004</mark>	<mark>.035</mark>	031	<mark>.004</mark>	<mark>.004</mark>	<mark>.035</mark>	031	<mark>.004</mark>	<mark>.004</mark>	.063	059
				.30	<mark>.004</mark>	<mark>.004</mark>	.069	065	<mark>.004</mark>	<mark>.004</mark>	.069	065	<mark>.004</mark>	<mark>.004</mark>	.131	127
		.5	.4	.15	<mark>.004</mark>	<mark>.004</mark>	<mark>.011</mark>	<mark>007</mark>	<mark>.004</mark>	<mark>.004</mark>	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	<mark>.004</mark>	.026	022
				.30	<mark>.004</mark>	<mark>.004</mark>	<mark>.014</mark>	<mark>010</mark>	<mark>.004</mark>	<mark>.004</mark>	<mark>.033</mark>	029	<mark>.004</mark>	.004	<mark>.044</mark>	040
			.8	.15	<mark>.004</mark>	.004	<mark>.030</mark>	026	.004	.004	<mark>.031</mark>	027	<mark>.004</mark>	.004	<mark>.053</mark>	049
				.30	.004	.004	.059	055	<mark>.004</mark>	.004	.062	058	.004	.004	.110	106

					All P	ositive	Cross-Loa	dings	All N	egative	Cross-Loa	dings	Mix of F	os/Ne	g Cross-L	oadings
Sample	Num	F-F	TL	CL	A	nalvsi	s	UFA vs.		nalysi	s	UFA vs.	A	nalysis		UFA vs.
Size	Indic	Cor	Mag	Mag	CFA (CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS)	CFA (IS)
1000	6	.0	.4	.15	<mark>.008</mark>	<mark>.008</mark>	<mark>.026</mark>	018	<mark>.008</mark>	<mark>.008</mark>	<mark>.025</mark>	017	<mark>.009</mark>	<mark>.009</mark>	.066	057
				.30	.007	.007	.029	022	<mark>.006</mark>	.006	.028	022	<mark>.010</mark>	.010	.122	113
			.8	.15	<mark>.010</mark>	<mark>.010</mark>	.090	080	<mark>.009</mark>	.009	.089	080	<mark>.010</mark>	.010	.162	153
				.30	<mark>.010</mark>	<mark>.010</mark>	.164	154	<mark>.009</mark>	.00 <mark>9</mark>	.163	154	<mark>.010</mark>	.010	.326	316
		.5	.4	.15	<mark>.006</mark>	<mark>.006</mark>	<mark>.014</mark>	<mark>008</mark>	<mark>.008</mark>	.008	<mark>.030</mark>	022	<mark>.009</mark>	.009	<mark>.037</mark>	028
				.30	<mark>.004</mark>	.004	<mark>.015</mark>	<mark>011</mark>	.007	.007	<mark>.043</mark>	036	<mark>.009</mark>	<mark>.009</mark>	.065	056
			.8	.15	<mark>.010</mark>	<mark>.010</mark>	.071	061	<mark>.009</mark>	.009	.076	067	<mark>.010</mark>	<mark>.010</mark>	.123	113
				.30	<mark>.010</mark>	<mark>.010</mark>	.158	148	<mark>.009</mark>	.009	.155	146	<mark>.010</mark>	<mark>.010</mark>	.211	201
	24	.0	.4	.15	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.035</mark>	031
				.30	<mark>.004</mark>	<mark>.004</mark>	<mark>.025</mark>	021	<mark>.004</mark>	.004	<mark>.025</mark>	021	<mark>.004</mark>	<mark>.004</mark>	.072	068
			.8	.15	<mark>.004</mark>	.004	<mark>.035</mark>	031	<mark>.004</mark>	.004	<mark>.035</mark>	031	<mark>.004</mark>	.004	.063	059
				.30	<mark>.004</mark>	<mark>.004</mark>	.069	065	<mark>.004</mark>	.004	.069	065	<mark>.004</mark>	<mark>.004</mark>	.131	127
		.5	.4	.15	<mark>.004</mark>	.004	<mark>.011</mark>	<mark>007</mark>	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.026</mark>	022
				.30	<mark>.004</mark>	<mark>.004</mark>	<mark>.014</mark>	<mark>010</mark>	<mark>.004</mark>	.004	<mark>.033</mark>	029	<mark>.004</mark>	<mark>.004</mark>	<mark>.044</mark>	040
			.8	.15	<mark>.004</mark>	.004	<mark>.030</mark>	026	<mark>.004</mark>	.004	<mark>.031</mark>	027	<mark>.004</mark>	.004	<mark>.053</mark>	049
				.30	.004	.004	.059	055	<mark>.004</mark>	.004	.062	058	<mark>.004</mark>	.004	.110	106

Across the 4,320 design conditions, average (across 1,000 replications) RMSEA values for SCHOOL of EDUCAT and HUMAN DEVEL all (100%) UFA models were $\leq .05$.

RMSEA

JNIVERSITY VIRGINIA *RMSEA Results for Selected Conditions with 67% Cross-Loading: All Values Represent the Mean of 1,000 Replications*

				RMS	EA: (<i>I</i>	M = .()4, <i>SD</i> =	= .03)	(M =	.05,	SD = .	03),	(M = .	08, S	SD = .0	5)
					All I	Positive	Cross-Loa	dings	All Ne	gative	cross-Lo	adings	Mix of]	Pos/Ne	g Cross-L	oadings
Sample	Num	F-F	ΤI	L CL		Analysi	S	UFA vs.	A	nalysi	c	UFA vs.	А	nalysi	3	UFA vs.
Size	Indic	Cor	Ma	ig Mag	CFA (CS) UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS)	CFA (IS)
1000	6	.0	.4	.15	.008	.008	<mark>.026</mark>	018	.008	.008	<mark>.025</mark>	017	<mark>.009</mark>	.009	.066	057
				.30	<mark>.007</mark>	<mark>.007</mark>	<mark>.029</mark>	022	<mark>.006</mark>	<mark>.006</mark>	<mark>.028</mark>	022	<mark>.010</mark>	<mark>.010</mark>	.122	113
			.8	.15	<mark>.010</mark>	<mark>.010</mark>	.090	080	<mark>.009</mark>	.009	.089	080	<mark>.010</mark>	.010	.162	153
				.30	<mark>.010</mark>	<mark>.010</mark>	.164	154	<mark>.009</mark>	<mark>.009</mark>	.163	154	<mark>.010</mark>	<mark>.010</mark>	.326	316
		.5	.4	.15	<mark>.006</mark>	<mark>.006</mark>	<mark>.014</mark>	<mark>008</mark>	<mark>.008</mark>	.008	<mark>.030</mark>	022	<mark>.009</mark>	.009	<mark>.037</mark>	028
				.30	<mark>.004</mark>	<mark>.004</mark>	<mark>.015</mark>	<mark>011</mark>	<mark>.007</mark>	.007	<mark>.043</mark>	036	<mark>.009</mark>	.009	.065	056
			.8	.15	<mark>.010</mark>	<mark>.010</mark>	.071	061	<mark>.009</mark>	<mark>.009</mark>	.076	067	<mark>.010</mark>	.010	.123	113
				.30	<mark>.010</mark>	<mark>.010</mark>	.158	148	<mark>.009</mark>	.009	.155	146	<mark>.010</mark>	.010	.211	201
	24	.0	.4	.15	<mark>.004</mark>	<mark>.004</mark>	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.035</mark>	031
				.30	<mark>.004</mark>	<mark>.004</mark>	<mark>.025</mark>	021	<mark>.004</mark>	.004	.025	021	<mark>.004</mark>	.004	.072	068
			.8	.15	<mark>.004</mark>	<mark>.004</mark>	<mark>.035</mark>	031	<mark>.004</mark>	.004	<mark>.035</mark>	031	<mark>.004</mark>	.004	.063	059
				.30	<mark>.004</mark>	<mark>.004</mark>	.069	065	<mark>.004</mark>	.004	.069	065	<mark>.004</mark>	.004	.131	127
		.5	.4	.15	.004	<mark>.004</mark>	.011	007	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	.004	.004	<mark>.026</mark>	022
				.30	.004	<mark>.004</mark>	.014	<mark>010</mark>	.004	.004	.033	029	.004	.004	.044	040
			.8	.15	.004	.004	.030	026	.004	.004	.031	027	.004	.004	.053	049
				.30	.004	<mark>.00</mark> 4	.059	055	<mark>.004</mark>	.004	.062	058	.004	.004	.110	106

