

Sample Considerations for Detecting Person, Dyad, and Contextual Effects Using the Common Fate Model for Dyadic Analysis

Robert Wickham

Associate Professor, Department of Psychological Sciences Northern Arizona University

> Modern Modeling Methods Conference June 28, 2023

Outline

3 Parts

- The Common-Fate Model and the Between-Within CFM
- Simulation Design
- Results and Implications

The Common-Fate Model and BW-CFM

Dyadic Analysis Models

- Several analytic approaches have been developed for dyadic data
- The Actor-Partner Interdependence Model (APIM; Kenny, 1996)
 - Most widely applied
 - Focuses on Person level relationships
 - Also accommodates Dyad-level predictors
- The Common-Fate Model (CFM; Kenny, 1996)
 - Increasing in popularity over the past decade
 - Focuses primarily on Dyad level relationships
 - Ledermann & Kenny (2011) expanded to incorporate Person-level associations
- Hybrid Actor-Partner Common-Fate Models (Wickham & Macia, 2019)

The Common-Fate Model

- 2 Variables (X, Y) × 2 Persons (a, b):
 - Observed Variables _aX, _bX, _aY, _bY
- Latent Variables (η^X, η^Y) measured by Observed
 - Partitions variance into Dyad and Person level components
- β_{Dyad} describes regression of Dyad level outcome (η^{Y}) on predictor (η^{X})
- df = $3 \rightarrow$ Over-identifying constraints:
 - $\operatorname{cov}(_{a}X,_{a}Y) = \operatorname{cov}(_{a}X,_{b}Y) = \operatorname{cov}(_{b}X,_{b}Y) = \operatorname{cov}(_{b}X,_{a}Y)$

$\begin{array}{c} \begin{array}{c} & & & & \\$

The Common-Fate Model

- Residual Person level relationships must be modeled when over-identifying constraints are untenable
 - Otherwise β_{Dyad} is biased
- Can incorporate covariance parameters to obtain unbiased estimate of β_{Dvad}
 - e.g., θ^{axay} , θ^{bxby}
- Unable to compare of magnitude of Dyad and Person level associations

Contextual Effects Model

- Ledermann & Kenny (2011) described a variation on the CFM incorporating Person level relationships
 - Features regressions among observed Person level variables: aY on aX, bY on bX
- Under this parameterization:
 - $\beta_{Contextual Dyad}$ is the <u>Contextual</u> effect
 - $\beta_{Contextual Dyad} = \beta_{Between Dyad} (.5^* \kappa_{aWithin} + .5^* \kappa_{bWithin})$
 - $\kappa_{aWithin}$ and $\kappa_{bWithin}$ are pure Within-Dyad effects

The Between-Within Common-Fate Model (BW-CFM)

- Wickham (2023) described the specification of a Between-Within Common-Fate Model (BW-CFM)
 - Features regressions among 'explicit' Person level residuals: ε^{aY} on δ^{aX}, ε^{bY} on δ^{bX}
- Under the BW-CFM parameterization:
 - $\beta_{Between Dyad}$ is the <u>pure</u> <u>Between-Dyad</u> effect
 - $\kappa_{aWithin}$ and $\kappa_{bWithin}$ are <u>pure</u> <u>Within-Dyad</u> effects
- Contextual effects can be obtained by specifying auxiliary parameters
 - e.g., $\gamma_{aContextual} = \beta_{Between Dyad} \kappa_{aWithin}$

The Present Study

- Dyadic data structure represents a special case of the standard multilevel design where N_{level 2} = 2*N_{level 1}
- BW-CFM is specified as a 'wide' (single-level) SEM featuring regressions among latent variables
 - Documented sample size requirements for standard multilevel designs likely inadequate
- Present study reports results of Monte Carlo simulation to aid researchers in selection of sample size for studies utilizing the BW-CFM
 - Naturally, sample size and magnitude of X-Y relationships will be positively associated with power
 - Proportion of variance at Dyad (vs. Person) levels also related to power at each level

Simulation Design

BW-CFM Parameterization

- Deriving meaningful population parameter values requires elaboration regression and variance parameters at each level
- Assuming unit-variance for observed variables _aX and _bX:
 - $Var(\eta^{X}) = \psi^{X}$ = the Intra-Class Correlation = r_{aXbX}
- Furthermore: $R_{Dyad}^2 = \frac{\beta_{Between Dyad}^2 * \psi^X}{r_{aYbY}}$

• Rearranging to obtain: $\beta_{Between Dyad} = \sqrt{\frac{\psi^X * R_{Dyad}^2}{r_{aXbX}}}$

• And, ResVar(
$$\eta^{Y}$$
) = ψ^{Y} = $r_{aYbY} - \beta^{2}_{Between Dyad} * \psi^{X}$

BW-CFM Parameterization

- Because observed variables are set to z-scale
 - Variances of explicit residuals for Person level X variables, δ^{aX} and δ^{bX} are equal to $1 r_{aXbX}$
- Furthermore: $R_{Person a}^2 = \frac{\kappa_{aWithin}^2 * \delta^{aX}}{1 r_{aYbY}}$ • Rearranging to obtain: $\kappa_{aWithin} = \sqrt{\frac{R_{Person a}^2 * (1 - r_{aYbY})}{\delta^{aX}}}$ • And ResVar(ε^{aY}) = $\theta^{\varepsilon aY} = (1 - r_{aXbX}) - \kappa_{aWithin}^2 * \delta^{aX}$

