Assessing Multiple Imputation to Test Measurement Invariance with Ordinal Items Hyunjung Lee, Danqi Zhu, Heining Cham FORDHAM Fordham University THE JESUIT UNIVERSITY OF NEW YORK

INTRODUCTION

- In confirmatory factor analysis (CFA), mean and variance adjusted weighted least square estimation (WLSMV) is suggested to handle ordinal data.
- There are studies on multiple imputation (MI) method in structural equation modeling (Enders & Mansolf, 2018; Lee & Shi, 2021; Liu & Sriutaisuk, 2020)
- However, none of the previous studies conducted in a factorial invariance setting.
- Thus, this study aims to examine the use of MI with WLSMV estimation in factorial invariance test with ordinal items.

METHODS

We extended Enders and Mansolf's (2018) simulation design to a factorial invariance test.

Population Model:

- Two-group three-factor model
- Three indicators per factor
- Factor loadings: range from .65 to .75
- Items: 5-point ordinal items
- Factor correlation: .60
- Distribution of items: Symmetric
- Magnitude of non-invariance: 0.0

Type of Missing Data and Missing Data Model: Missing at random (MAR)

Conditions:

- Missing rate: 10%, 20%, 40%
- Sample size: 100, 500 per group

Analytic Procedures:

- 1. Data generation by R ver. 4.3.0 (R Core Team, 2022) and lavaan (Rosseel, 2012)
- 2. Multiple imputation process by Blimp software ver. 3.1.4 (Keller & Enders, 2022)
- 3. The imputation-based RMSEA, CFI, TLI were calculated in each measurement invariance step using semTools package ver. 0.5.6 (Jorgensen et al., 2022) in R

Main findings

- missing data rate, and the number of imputations based on symmetric distribution condition.
- a big sample size (Chen, 2007; Cheung & Rensvold, 2002)

CFI (Comparative Fit Index)

N	Missing Rate	Tested Model	Complete Data	MI (<i>m</i> = 20)	MI (<i>m</i> = 100)	N	Missing Rate	Tested Model	Complete Data	MI (<i>m</i> = 20)	(<i>m</i>
100	10%	loading invariance	80.7	88.3	82.2	100	10%	loading invariance	68.6	66.6	1
		Intercept invariance	83.3	80.4	80.0			Intercept invariance	78.6	70.4	
_	20%	loading invariance	78.5	78.0	80.8		20%	loading invariance	65.4	63.3	
		Intercept invariance	82.2	81.9	82.2			Intercept invariance	77.4	68.6	
500	10%	loading invariance	100	99.9	99.9	500	10%	loading invariance	99.9	99.0	
		Intercept invariance	100	99.7	99.7			Intercept invariance	99.9	99.2	
_	20%	loading invariance	100	99.1	99.9		20%	loading invariance	99.8	94.9	
		Intercept invariance	99.9	98.4	99.4			Intercept invariance	100	96.2	
_	40%	loading invariance	100	86.9	96.6		40%	loading invariance	99.8	72.4	1
		Intercept invariance	100	91.9	99.0			Intercept invariance	100	86.0	

RMSEA (Root Mean Square Error of Approximation)

Ν	Missing Rate	Tested Model	Complete Data	MI (<i>m</i> = 20)	MI (<i>m</i> = 100
100	10%	loading invariance	80.1	85.5	84.7
		Intercept invariance	87.9	88.3	87.2
	20%	loading invariance	80.3	83.1	85.1
		Intercept invariance	89.1	90.2	90.6
500	10%	loading invariance	97.8	98.0	98.1
		Intercept invariance	98.7	98.0	98.9
	20%	loading invariance	97.8	96.9	98.9
		Intercept invariance	97.8	98.0	98.5
	40%	loading invariance	97.5	91.8	97.8
		Intercept invariance	97.7	96.8	99.6

• The tables below presented the proportion of the CFI, TLI, and RMSEA that indicate invariance by sample size, The cutoff values were .005 (Δ CFI, Δ TLI) and .01 (Δ RMSEA) for a small sample size, and .01 (Δ CFI, Δ TLI) and .015 (Δ RMSEA) for

TLI (Tucker Lewis Index)

Model

CONVERGENCE RATE

N	Missing rate	MI (<i>m</i> =20)	MI (<i>m</i> =100)
100	10%	97.0	97.0
	20%	88.9	88.1
	40%	3.8	2.5
500	10%	99.9	99.9
	20%	99.9	99.9
	40%	99.9	99.9

DICUSSIONS

- This study examined the performance of the fit indices (TLI, CFI, RMSEA) with multiply imputed data using WLSMV in the factorial invariance test with ordinal items.
- The most often used cutoffs of fit indices in the factor invariance test (Chen 2007; Cheung & Rensvold 2002) are too restrictive for a small sample size and too liberal for some conditions in big sample size.

LIMITATIONS

Small sample size (N=100) and high missing rate (40%) condition was excluded from the analysis because of the low convergence rate.

FUTURE DIRECTIONS

- Analyses with asymmetric conditions and different magnitudes of noninvariance conditions
- Recommendation of new cutoff values of fit indices in factor invariance test.

REFERENCES

MI = 100) 69.1 72.4 69.5 74.1 99.5 99.6 98.6 99.1 90.8 98.0