Across the 4,320 design conditions, average (across 1,000 replications) RMSEA values for SCHOOL of EDUCAT and HUMAN DEVEL 51% of the CFA models were $\leq .05$.

RMSEA Results for Selected Conditions with 67% Cross-Loading: All Values Represent the Mean of 1,000 Replications

			RMS	EA: (<i>N</i>	I = .0	4, <i>SD</i>	= .03)	(M =	= .05, S	SD = .	03),	(M = .	08, S	D = .03	5)
				All P	ositive (Cross-Loa	adings	All N	legative (Cross-Lo	adings	Mix of	Pos/Neg	g Cross-Lo	oadings
Sample 1	Num F	F-F	TL CL	I	Analysis		UFA vs.	A	Analysis		UFA vs.	A	Analys <mark>is</mark>		UFA vs
Size I	Indic C	Cor	Mag Mag	CFA (CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)) UFA (CFA (IS)	CFA (IS)	CFA (CS)	UFA (CFA (IS)	CFA (IS
1000	6.	.0	.4 .15	.008	.008	.026	018	.008	.008	.025	017	<mark>.009</mark>	.009	.066	057
			.30	.007	.007	<mark>.029</mark>	022	.006	.006	<mark>.028</mark>	022	.010	.010	.122	113
			.8 .15	.010	.010	.090	080	.009	.009	.089	080	.010	.010	.162	153
		_	.30	.010	.010	.164	154	.009	.009	.163	154	.010	.010	.326	316
		.5	.4 .15	.006	.006	.014	008	.008	.008	.030	022	.009	.009	.037	028
			.30	.004	.004	.015	011	.007	.007	.043	036	.009	.009	.065	056
			.8 .15	.010	.010	.071	061	.009	.009	.076	067	.010	.010	.123	113
Ν	lan	ıy	appl	ied re	esea	rche	ers mi	ight s	stop	here	e, if t	hey h	ad b	begu	n
N W	1an vith	iy a	appl CFA	ied re A moc	esea lel a	rche and :	ers mi found	ight s 1 an R	stop RMS	hero SEA	e, if the second secon	hey h 5	ad ł	oegu	n
N W	lan vith	וא ם a	appl CFA	$\frac{1004}{004}$	esea lel a	and 2	ers mi	ight s l an R	stop RMS	hero SEA	$\leq .05$	hey h 5		0020	022 - 040
N W	lan vith	וץ ו a	appl CFA	ied re 1 moc 1.004 1.004 1.004	esea lel a		ers mi found 007 010 026	ight s 1 an R .004 .004	stop RMS .004 .004	hero 5EA .018 .033	e, if the second secon	hey h 5 .004 .004	ad t	.020 .044 .053	022 040 049
N W	lan vith	וא a a	appl CFA .4 .15 .30 .8 .15 .30	ied re 1004 1004 1004 1004	esea lel a .004 .004 .004	and 2 .011 .014 .030 .059	ers mi found 007 026 025	ight s l an R .004 .004 .004	stop RMS .004 .004 .004 .004	hero SEA .018 .033 .031 .062	e, if the second secon	hey h 5 .004 .004 .004	ad ł .004 .004 .004	.020 .044 .053 .110	022 040 049 106
N W	lan vith	iy a	appl CFA .4 .15 .30 .8 .15 .30	ied re 1 moc 1.004 1.004 1.004 1.004	esea lel a .004 .004 .004 .004	and 5 .011 .014 .030 .059	ers mi found 010 026 055	ight s l an R .004 .004 .004	stop RMS .004 .004 .004	hero 5EA .018 .033 .031 .062	e, if the second secon	hey h 5 .004 .004 .004 .004	.004 .004 .004 .004	020 .044 .053 .110	022 040 049 106
N W	lan vith	y a a	appl CFA .4 .15 .30 .8 .15 .30	ied re 1 moc 1.004 1.004 1.004 1.004	esea lel a .004 .004 .004	and 5 .011 .014 .030 .059	ers mi found 010 026 055	ight s l an R .004 .004 .004 .004	stop RMS .004 .004 .004 4,32	hero 5EA .018 .033 .031 .062	e, if the second secon	hey h	ad t .004 .004 .004 .004	.020 .044 .053 .110	022 040 049 106
N W	lan vith	ıy a a	appl CFA .4 .15 .30 .8 .15 .30	ied re 1 moc 1.004 1.004 1.004 1.004	esea lel a .004 .004 .004	and 2 .011 .014 .030 .059	ers mi found 010 026 055	ight s l an R .004 .004 .004 s the 4	stop RMS .004 .004 .004 4,32	hero 5EA .018 .033 .031 .062	e, if the second secon	hey h	ad t .004 .004 .004 .004	.020 .044 .053 .110 ns, a	022 040 049 106
N W	lan /ith	iy a a	appl CFA .4 .15 .30 .8 .15 .30	ied re 1 moc 1.004 1.004 1.004 1.004	esea lel a .004 .004 .004	and 2 and 2 .011 .014 .030 .059 A (a	ers mi found 010 026 055	ight s l an R .004 .004 s the 4 s 1,00	stop RMS .004 .004 .004 4,32	hero SEA .033 .031 .062	e, if the second secon	hey h 5 .004 .004 .004 .004 .004 .004 .004 .0	ad t .004 .004 .004 .004 .004	.020 .044 .053 .110 ns, a EA v	022 040 049 106
N W	lan vith		appl CFA .4 .13 .30 .8 .15 .30	ied re mod .004 .004 .004 .004	esea lel a .004 .004 .004	and 5 and 5 .011 .014 .030 .059	ers mi found 007 026 055 Across across	ight s l an R $\frac{1004}{004}$ s the 4 s 1,00 f the	stop RMS .004 .004 .004 .004 .004 .004 .004 .00	hero 5EA .033 .031 .062	e, if the second state of	hey h	ad t .004 .004 .004 .004 .004	020 .020 .044 .053 .110 ns, a EA v	022 040 049 106