Simulation Design

- An internal Monte Carlo conducted using Mplus 8.9
- Formulae described in previous slides used to derive population values
- Design:
 - 6 N_{Dyad} [75|150|225|300|375|450] ×
 - 3 ICC [.40|.60|.80] × \rightarrow $r_{aXbX} = r_{aYbY}$
 - $3 \text{ R}^2_{\text{Dyad}}$ [.03|.11|.26] × \rightarrow Small, Medium, Large
 - 2 R²_{Person a} [.03|.11] × 2 R²_{Person b} [.11|.26]
- 216 cells @1000 reps per cell \rightarrow All reps converged
- .out files extracted and complied using R/MplusAutomation (Halquist & Wiley, 2018)
- Visualizations using R/ggplot2 (Wickham, 2016)

Results

Results Summary: Dyad Level Power

- When ICC = 0.4:
 - N_{Dyad} > 450 to detect small effects
 - N_{Dyad} >= 150 to detect medium effects
 - N_{Dyad} >= 150 to detect large effects

- When ICC = 0.6:
 - N_{Dyad} ≈ 450 to detect small effects
 - N_{Dyad} >= 150 to detect medium effects
 - N_{Dyad} >= 75 to detect large effects

- When ICC = 0.8:
 - N_{Dyad} >= 300 to detect small effects
 - N_{Dyad} >= 75 to detect medium and large effects

Results: Dyad Level Power

Power to Detect BBetweenDyad

NORTHERN ARIZONA UNIVERSITY

Results Summary: Person Level Power

- When ICC = 0.4:
 - N_{Dyad} > 450 to detect small effects
 - N_{Dyad} >= 225 to detect medium effects
 - N_{Dyad} >= 75 to detect large effects

- When ICC = 0.6:
 - N_{Dyad} > 450 to detect small effects
 - N_{Dyad} >= 225 to detect medium effects
 - N_{Dyad} >= 75 to detect large effects

- When ICC = 0.8:
 - N_{Dyad} > 450 to detect small effects
 - N_{Dyad} >= 375 to detect medium effects
 - N_{Dyad} >= 150 to detect large effects

Results: Person Level Power

Power to Detect KWithin

NORTHERN ARIZONA UNIVERSITY

Results Summary: Contextual Power

Contextual effect estimated as aux parameter using MODEL CONSTRAINT

- i.e., $\gamma_{Contextual} = \beta_{Between Dyad} \kappa_{Within}$
- Power to detect Contextual effect was generally lower than power to detect $\beta_{\textit{Between Dyad}}$ or $\kappa_{\textit{Within}}$
- Appears less sensitive to ICC
 - Some evidence that ICC = 0.6 was slightly better
 - ICC = 0.4 and 0.6 curves practically identical
- Observed Power reached (arbitrary) threshold of .80 only when $N_{Dyad} = 450$
- Detecting Contextual effects of smaller magnitude will be difficult unless sample size is very large!

Results: Contextual Power

Power to Detect *y*Contextual

BW-CFM: Pooled Within and Contextual Effects

• $\kappa_{aWithin}$ and $\kappa_{bWithin}$ can be compared using model constraints (χ^2_{Diff} test) or auxiliary parameters:

• $K_{WithinDiff} = K_{aWithin} - K_{bWithin}$

- When appropriate, a pooled Person level coefficient can be estimated as an aux parameter:
 - $\kappa_{PooledWithin} = .5^* \kappa_{aWithin} + .5^* \kappa_{bWithin}$
- And the corresponding Pooled Contextual effect can also be estimated:

• $\gamma_{\text{PooledContextual}} = \beta_{\text{Between Dyad}} - \kappa_{\text{PooledWithin}}$

Results Summary: Within Difference Power

- $\kappa_{WithinDiff} = \kappa_{aWithin} \kappa_{bWithin}$ estimated using MODEL CONSTRAINT for cells where $R^2_{Person a} \neq R^2_{Person b}$
- Power to detect $\kappa_{WithinDiff}$ highest when ICC = 0.4
- Large differences can still be detected when ICC = 0.6 and $N_{Dvad} \ge 450$
- In most cases it will be difficult to detect differences in magnitude of Person level coefficients

Results: Within Difference Power

Power to Detect KWithinDiff

Results Summary: Pooled Contextual Power

- For cells where $R^2_{Person a} = R^2_{Person b} = 0.11$, $\kappa_{PooledWithin}$ was specified as an aux parameter using MODEL CONSTRAINT
 - i.e., $\kappa_{PooledWithin} = .5^* \kappa_{aWithin} + .5^* \kappa_{bWithin}$
- Because of partial offset of effect sizes across Person a and Person b, we obtain:

- R²_{Dyad} R²_{PersonPooled} = |.03 .11| = **.08**
- As expected, Power to detect this 'pooled' contextual effect was higher than the individual contextual effects
 - Positively related to ICC

Results: Pooled Contextual Power

Power to Detect yPooledContextual

Global Summary and Future Directions

- Whenever possible researchers should aim for N_{Dyad} >= 300 to detect meaningful effect sizes using the BW-CFM
- Like many simulations, the present study assumed 'tidy' data (i.e., MVN)
- Future work should explore performance under more realistic conditions
- Work in progress:
 - These findings should be submitted for peer-review in the next few weeks
 - R function and SAS MACRO allowing user-specified design features currently in dev

robert.wickham@nau.edu

