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Outline

3 Parts

• The Common-Fate Model 
and the Between-Within CFM 

• Simulation Design
• Results and Implications



The Common-Fate Model and 
BW-CFM



Dyadic Analysis Models
• Several analytic approaches have been developed for dyadic data

• The Actor-Partner Interdependence Model (APIM; Kenny, 1996)
• Most widely applied
• Focuses on Person level relationships
• Also accommodates Dyad-level predictors

• The Common-Fate Model (CFM; Kenny, 1996)
• Increasing in popularity over the past decade
• Focuses primarily on Dyad level relationships
• Ledermann & Kenny (2011) expanded to incorporate Person-level associations

• Hybrid Actor-Partner Common-Fate Models (Wickham & Macia, 2019)



The Common-Fate Model
• 2 Variables (X, Y) × 2 Persons (a, b): 

• Observed Variables aX, bX, aY, bY

• Latent Variables (ηX, ηY) measured by 
Observed

• Partitions variance into Dyad and Person level 
components

• βDyad describes regression of Dyad level 
outcome (ηY) on predictor (ηX)

• df = 3  Over-identifying constraints: 
• cov(aX,aY) = cov(aX,bY) = cov(bX,bY) = cov(bX,aY)
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The Common-Fate Model
• Residual Person level relationships 

must be modeled when over-identifying 
constraints are untenable 

• Otherwise βDyad is biased

• Can incorporate covariance parameters 
to obtain unbiased estimate of βDyad

• e.g., θaxay, θbxby 

• Unable to compare of magnitude of 
Dyad and Person level associations
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Contextual Effects Model
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• Ledermann & Kenny (2011) described a 
variation on the CFM incorporating 
Person level relationships

• Features regressions among observed Person 
level variables: aY on aX, bY on bX

• Under this parameterization:
• βContextual Dyad is the Contextual effect

• βContextual Dyad = βBetween Dyad – (.5*κaWithin + .5*κbWithin) 

• κaWithin and κbWithin are pure Within-Dyad effects



The Between-Within Common-Fate 
Model (BW-CFM)

• Wickham (2023) described the 
specification of a Between-Within 
Common-Fate Model (BW-CFM)

• Features regressions among ‘explicit’ Person 
level residuals: εaY on δaX, εbY on δbX

• Under the BW-CFM parameterization:
• βBetween Dyad is the pure Between-Dyad effect
• κaWithin and κbWithin are pure Within-Dyad effects

• Contextual effects can be obtained by 
specifying auxiliary parameters

• e.g., γaContextual = βBetween Dyad – κaWithin
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The Present Study

• Dyadic data structure represents a special case of the standard multilevel 
design where Nlevel 2 = 2*Nlevel 1

• BW-CFM is specified as a ‘wide’ (single-level) SEM featuring regressions 
among latent variables

• Documented sample size requirements for standard multilevel designs likely inadequate

• Present study reports results of Monte Carlo simulation to aid researchers in 
selection of sample size for studies utilizing the BW-CFM

• Naturally, sample size and magnitude of X-Y relationships will be positively associated with power
• Proportion of variance at Dyad (vs. Person) levels also related to power at each level



Simulation Design



BW-CFM Parameterization

• Deriving meaningful population parameter values requires elaboration 
regression and variance parameters at each level

• Assuming unit-variance for observed variables aX and bX:
• Var(ηX) = ψX = the Intra-Class Correlation = raXbX 

• Furthermore: 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 =
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
2  ∗ ψX

𝑟𝑟𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎

• Rearranging to obtain: 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝜓𝜓𝑋𝑋 ∗ 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

2

𝑟𝑟𝐷𝐷𝑋𝑋𝑎𝑎𝑋𝑋
 

• And, ResVar(ηY) = ψY = raYbY – β2
Between Dyad * ψX



BW-CFM Parameterization

• Because observed variables are set to z-scale 
• Variances of explicit residuals for Person level X variables, δaX and δbX are equal to 1 – raXbX 

• Furthermore: 𝑅𝑅𝑃𝑃𝐵𝐵𝑟𝑟𝑃𝑃𝑃𝑃𝐵𝐵 𝐷𝐷
2 =

𝜅𝜅𝐷𝐷𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝐵𝐵
2  ∗ 𝛿𝛿𝐷𝐷𝑋𝑋

1−𝑟𝑟𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎

• Rearranging to obtain: 𝜅𝜅𝐷𝐷𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝐵𝐵 = 𝑅𝑅𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵 𝐷𝐷
2 ∗ 1−𝑟𝑟𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎

𝛿𝛿𝐷𝐷𝑋𝑋

• And ResVar(εaY) = θεaY = (1 – raXbX) – κ2
aWithin * δaX



Simulation Design
• An internal Monte Carlo conducted using Mplus 8.9

• Formulae described in previous slides used to derive population values

• Design: 
• 6 NDyad [75|150|225|300|375|450] × 
• 3 ICC [.40|.60|.80] ×  raXbX = raYbY 
• 3 R2

Dyad [.03|.11|.26] ×  Small, Medium, Large
• 2 R2

Person a [.03|.11] × 2 R2
Person b [.11|.26]

• 216 cells @1000 reps per cell  All reps converged

• .out files extracted and complied using R/MplusAutomation (Halquist & Wiley, 2018)

• Visualizations using R/ggplot2 (Wickham, 2016)



Results



Results Summary: Dyad Level Power

• When ICC = 0.4:
• NDyad > 450 to detect 

small effects 
• NDyad >= 150 to detect 

medium effects
• NDyad >= 150 to detect 

large effects

• When ICC = 0.6:
• NDyad ≈ 450 to detect 

small effects 
• NDyad >= 150 to detect 

medium effects
• NDyad >= 75 to detect 

large effects

• When ICC = 0.8:
• NDyad >= 300 to detect 

small effects 
• NDyad >= 75 to detect 

medium and large 
effects



Results: Dyad Level Power

R2
Dyad



Results Summary: Person Level Power

• When ICC = 0.4:
• NDyad > 450 to detect 

small effects 
• NDyad >= 225 to detect 

medium effects
• NDyad >= 75 to detect 

large effects

• When ICC = 0.6:
• NDyad > 450 to detect 

small effects 
• NDyad >= 225 to detect 

medium effects
• NDyad >= 75 to detect 

large effects

• When ICC = 0.8:
• NDyad > 450 to detect 

small effects 
• NDyad >= 375 to detect 

medium effects
• NDyad >= 150 to detect 

large effects



Results: Person Level Power

R2
Person



Results Summary: Contextual Power
• Contextual effect estimated as aux parameter using MODEL CONSTRAINT

• i.e., γContextual = βBetween Dyad – κWithin

• Power to detect Contextual effect was generally lower than power to detect 
βBetween Dyad or κWithin 

• Appears less sensitive to ICC
• Some evidence that ICC = 0.6 was slightly better
• ICC = 0.4 and 0.6 curves practically identical

• Observed Power reached (arbitrary) threshold of .80 only when NDyad = 450

• Detecting Contextual effects of smaller magnitude will be difficult unless 
sample size is very large!



Results: Contextual Power

R2
Context



BW-CFM: Pooled Within and 
Contextual Effects

• κaWithin and κbWithin can be compared using model constraints (χ2
Diff test) or 

auxiliary parameters:
• κWithinDiff = κaWithin – κbWithin

• When appropriate, a pooled Person level coefficient can be estimated as an 
aux parameter:

• κPooledWithin = .5*κaWithin + .5*κbWithin

• And the corresponding Pooled Contextual effect can also be estimated:
• γPooledContextual = βBetween Dyad – κPooledWithin



Results Summary: Within Difference 
Power

• κWithinDiff = κaWithin – κbWithin estimated using MODEL CONSTRAINT for cells 
where R2

Person a ≠ R2
Person b 

• Power to detect κWithinDiff highest when ICC = 0.4

• Large differences can still be detected when ICC = 0.6 and NDyad >= 450

• In most cases it will be difficult to detect differences in magnitude of Person 
level coefficients



Results: Within Difference Power

R2
PersonDiff



Results Summary: Pooled Contextual 
Power

• For cells where R2
Person a = R2

Person b = 0.11, κPooledWithin was specified as an 
aux parameter using MODEL CONSTRAINT

• i.e., κPooledWithin = .5*κaWithin + .5*κbWithin

• Because of partial offset of effect sizes across Person a and Person b, we 
obtain:

• R2
Dyad – R2

PersonPooled = .26 - .11 = .15
• R2

Dyad – R2
PersonPooled = |.03 - .11| = .08

• As expected, Power to detect this ‘pooled’ contextual effect was higher than 
the individual contextual effects

• Positively related to ICC



Results: Pooled Contextual Power

R2
PoolContext



Global Summary and Future Directions

• Whenever possible researchers should aim for NDyad >= 300 to detect 
meaningful effect sizes using the BW-CFM

• Like many simulations, the present study assumed ‘tidy’ data (i.e., MVN)

• Future work should explore performance under more realistic conditions

• Work in progress:
• These findings should be submitted for peer-review in the next few weeks
• R function and SAS MACRO allowing user-specified design features currently in dev



Thank you!

robert.wickham@nau.edu
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