RMSEA

RMSEA Results for Selected Conditions with 67% Cross-Loading: All Values Represent the Mean of 1,000 Replications

					All P	ositive	Ci s-Loa	iai s	All N	egative	(ss-Lo	at igs	Mix of	Pos/Ne	eg cross-L	oadings
Sample	Num	F-F	TL	CL	A	nalysi	S	UFA vs.	A	Analysis	S	UFA vs.	ŀ	Analvsi	s	UFA vs.
Size	Indic	Cor	Mag	Mag	CFA (CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS	CFA (IS)	CFA (CS)	UFA	CFA (IS	CFA (IS)
1000	6	.0	.4	.15	<mark>.008</mark>	<mark>.008</mark>	<mark>.026</mark>	018	<mark>.008</mark>	<mark>.008</mark>	.025	017	<mark>.009</mark>	<mark>.009</mark>	.066	057
				.30	.007	.007	.029	022	<mark>.006</mark>	<mark>.006</mark>	.028	022	<mark>.010</mark>	.010	.122	113
			.8	.15	.010	.010	.090	080	<mark>.009</mark>	<mark>.009</mark>	.089	080	<mark>.010</mark>	.010	.162	153
				.30	<mark>.010</mark>	.010	.164	154	<mark>.009</mark>	<mark>.009</mark>	.163	154	<mark>.010</mark>	.010	.326	316
		.5	.4	.15	<mark>.006</mark>	<mark>.006</mark>	<mark>.014</mark>	<mark>008</mark>	<mark>.008</mark>	<mark>.008</mark>	<mark>.030</mark>	022	<mark>.009</mark>	<mark>.009</mark>	.037	028
				.30	<mark>.004</mark>	<mark>.004</mark>	<mark>.015</mark>	<mark>011</mark>	<mark>.007</mark>	<mark>.007</mark>	<mark>.043</mark>	036	<mark>.009</mark>	<mark>.009</mark>	.065	056
			.8	.15	<mark>.010</mark>	<mark>.010</mark>	.071	061	<mark>.009</mark>	<mark>.009</mark>	.076	067	<mark>.010</mark>	.010	.123	113
				.30	<mark>.010</mark>	<mark>.010</mark>	.158	148	<mark>.009</mark>	<mark>.009</mark>	.155	146	<mark>.010</mark>	.010	.211	201
	24	.0	.4	.15	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.035</mark>	031
				.30	<mark>.004</mark>	<mark>.004</mark>	.025	021	<mark>.004</mark>	<mark>.004</mark>	<mark>.025</mark>	021	<mark>.004</mark>	.004	.072	068
			.8	.15	<mark>.004</mark>	<mark>.004</mark>	.035	031	<mark>.004</mark>	<mark>.004</mark>	<mark>.035</mark>	031	<mark>.004</mark>	.004	.063	059
				.30	<mark>.004</mark>	.004	.069	065	<mark>.004</mark>	<mark>.004</mark>	.069	065	<mark>.004</mark>	.004	.131	127
		.5	.4	.15	<mark>.004</mark>	.004	<mark>.011</mark>	<mark>007</mark>	<mark>.004</mark>	.004	<mark>.018</mark>	<mark>014</mark>	<mark>.004</mark>	.004	<mark>.026</mark>	022

If they had not, and decided to conduct UFA anyway, only 15% (of the 4,320 different design conditions) would have found them equivalent ($\Delta RMSEA \ge -.015$)

DISCLAIMER

We do not advocate for the use of cutoffs when gauging the quality of models through GFI and Δ GFI metrics in applied work

We do so as a way of organizing and framing our results.

Results CFI Results for Selected Conditions with 67% Cross-Loading: All Values Represent the Mean of 1,000 Replications

CEA DMSEA: M = 08 SD = 01

	Ľ			VISE	/A. <i>IVI</i> -	90	, D -	.01	<i>IVI</i> —	.95,	SD = .()5	IVI -	.00, ,	5D0	9
					All Po	ositive	Cross-Load	lings	All Ne	gative	Cross-Loa	dings	Mix of	Pos/Ne	g Cross-Lo	adings
Sample	Num	F-F	TL	CL	А	nalysi	S	UFA vs.	А	nalysi	S	UFA vs.	A	\nalysi	S	UFA vs.
Size	Indic	Cor	Mag	Mag	CFA(CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS)	CFA (IS)	CFA (CS)	UFA	CFA (IS)	CFA (IS)
1000	6	.0	.4	.15	<mark>.995</mark>	<mark>.995</mark>	<mark>.964</mark>	.031	<mark>.996</mark>	<mark>.996</mark>	<mark>.966</mark>	.030	<mark>.994</mark>	<mark>.994</mark>	.791	.203
				.30	<mark>.998</mark>	<mark>.998</mark>	<mark>.978</mark>	.020	<mark>.998</mark>	<mark>.998</mark>	<mark>.979</mark>	.019	<mark>.996</mark>	<mark>.996</mark>	.541	.455
			.8	.15	1.000	1.000	<mark>.975</mark>	.025	1.000	1.000	<mark>.975</mark>	.025	1.000	1.000	.919	.081
				.30	1.000	1.000	.935	.065	1.000	1.000	.935	.065	1.000	1.000	.723	.277
		.5	.4	.15	<mark>.998</mark>	<mark>.998</mark>	<mark>.992</mark>	<mark>.006</mark>	<mark>.991</mark>	<mark>.991</mark>	.915	.076	<mark>.996</mark>	<mark>.996</mark>	.942	.054
				.30	1.000	<mark>.999</mark>	<mark>.996</mark>	.003	<mark>.994</mark>	<mark>.994</mark>	.869	.125	<mark>.997</mark>	<mark>.997</mark>	.893	.104
			.8	.15	1.000	1.000	<mark>.990</mark>	<mark>.010</mark>	<mark>.999</mark>	<mark>.999</mark>	<mark>.976</mark>	.023	1.000	1.000	<mark>.958</mark>	.042
				.30	1.000	1.000	<mark>.977</mark>	.023	<mark>.999</mark>	<mark>.999</mark>	.882	.117	1.000	1.000	.916	.084

We see similar patterns with the CFI and Δ CFI...

