
Introduction

A CFA with two factors, and two 

indicators for each factor, is identified as 

long as the factor correlation (r) is not 

zero. According to Allman et. al. (2009), 

the model is not strictly identified, but is 

generically identified because the exact 

point r=0 has measure zero. However, if 

the data-generating mechanism is close 

to r=0, we run the risk of empirical 

under-identification (Kenny, Kashy, & 

Bolger. 1998). In this case, model fitting 

may be extremely difficult. Our example 

is only illustrative; more complex 

generically identified models can also 

suffer from empirical under-identification 

(Loken & Teitelbaum, 2023).

Model diagnostics for simulated data 

with decreasing factor covariances 

demonstrate the impact of empirical 

under-identification. We show issues with 

model convergence, parameter 

estimation, and standard errors when the 

population covariance nears zero. Even 

for models that converged, several 

issues emerged: extreme factor loadings, 

Heywood cases, and failure to estimate 

SEs. We also explore the role of sample 

size, noting that large sample sizes are 

more desirable when the factor 

covariance is far from zero, but are more 

problematic for r closer to zero.

Two-Factor Example

Results
Factor Correlation: r=0.1 and 0 samples estimated using ML resulted in numerous Heywood cases, as 

well as information matrix errors, failure to compute SEs, and for some r=0 samples, 

failure to converge at all.

Warnings/errors: Warnings for r=0 did not flag the syntax of the model; instead, “problem 

parameters” were often flagged, with different problems and errors across similarly-generated 

samples and within the same sample across equivalent model constraints (fixed factor variances vs 

fixed first-indicators) and estimation methods (maximum likelihood vs Bayesian).

Sample size: n=10,000 showed consistency (r=0.3 and 0.1 no errors, r=0 consistent trouble with SE). 

Lower sample sizes increased error rate, with lower r’s showing more errors.

Interestingly, low sample size for r=0 saw a dip in Heywood cases; n=300 models showed fewer 

Heywood cases than n=1000.

Standard errors: Even with model warnings/errors, all models estimate factor correlation with low 

SEs. However, both smaller sample size and smaller factor correlation resulted in larger SEs for 

loadings and residual variances, including in models without overt warnings or errors.

Bayesian estimation: Models always ran without error (prior constrains residuals to be positive and 

provides modest information). However, Bayes diagnostic pD (effective number of parameters) 

indicates problematic estimation at r=0.1 and 0.

Conclusions

When r is “far from” zero, models are easily 

estimated, software & methods agree. When 

r “close to” zero, methods (i.e. Bayes – ML) 

differ considerably. What counts as “close” 

depends on available information – sample 

size, factor loadings.

Navigating fit problems requires 

understanding the relevant mathematical 

issues affecting model identification. For 

instance, the estimate for r (the problematic 

parameter) has the best SEs. Standard 

software output indicates model fitting issues, 

but does not diagnose the exact problem.

While this small CFA is mathematically simple 

and produces easy to understand errors, 

larger and more complex models (e.g. 

LCA) can be generically identified, but 

have many subtle, difficult to anticipate, 

parameter configurations that impact 

model estimation. Understanding reasons 

why strict identifiability may fail helps 

navigate situations with empirical under-

identification.
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Materials
Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User’s 

Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

Example solutions for n=1,000, F1 (A1, A2) ML

Sample r=0.3 Sample r=0.1 Sample r=0.0

Loading

SE

0.862

0.047

0.802

0.052

0.863

0.096

0.741

0.084

0.060

NA

10.50

NA

Residual Variance

SE

0. 182

0.072

0.424

0.057

0.170

0.161

0.422

0.120

0.980

NA

-108.7

NA

Factor Correlation

SE

0.277

0.036

0.154

0.038

-0.001

NA (can’t estimate)

Typical modelling results by factor correlation and sample size (ML)

N r=0.3 r=0.1 r=0.0

10,000 Normal estimation Normal estimation Error calculating SE

1,000 Normal estimation Some Heywood cases Heywood cases

Some warnings/errors

300 Some Heywood cases Heywood cases Some Heywood cases

Some warnings/errors

Some converge fails

100 Some Heywood cases Heywood cases Heywood cases

Some warnings/errors

Some converge fails

r ≠ 0, → model is identified.

r = 0 → two disjoint, unidentified 

two item factors.
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