Across the 4,320 design conditions, over 99% of the average (across 1,000

 $M = 05 \ \text{SD} = 02$

M = 98 CD = 00

replications) CFI values from UFA models were $\geq .95$

48% of the CFI values for the CFA models were \geq .95

Only 6% of the UFA vs. CFA contrasts would have found them equivalent $(\Delta CFI \le .01)$

Results

RMSEA_D Results Comparing UFA with Incorrectly Specified CFA for Selected Conditions: All Values Represent the Mean of 1,000 Replications

RM	ISEA	A _D F	Reje	ctions:		83%	0		91%	0		99%)
							67%	of Ind	icators	s Cross-L	oad		
					All	Positiv	e CLs	All N	legativ	ve CLs	Mix of	f Pos/N	leg CLs
Sample	Num	F-F	TL	CL		90%	% CI		90%	% CI		90%	6 CI
Size	Indic	Cor	Mag	Mag	М	LB	UB	M	LB	UB	М	LB	UB
1000	6	.0	.4	.15	.042	[<mark>.028</mark>	<mark>, .075</mark>]	.041 [.027	, <mark>.074</mark>]	.094 [.073	, .124]
				.30	.047	[<mark>.031</mark>	<mark>, .079</mark>]	.046 [.031	, <mark>.079</mark>]	.174 [.150	, .202]
			.8	.15	.128	[.105	, .156]	.127 [.105	, .156]	.229 [.205	, .257]
				.30	.232	[.208	, .259]	.231 [.207	, .259]	.462 [.437	, .489]
		.5	.4	.15	.027	[<mark>.019</mark>	, <mark>.062</mark>]	.047 [.031	, <mark>.079</mark>]	.056 [.038	, <mark>.087</mark>]
				.30	.030	[<mark>.020</mark>	<mark>, .065</mark>]	.064 [.045	<mark>, .095</mark>]	.093 [.072	, .123]
			.8	.15	.102	080.]	131]	.109 [.086	, .138]	.174 [.150	202]

As well with the $RMSEA_{D}$...

Across the 4,320 design conditions, 93% of the CFA models would be rejected (RMSEA_D > .05; Sareveli et al., 2023)

Should we be rejecting (CFA) models that constrain minor cross-loadings (< .30; Marsh, et al., 2020) to zero as some suggest for:

CFA evaluations of measurement structure (van Prooijen & van der Kloot, 2001)

(or) calculating factor scores (Grice, 2010)

(or) evaluating simple structure (Tabachnick & Fidell, 2007)

OR,

Should we consider that low cross loadings (< |.30|) when fixed to zero can produce meaningful structural bias (shown here and elsewhere in the literature)?

How might we quantify meaningful structural bias?

UNIVERSITY VIRGINIA SCHOOL of EDUCAT and HUMAN DEVEL

Examples of elsewhere: Hsu, et al., 2014; Marsh et al., 2013, 2014; Steenkamp & Maydeu-Olivares, 2023

How about this?

Drawing from recent methodological research in the context of UFA and ESEM, we follow Steenkamp & Maydeu-Olivares (2023) in asserting, on the basis of Cohen's (1988) recommendations, that factor correlation bias $\leq |0.1|$ "are unlikely to be meaningful"

We extend this here for purposes of framing our results around potentially meaningful values, to include bias values $\geq |.30|$ that have been characterized as a 'medium effect' (Cohen, 1988, p. 80) as nonignorable levels of factor correlation bias.

	Bias	CFI	RMSEA	RMODI	
"Good Fit"		CFI ≥ .95 (48%)	RMSEA ≤ .05 (51%)		
	>.10	77%	76%	NA	
	> .30	30%	34%	NA	
	<u>≤</u> .10	23%	24%	NA	
	<u><</u> .30	/0%	6 /%	NA	
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)		
	>.10	66%	67%	NA	
	>.30	36%	33%	NA	
	\leq .10	34%	33%	NA	
	≤.30	64%	66%	NA	
$CFA \sim UFA$		ΔCFI < .01 (6%)	$\Delta RMSEA \geq015$ (15%)	RMSEA _D \leq .05 (7%)	
	>.10	95%	91%	97%	
	>.30	10%	32%	27%	
	\leq .10	5%	9%	3%	
	<u>≤</u> .30	90%	68%	73%	
CFA ≠ CFA		$\Delta CEI > 01 (94\%)$	$\Delta RMSEA <015$	$RMSEA_{D} > 05 (93\%)$	
	>.10	70%	68%	70%	
	>.30	35%	33%	34%	
	≤.10	30%	32%	30%	
	≤.30	65%	67%	66%	
Based on averages across the 4,320 different design conditions (each with 1,000 replications)					

- $\sim 50\%$ of the CFA models were found to provide a reasonable fit to the data
- Of these, a little over 20% had ignorable levels of bias (< .10)
- And ~ 70% had bias values at or below nonignorable levels (< .30)
- However, ~ 30% had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMODA	
"Good Fit"		CFI ≥ .95 (48%)	RMSEA ≤ .05 (51%)		
	>.10	77%	76%	NA	
	> .30	30%	34%	NA	
	$\leq .10$	23%	24%	INA	
	<u>≤</u> .30	70%	67%	NA	
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)		
	>.10	66%	67%	NA	
	>.30	36%	33%	NA	
	\leq .10	34%	33%	NA	
	≤.30	64%	66%	NA	
$CFA \sim UFA$		∆CFI < .01 (6%)	$\Delta \text{RMSEA} \geq015$ (15%)	$RMSEA_{D} \le .05$ (7%)	
	>.10	95%	91%	97%	
	>.30	10%	32%	27%	
	\leq .10	5%	9%	3%	
	≤.30	90%	68%	73%	
		ACEL > 01 (040/)	$\Delta RMSEA <015$	PMSEA = > 05 (020/)	
CFA 7 CFA	> 10	$\frac{\Delta CFI > .01 (94\%)}{70\%}$	68%	$\frac{\text{RWSEAD} > 03(95\%)}{70\%}$	
	>.30	35%	33%	34%	
	<.10	30%	32%	30%	
		65%	67%	66%	
Based on averages across the 4,320 different design conditions (each with 1,000 replications)					

- \sim 50% of the CFA models were found to provide a reasonable fit to the data
- Of these, a little over 20% had ignorable levels of bias (\leq .10)
- And ~ 70% had bias values at or below nonignorable levels (< .30)

٠

 However, ~ 30% had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMGEL
"Good Fit"		CFI ≥ .95 (48%)	RMSEA ≤ .05 (51%)	
	>.10	77%	76%	NA
	> .30	30%	34%	NA
	<u><</u> .10	23%	24%	
	<u>≤</u> .30	70%	67%	NA
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)	
	>.10	66%	67%	NA
	>.30	36%	33%	NA
	\leq .10	34%	33%	NA
	≤.30	64%	66%	NA
CFA ~ UFA		ΔCFI < .01 (6%)	$\Delta RMSEA \geq015$ (15%)	RMSEA _D \leq .05 (7%)
	>.10	95%	91%	97%
	>.30	10%	32%	27%
	\leq .10	5%	9%	3%
	<i>≤</i> .30	90%	68%	73%
CFA ≠ CFA		$\Delta CFI > .01 (94\%)$	$\Delta RMSEA <015$ (85%)	$RMSEA_{D} > 05 (93\%)$
	>.10	70%	68%	70%
	>.30	35%	33%	34%
	\leq .10	30%	32%	30%
	< 20	65%	67%	66%

- ~ 50% of the CFA models were found to provide a reasonable fit to the data
- Of these, a little over 20% had ignorable levels of bias (\leq .10)
- And ~ 70% had bias values at or below nonignorable levels (<u><</u> .30)
- However, ~ 30% had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMODA
"Good Fit"		CFI ≥ .95 (48%)	RMSEA ≤ .05 (51%)	
	>.10	77%	76%	NA
	> .30	30%	34%	NA
	\leq .10	23%	24%	NA
	<u>≤</u> .30	70%	67%	NA
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)	
	>.10	66%	67%	NA
	>.30	36%	33%	NA
	<u>≤</u> .10	34%	33%	NA
	≤.30	64%	66%	NA
CFA ~ UFA		$\Delta CFI < .01 (6\%)$	$\Delta RMSEA \geq015$ (15%)	$RMSEA_{D} \le .05 (7\%)$
	>.10	95%	91%	97%
	>.30	10%	32%	27%
	\leq .10	5%	9%	3%
	≤.30	90%	68%	73%
CFA ≠ CFA		∆CFI > .01 (94%)	ΔRMSEA <015 (85%)	RMSEA _D > 05 (93%)
	>.10	70%	68%	70%
	>.30	35%	33%	34%
	\leq .10	30%	32%	30%
	≤.30	65%	67%	66%
Based on (each wit	average h 1,000	es across the 4,3 replications)	320 different desig	gn conditions

- ~ 50% of the CFA models were found to provide a reasonable fit to the data
- Of these, a little over 20% had ignorable levels of bias (\leq .10)
- And ~ 70% had bias values at or below nonignorable levels (\leq .30)
- However, ~ 30% had nonignorable bias values (> .30)

"Good Fit"	Bias	$\frac{\text{CFI}}{\text{CFI} > 05}$	RMSEA < 05 (510()	RMSEAd
Good Fil		UFI <u>≥</u> .93 (48%)	$RIVISEA \leq .03 (31\%)$	
	> .10	77%	76% 2404	NA NA
	<.10	23%	24%	NA
	< 30	70%	67%	NA
	50	1070	0770	11/1
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)	
	>.10	66%	67%	NA
	>.30	36%	33%	NA
	\leq .10	34%	33%	NA
	≤.30	64%	66%	NA
CFA ~ UFA		ΔCFI < .01 (6%)	$\frac{\Delta \text{RMSEA} \geq015}{(15\%)}$	$RMSEA_{D} \le .05$ (7%)
	>.10	95%	91%	97%
	>.30	10%	32%	27%
	\leq .10	5%	9%	3%
	<u>≤</u> .30	90%	68%	73%
			ADMODA < 015	
CFA ≠ CFA		$\Delta CFI > .01 (94\%)$	$\Delta KMSEA <015$ (85%)	$RMSEA_{D} > 05 (93\%)$
	>.10	70%	68%	70%
	>.30	35%	33%	34%
	≤.10	30%	32%	30%
	≤.30	65%	67%	66%
Based on a	average	es across the 4,3	320 different desig	gn conditions
Juan with	11,000	reprications		

- ~ 50% of the CFA models had questionable fit to the data
- Of these, a little over 30% had ignorable levels of bias (< .10)
- ~ 65% had bias values at or below nonignorable levels (< .30)
- And over ~ 30% had nonignorable bias values (> .30)

	Bias	$\frac{\text{CFI}}{\text{CFI} > 05(400\%)}$	RMSEA	RMSEAd	
"Good Fit"		CFI ≥ .95 (48%)	$RIVISEA \leq .03 (31\%)$		
	>.10	77%	76%	NA	
	< 10	23%	54%0 24%	NA NA	
	<u>~</u> .10	20%	670/	NA	
	≥.30	/0%	0/%0	NA	
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)		
	>.10	66%	67%	NA	
	>.30	36%	33%		
	<u>≤</u> .10	34%	33%	NA	
	<u>≤</u> .30	64%	66%	NA	
CFA ~ LIFA		$\Delta CFI < 01 (6\%)$	$\Delta RMSEA \geq015$	$RMSEA_D \leq .05$ (7%)	
	>.10	95%	91%	97%	
	>.30	10%	32%	27%	
	<u>≤</u> .10	5%	9%	3%	
	≤.30	90%	68%	73%	
			$\Lambda RMSEA <015$		
$CFA \neq CFA$		$\Delta CFI > .01 (94\%)$	(85%)	RMSEA _D > 05 (93%)	
	>.10	70%	68%	70%	
	>.30	35%	33%	34%	
	\leq .10	30%	32%	30%	
	<u>≤</u> .30	65%	67%	66%	
Based on averages across the 4,320 different design conditions (each with 1,000 replications)					

- ~ 50% of the CFA models had questionable fit to the data
- Of these, a little over 30% had ignorable levels of bias (< .10)
 - ~ 65% had bias values at or below nonignorable levels (< .30)
- And over ~ 30% had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMSEAd	
"Good Fit"		$CFI \ge .95 (48\%)$	RMSEA $\leq .05 (51\%)$		
	>.10	77%	76%	NA	
	> .30	30%	34%	NA	
	$\leq .10$	23%	24%	NA	
	≤.30	70%	67%	NA	
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)		
	>.10	66%	67%	NA	
	>.30	36%	33%		
	\leq .10	34%	33%	NA	
	<u>≤</u> .30	64%	66%	NA	
CFA ~ UFA		ΔCFI < .01 (6%)	$\Delta \text{RMSEA} \geq015$ (15%)	RMSEA _D ≤ .05 (7%)	
	>.10	95%	91%	97%	
	>.30	10%	32%	27%	
	\leq .10	5%	9%	3%	
	≤.30	90%	68%	73%	
CFA ≠ CFA		$\Delta CFI > .01 (94\%)$	$\Delta RMSEA <015$ (85%)	RMSEA _D > 05 (93%)	
	>.10	70%	68%	70%	
	>.30	35%	33%	34%	
	\leq .10	30%	32%	30%	
	<u>≤</u> .30	65%	67%	66%	
Based on averages across the 4,320 different design conditions (each with 1,000 replications)					

- ~ 50% of the CFA models had questionable fit to the data
 - Of these, a little over 30% had ignorable levels of bias (\leq .10)
- ~ 65% had bias values at or below nonignorable levels (< .30)

•

 And over ~ 30% had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMSEAd	
"Good Fit"		$CFI \ge .95 (48\%)$	RMSEA $\leq .05 (51\%)$		
	>.10	77%	76%	NA	
	> .30	30%	34%	NA	
	≤.10	23%	24%	NA	
	<u>≤</u> .30	70%	67%	NA	 ~ 50% of the CFA models had questionable fit
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)		to the data
	>.10	66%	67%	NA	• Of these a little over 30% had ignorable levels
	>.30	36%	33%		of bias (< 10)
	<u>≤</u> .10	34%	33%	NA	of bias (\leq 10)
	≤.30	64%	66%	NA	GEV had bigg values at an balaw
CFA ~ UFA		$\Delta CFI < 01 (6\%)$	$\Delta RMSEA \geq015$	$RMSEA_D \leq .05$	 ~ 65% had blas values at of below nonignorable levels (< .30)
	>.10	95%	91%	97%	• And over $\sim 30\%$ had nonignorable bias values
	>.30	10%	32%	27%	(> 30)
	≤.10	5%	9%	3%	(* .00)
	≤.30	90%	68%	73%	
CFA ≠ CFA		ΔCFI > .01 (94%)	∆RMSEA <015 (85%)	RMSEA _D > 05 (93%)	
	>.10	70%	68%	70%	-
	>.30	35%	33%	34%	
	\leq .10	30%	32%	30%	
	≤.30	65%	67%	66%	
Based on a (each with	averag 1,000	es across the 4,3 replications)	320 different desi	gn conditions	-

	Bias	CFI	RMSEA	RMSEAd
"Good Fit"		$CFI \ge .95 (48\%)$	RMSEA $\leq .05 (51\%)$	
	>.10	77%	76%	NA
	> .30	30%	34%	NA
	<u><</u> .10	23%	24%	NA
	<u>≤</u> .30	70%	67%	NA
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)	
	>.10	66%	67%	NA
	>.30	36%	33%	NA
	<u>≤</u> .10	34%	33%	NA
	≤.30	64%	66%	NA
CFA ~ LIFA		$\Delta CEI < 01 (6\%)$	$\Delta RMSEA \geq015$	RMSEA _D \leq .05 (7%)
OTA - OTA	>.10	95%	91%	97%
	>.30	10%	32%	27%
	\leq .10	5%	9%	3%
	≤.30	90%	68%	73%
			$\Delta RMSEA <015$	
$CFA \neq CFA$		$\Delta CFI > .01 (94\%)$	(85%)	RMSEA _D > 05 (93%)
	>.10	70%	68%	70%
	>.30	35%	33%	34%
	\leq .10	30%	32%	30%
	≤.30	65%	67%	66%
Based on	averag	es across the 4,3 (replications)	320 different desig	gn conditions
	,000	· · · · · · · · · · · · · · · · · · ·		

- Far fewer CFA models were deemed similar to their UFA counterparts by way of Δ GFI criteria
- Although a small % of these had had ignorable levels of bias (< .10)
- Much larger %'s were observed for bias values at or below nonignorable levels (≤ .30), with the ∆CFI performing best
- However, ~ 30% had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMSEAd
"Good Fit"		CFI ≥ .95 (48%)	RMSEA ≤ .05 (51%)	
	>.10	77%	76%	NA
	>.30	30%	34%	NA
	$\leq .10$	23%	24%	NA
	<u>≤</u> .30	70%	67%	NA
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)	
	>.10	66%	67%	NA
	>.30	36%	33%	NA
	≤.10	34%	33%	NA
	≤.30	64%	66%	NA
CFA ~ UFA		∆CFI < .01 (6%)	$\Delta \text{RMSEA} \geq015$ (15%)	RMSEA _D \leq .05 (7%)
	>.10	95%	91%	97%
	>.30	10%	32%	27%
	\leq .10	5%	9%	3%
	≤.30	90%	68%	73%
CFA ≠ CFA		ΔCFI > .01 (94%)	ΔRMSEA <015 (85%)	RMSEA _D > 05 (93%)
	>.10	70%	68%	70%
	>.30	35%	33%	34%
	<u>≤</u> .10	30%	32%	30%
	≤.30	65%	67%	66%
Based on a	average	es across the 4,3	320 different desig	gn conditions
(each with	n 1,000	replications)		

- Far fewer CFA models were deemed similar to their UFA counterparts by way of Δ GFI criteria
- Although a small % of these had had ignorable levels of bias (\leq .10)
- Much larger %'s were observed for bias values at or below nonignorable levels (≤ .30), with the ∆CFI performing best
- However, ~ 30% had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMSEAd
"Good Fit"		$CFI \ge .95 (48\%)$	RMSEA $\leq .05 (51\%)$	
	>.10	77%	76%	NA
	> .30	30%	34%	NA
	≥.10	23%	24%	NA NA
	≤.30	/0%	6/%	NA
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)	
	>.10	66%	67%	NA
	>.30	36%	33%	NA
	<u>≤</u> .10	34%	33%	NA
	≤.30	64%	66%	NA
		ACEL < 01.(6%)	$\Delta \text{RMSEA} \geq015$	RMSEA _D ≤ .05 (7%)
CIACOIA	>.10	95%	91%	97%
	>.30	10%	32%	27%
	\leq .10	5%	9%	3%
	<u>≤</u> .30	90%	68%	73%
			$\Delta RMSEA <015$	
$CFA \neq CFA$		$\Delta CFI > .01 (94\%)$	(85%)	$RMSEA_{D} > 05 (93\%)$
	>.10	70%	68%	70%
	>.30	35%	33%	34%
	\leq .10	30%	32%	30%
	≤.30	65%	67%	66%
Based on (each with	averag 1 1,000	es across the 4,3 replications)	320 different desig	gn conditions

- Far fewer CFA models were deemed similar to their UFA counterparts by way of Δ GFI criteria
- Although a small % of these had had ignorable levels of bias (\leq .10)
- Much larger %'s were observed for bias values at or below nonignorable levels (\leq .30), with the Δ CFI performing best
- However, ~ 30% had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMSEAd
"Good Fit"		$CFI \ge .95$ (48%)	RMSEA ≤ .05 (51%)	
	>.10	77%	76%	NA
	> .30	30%	34%	NA
	$\leq .10$	23%	24%	NA
	<u>≤</u> .30	70%	67%	NA
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)	
	>.10	66%	67%	NA
	>.30	36%	33%	NA
	\leq .10	34%	33%	NA
	<u>≤</u> .30	64%	66%	NA
CFA ~ UFA		$\Delta CFI < .01 (6\%)$	$\Delta RMSEA \geq015$ (15%)	RMSEA _D \leq .05 (7%)
	>.10	95%	91%	97%
	>.30	10%	32%	27%
	\leq .10	5%	9%	3%
	<u>≤</u> .30	90%	68%	73%
CFA ≠ CFA		ΔCFI > .01 (94%)	ΔRMSEA <015 (85%)	RMSEA _D > 05 (93%)
	>.10	70%	68%	70%
	>.30	35%	33%	34%
	\leq .10	30%	32%	30%
	<u>≤</u> .30	65%	67%	66%
Based on averages across the 4,320 different design conditions				

(each with 1,000 replications)

- Far fewer CFA models were deemed similar to their UFA counterparts by way of Δ GFI criteria
- Although a small % of these had had ignorable levels of bias (\leq .10)
- Much larger %'s were observed for bias values at or below nonignorable levels (\leq .30), with the Δ CFI performing best

However, some ~ 30% had nonignorable bias values (> .30)

Note. Δ CFI did well here

	Bias	CFI	RMSEA	RMSEAd
"Good Fit"		$CFI \ge .95 (48\%)$	RMSEA $\leq .05 (51\%)$	
	>.10	77%	76%	NA
	>.30	30%	34%	NA
	≥.10	25%	24%0	NA NA
	<u><</u> .30	/0%	6/%	NA
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)	
	>.10	66%	67%	NA
	>.30	36%	33%	NA
	\leq .10	34%	33%	NA
	≤.30	64%	66%	NA
$CFA \sim UFA$		ΔCFI < .01 (6%)	$\Delta RMSEA \geq015$ (15%)	$RMSEA_D \leq .05$ (7%)
	>.10	95%	91%	97%
	>.30	10%	32%	27%
	\leq .10	5%	9%	3%
	≤.30	90%	68%	73%
	ſ		$\Delta RMSEA <015$	
$CFA \neq CFA$		$\Delta CFI > .01 (94\%)$	(85%)	$RMSEA_{D} > 05 (93\%)$
	>.10	70%	68%	70%
	>.30	35%	33%	34%
	\leq .10	30%	32%	30%
	≤.30	65%	67%	66%
Based on a	average	es across the 4,3	320 different desig	gn conditions
(each with	1,000	replications)		

- The vast majority of CFA models failed equivalence test with their UFA counterparts
- Of the CFA models deemed to provide worse fit ~30% had ignorable levels of bias (< .10)
- ~ 65% had bias values at or below nonignorable levels (< .30)
- And ~ 30% actually had nonignorable bias values (> .30)

		CPI	KINISEA	RMSEAd			
"Good Fit"		$CFI \ge .95 (48\%)$	RMSEA $\leq .05 (51\%)$				
	>.10	77%	76%	NA			
	> .30	30%	34%	NA			
	<u><</u> .10	23%	24%	NA			
	<u>≤</u> .30	70%	67%	NA			
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)				
	>.10	66%	67%	NA			
	>.30	36%	33%	NA			
	\leq .10	34%	33%	NA			
	≤.30	64%	66%	NA			
CFA ~ UFA		∆CFI < .01 (6%)	$\Delta RMSEA \geq015$ (15%)	RMSEA _D \leq .05 (7%)			
	>.10	95%	91%	97%			
	>.30	10%	32%	27%	•		
	\leq .10	5%	9%	3%			
	≤.30	90%	68%	73%			
	ſ		$\Delta RMSEA <015$	·	•		
$CFA \neq CFA$	l l	$\Delta CFI > .01 (94\%)$	(85%)	$RMSEA_{D} > 05 (93\%)$			
	>.10	70%	68%	70%			
	>.30	35%	33%	34%			
	\leq .10	30%	32%	30%			
	≤.30	65%	67%	66%			
Based on averages across the 4,320 different design conditions							

- The vast majority of CFA models failed equivalence test with their UFA counterparts
- Of the CFA models deemed to provide worse fit ~30% had ignorable levels of bias (< .10)
- ~ 65% had bias values at or below nonignorable levels (< .30)
- And ~ 30% actually had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMSEAd				
"Good Fit"		CFI ≥ .95 (48%)	RMSEA \leq .05 (51%)					
	>.10	77%	76%	NA				
	>.30	30%	34%	NA				
	$\leq .10$	23%	24%	NA				
	<u>≤</u> .30	70%	67%	NA				
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)					
	>.10	66%	67%	NA				
	>.30	36%	33%	NA				
	\leq .10	34%	33%	NA				
	≤.30	64%	66%	NA				
CFA ~ UFA		∆CFI < .01 (6%)	$\Delta RMSEA \geq015$ (15%)	RMSEA _D \leq .05 (7%)				
	>.10	95%	91%	97%				
	>.30	10%	32%	27%	•			
	\leq .10	5%	9%	3%				
	≤.30	90%	68%	73%				
			$\Delta RMSEA <015$					
$CFA \neq CFA$		$\Delta CFI > .01 (94\%)$	(85%)	RMSEA _D > 05 (93%)				
	>.10	70%	68%	70%	•			
	>.30	35%	33%	34%				
	\leq .10	30%	32%	30%				
	≤.30	65%	67%	66%				
Based on averages across the 4,320 different design conditions								
(each with	h 1,000	replications)						

- The vast majority of CFA models failed equivalence test with their UFA counterparts
- Of the CFA models deemed to provide worse fit
 ~30% had ignorable levels of bias (< .10)
- ~ 65% had bias values at or below nonignorable levels (<u><</u> .30)
- And ~ 30% actually had nonignorable bias values (> .30)

	Bias	CFI	RMSEA	RMSEAd	
"Good Fit"		$CFI \ge .95 (48\%)$	RMSEA $\leq .05 (51\%)$		
	>.10	77%	76%	NA	
	> .30	30%	34%	NA	
	<u>≤</u> .10	23%	24%	NA	
	<u>≤</u> .30	70%	67%	NA	
"Poor Fit"		CFI < .95 (52%)	RMSEA > .05 (49%)		
	>.10	66%	67%	NA	
	>.30	36%	33%	NA	
	\leq .10	34%	33%	NA	
	≤.30	64%	66%	NA	
CFA ~ UFA		ΔCFI < .01 (6%)	$\Delta RMSEA \geq015$ (15%)	RMSEA _D \leq .05 (7%)	
	>.10	95%	91%	97%	
	>.30	10%	32%	27%	• 7
	\leq .10	5%	9%	3%	e
	≤.30	90%	68%	73%	
			$\Delta RMSEA <015$		
CFA ≠ CFA	> 10	$\Delta CFI > .01 (94\%)$	(85%)	$RMSEA_D > 05 (93\%)$	
	> .10	/0%	08%	70%	• ~
	>.30	35%	33%	34%	r r
	\leq .10	30%	32%	30%	- 1
	≤.30	65%	67%	66%	
Based on	averag	es across the 4,3	320 different desig	gn conditions	V
(each with	h 1,000	replications)			

- The vast majority of CFA models failed equivalence test with their UFA counterparts
- Of the CFA models deemed to provide worse fit
 ~30% had ignorable levels of bias (< .10)
- ~ 65% had bias values at or below nonignorable levels (<u><</u> .30)

And ~ 30% actually had nonignorable bias values (> .30)

CFA models deemed similar to their UFA counterparts by way of Δ GFI criteria were more likely to have the following design conditions:

 Δ CFI: Positive CL condition (75%)...and none of the mixed CL conditions Lower (33%) CL saturations (76%) Low (.15) CL values (91%) High TL (\geq .7) conditions (54%)

ΔRMSEA: Positive CL condition (55%)...with some mixed CL conditions (8%) Lower CL saturations (69%) Low CL values (87%) Low target loadings (73%)

RMSEA_D Positive CL condition (63%)...with some mixed CL conditions (3%) Lower CL saturations (75%) Low CL values (88%) Low target loadings (66%) Smaller models (50%)

Population Design Conditions	Raw FF R Bias	Δ CFI	Δ RMSEA	RMSEA _D
Main Effects				
Ν	0.00	0.04	<u>0.71</u>	0.04
Model Size	0.01	0.11	<u>0.96</u>	<u>0.73</u>
Factor Correlation (FC)	0.21	<u>0.61</u>	<u>0.75</u>	<u>0.88</u>
Target Loadings (TL)	0.20	<u>0.61</u>	<u>0.98</u>	<u>0.99</u>
Cross Loading (CL) Value	0.20	<u>0.92</u>	<u>0.98</u>	<u>0.99</u>
CL Sign	1.00	<u>0.96</u>	<u>0.98</u>	<u>0.99</u>
CL Saturation	0.01	<u>0.74</u>	<u>0.91</u>	<u>0.97</u>
Two-Way Interactions				
N * Model Size	0.00	0.01	0.11	0.00
N * FC	0.00	0.00	0.01	0.01
N * TL	0.00	0.02	0.08	0.03
N * CL Value	0.00	0.01	0.01	0.00
N * CL Sign	0.00	0.04	0.06	0.05
N * CL Saturation	0.00	0.00	0.00	0.00
Model Size * FC	0.01	0.08	<u>0.40</u>	0.08
Model Size * TL	0.02	0.12	<u>0.91</u>	<u>0.61</u>
Model Size * CL Value	0.03	0.01	<u>0.73</u>	<u>0.51</u>
Model Size * CL Sign	0.04	0.05	<u>0.81</u>	<u>0.47</u>
Model Size * CL Saturation	0.00	0.00	<u>0.43</u>	0.20
FC * TL	<u>0.26</u>	0.08	0.16	0.24
FC * CL Value	0.12	<u>0.27</u>	<u>0.24</u>	<u>0.44</u>
FC * CL Sign	0.85	0.84	0.72	0.85
FC * CL Saturation	0.07	0.06	0.05	0.12
TL * CL Value	0.11	0.05	<u>0.87</u>	<u>0.94</u>
TL * CL Sign	0.92	0.63	0.80	0.91
TL * CL Saturation	0.04	0.01	<u>0.67</u>	<u>0.83</u>
CL Value * CL Sign	0.96	<u>0.88</u>	<u>0.87</u>	<u>0.95</u>
CL Value * CL Saturation	0.00	<u>0.25</u>	<u>0.38</u>	<u>0.64</u>
CL Sign * CL Saturation	(0.95)	0.70	0.70	0.86

Partial Eta-Squared Values for Raw Factor-Factor **Correlation Bias** and UFA vs. CFA GFI Change by Population Design Condition

	Raw FF R				
Population Design Conditions	Bias		Δ CFI	Δ RMSEA	RMSEA _D
	0.00		0.04	0.74	0.04
	0.00		0.04	0.71	0.04
	0.01		0.11	0.96	0.73
Factor Correlation (FC)	0.21		<u>0.61</u>	0.75	0.88
Target Loadings (TL)	0.20		<u>0.61</u>	<u>0.98</u>	0.99
Cross Loading (CL) Value	0.20		<u>0.92</u>	<u>0.98</u>	<u>0.99</u>
CL Sign	<u>1.00</u>	-	<u>0.96</u>	0.98	<u>0.99</u>
CL Saturation	0.01		<u>0.74</u>	<u>0.91</u>	<u>0.97</u>
Two-Way Interactions					
N * Model Size	0.00		0.01	0.11	0.00
N * FC	0.00		0.00	0.01	0.01
N * TL	0.00		0.02	0.08	0.03
N * CL Value	0.00		0.01	0.01	0.00
N * CL Sign	0.00		0.04	0.06	0.05
N * CL Saturation	0.00		0.00	0.00	0.00
Model Size * FC	0.01		0.08	<u>0.40</u>	0.08
Model Size * TL	0.02		0.12	<u>0.91</u>	<u>0.61</u>
Model Size * CL Value	0.03		0.01	<u>0.73</u>	<u>0.51</u>
Model Size * CL Sign	0.04		0.05	<mark>0.81</mark>	<mark>0.47</mark>
Model Size * CL Saturation	0.00		0.00	<u>0.43</u>	0.20
FC * TL	0.26		0.08	0.16	0.24
FC * CL Value	0.12		<u>0.2</u> 7	<u>0.2</u> 4	<mark>0.44</mark>
FC * CL Sign	0.85		0.84	0.72	0.85
FC * CL Saturation	0.07	F	0.06	0.05	0.12
TL * CL Value	0.11		0.05	<mark>0.87</mark>	<mark>0.94</mark>
TL * CL Sign	0.92		0.63	0.80	0.91
TL * CL Saturation	0.04		0.01	<u>0.6</u> 7	<u>0.8</u> 3
CL Value * CL Sign	0.96		0.88	0.87	0.95
CL Value * CL Saturation	0.00		0.25	<mark>0.38</mark>	<mark>0.64</mark>
CL Sign * CL Saturation	0.95		0.70	0.70	0.86

Partial Eta-Squared Values for Raw Factor-Factor **Correlation Bias** and UFA vs. CFA GFI Change by Population Design Condition

Closing Thoughts

- GFI measures provide a convenient tool for gauging model fit, however, there seems to be many false negatives and false positives (in relation to FF correlation bias) when used to evaluate CFA models (relative to UFA models)
- It may have come for us to reconsider what constitutes a 'trivial misspecification' and to more fully embrace the idea that unidimensional indicators are "an inconvenient fiction" (Marsh et al., 2013, p. 258)
- We encourage users of CFA to not solely rely on stand-alone GFI measures, even when they are 'good' in relation to historical thresholds, but to also examine and consider modification indices that might point to misspecifications in CFA models that could lead to less biased parameter estimates among structural components
- We encourage users of UFA/ESEM to also include examination their estimated model parameters when evaluating their models, regardless of "strong" GFI values that may accompany their models.
 - In the current study, nearly all UFA models produced GFI values suggestive of good fit.
 - We are not particularly pleased with the amount of factor correlation bias present in the UFA models.
 - This has been shown elsewhere (e.g., Morin et al., 2013).
 - There remains room for improvement in UFA bias that might come from inspection model results that reveal (along with theory) that some aspects of the UFA measurement model could be constrained to zero

Appendix

F-F Correlation

1 CLs All Pos 2 CLs All Neg 3 CLs Mix Pos/Neg 1 CLs All Pos 2 CLs All Neg 3 CLs Mix Pos/Neg 0.30 0.30 CL Magnitude CL .15 CL Cor .0 0.20 0.20 33% CLs F-F Correlation 0.10 0.10 33% CLs 0.00 0.0 CEA (IS) 0.30 CEA (IS) 0.30 P Cor .5 .30 \$ 0.10 \$ 0.10 H 0.00 JFA Difference: 0.30 0.20 0.10 CL .15 Cor .0 67% CLs F-F Correlation **CL** Magnitude 67% CLs E 0.00 5 0.00 0.30 0.30 Cor .5 P 0.20 0.20 .30 0.10 0.10 0.00 0.00 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.4 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.8 0.4 0.4 Measurement Quality (Target Loadings) Measurement Quality (Target Loadings)

F-F Correlation

3 CLs Mix Pos/Neg 1 CLs All Pos 2 CLs All Neg 1 CLs All Pos 2 CLs All Neg 3 CLs Mix Pos/Neg -8.899= -8.899 CL Magnitude CL .15 CL Cor .0 -0.100 -0.100 33% CLs F-F Correlation 33% CLs CFA (IS) (S) -0.200 -0.200 -8:899 -8:899 P Cor \$ -0.100 \$ -0.100 .30 'n UFA UFA -0.200 -0.200 **RMSEA Difference:** Difference 8.899 8.899 CL Magnitude CL .15 CL Cor .0 -0.100 -0.100 67% CLs F-F Correlation RMSEA 67% CLs -0.200 -0.200 -8:899 8.899 CL .30 Cor -0.100 -0.100 'n -0.200 -0.200 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 Measurement Quality (Target Loadings) Measurement Quality (Target Loadings)

F-F Correlation