

# The Dynamics of Opinion Expression During Group Discussion

Joseph A. Bonito

Stephen A. Rains

University of Arizona



#### Overview

- Opinion expression framed in terms of Wilson et al.'s (2022) oscillation model
  - Groups cycle between periods of dissenting and concurring opinions
  - Eventually, groups converge on a product or outcome
- Other plausible explanations include punctuated equilibrium model and dynamic systems theory
- Opinion scores generated with R package sentimentR
- Analysis based on RDSEM and cross-classified DSEM
- Hypotheses mostly supported



#### Opinion and Opinion Expression

- Opinion as a cognitive construct broadly defined as one's perspective on a issue or matter
- Opinion expression contributing one's perspsective to discussion in some form
- Opinions and opinion expression both have polarity and strength
  - One can have a weak or strong opinion for or against something
  - Strength has something to do with the words used to express an opinion
- Regarding opinion expression, overlap in literature among the following:
  - Opinion
  - Argument
  - Information



# What is Dynamic About Opinion Expression?

- What does dynamic mean?
  - Based on Ellen's talk from Monday's workshop, dynamism is defined as the state of a system at *Time t* is different than that at *Time t-1*.
    - If autoregression is consistent across time, then the series is consistently dynamic
    - If autoregression varies across time, then the series is inconsistently dynamic
- Dynamism is a function of both local and global factors
  - Local a problem of mutual influence (i.e., what one says is related to what is said prior and what might be said after)
  - Global concerns resources that participants possess prior to interaction (e.g., preferences, arguments, opinions)



#### Oscillation Model

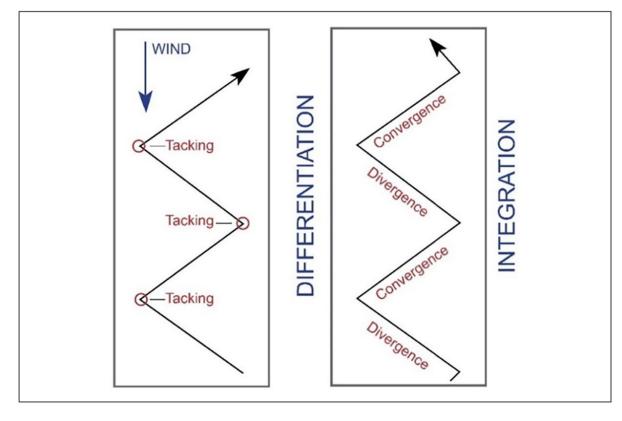
- Originally addressed idea generation in diverse work groups
- Diversity operationalized as differences in perspective, outlook, opinion, orientation, and so on
  - Harrison and Klein (2007) important here
  - The oscillation model seems to embrace "deep diversity"
  - Surface-level diversity might or might not be related and is irrelevant here
- Model uses the metaphor of "tacking," in which sailboats make progress toward a destination that is into a headwind
  - Model is decidedly "macro" in orientation
  - Tacking requires coordinated effort among crew members to make progress toward the destination



### **Graph of Oscillation**

We don't expect oscillation to look like this.

We aren't sure what it looks like or what the cutoffs might/should be.



**Figure 1.** Tacking in a sailboat (left) and the oscillatory procedural framework (right), whereby teams undergo periods of divergence (which emphasize differentiation) and convergence (which emphasize integration)



#### Opinion Expression as Oscillation

- Group goal is the destination
  - Model seems to apply to many types of groups, including those with a shared or common goal (e.g, juries) and those with distributed goals (e.g., brainstorming, support groups)
- Opinion expression plays a central role in group outcomes
  - The most frequent or common type of group discourse (e.g., Bales)
  - Group outcomes often reflect the option with the most support, in terms of opinion expression (GVM)
  - Or group outcomes reflect the number of members who support a given outcome (DVM)
- Groups "tack" or oscillate from differentiation to integration
- Tacking is managed via communication (i.e., opinion expression) that either diverges or converges



#### Diversity as "Headwinds"

- Original oscillation study used the model to design and implement discussion protocols that create oscillation
- We note that, based on extensive group research, opinions are often developed prior to interaction
- Distributions of opinions within groups (opinion profile)
   function as headwinds in terms of direction and strength
  - *Direction = valence*: the mean or center of the profile can be positive or negative
  - Strength = variance: Opinions or perspectives can be hetero- or homogenous
- Discussion often reflects, in some degree, the distribution of initial preferences
- Other features of discussion are "local" or "emergent"



#### **Baseline Hypotheses**

- First set of hypotheses examine baseline model characteristics (first sense of "dynamic")
- The issue is whether (a) micro oscillations in opinion expression can be detected, and (b) if micro oscillations provide evidence for macro oscillations
- Also provides a sense of the structure of the random effects,
   which is of interest
  - H1: Opinion expression at *Time T* is positively associated with opinion expression at *Time T-1*.
  - H2: Mean opinion expression is positively associated with mean opinion profile.
  - H3: Variance of opinion expression is positively associated with opinion profile variance.



#### Research Questions

- Unclear if and how opinion profile influences autoregression and trend
  - RQ1: Is the association between opinion expression at Time T and T-1 associated with a group's mean opinion profile?
  - RQ2: Is the association between opinion expression at Time T and T-1 associated with a group's opinion profile variance?
  - RQ3: Is a group's opinion expression trend associated with a group's mean opinion profile?
  - RQ4: Is a group's opinion expression trend associated with a group's opinion profile variance?



#### Dynamic Model Hypothesis

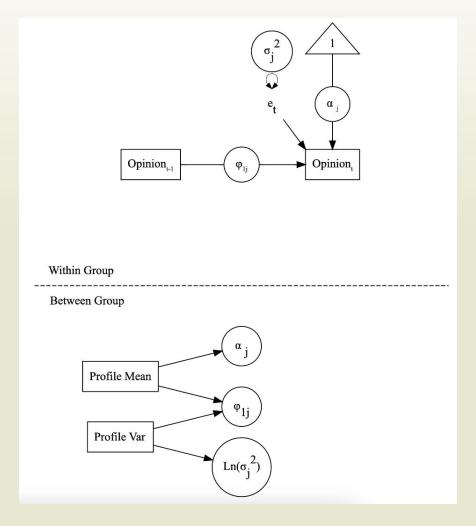
- The issue is whether model parameters, especially AR(1), are consistent across speaking turns
- In terms of dynamics, the process is either consistently dynamic or inconsistently dynamic
- Oscillation implies inconsistent dynamics
  - H4: The association between opinion expression at *Time T* and *T-1* varies across discussion.
  - RQ5: What is the pattern of associations among adjacent speaking turns across discussion?



### Graph of Theoretical Model

Adapted from McNeish and Hamaker (2020)

Used graphviz within R's diagrammeR





#### Method

- Data from 4 previously published studies that used the same core group task (Groups = 128, N = 434)
  - Participants read 12 statements that described the behaviors of a fictitious person named Jim
  - Participants each wrote, in private, a psychological profile about Jim based on the 12 statements
  - Groups discussed Jim and came to a consenus about him
  - After discussion, members wrote, again in private, their understanding of the group's consensus (not used in this study)
  - Participants also filled out round-robin assessments about discussion
- Discussion data transcribed and unitized
- Analysis here is at the level of the speaking turn, which implies an interpersonal process and dynamic



#### **Opinion Mining**

- Private profiles and discussion data scored using Rinker's sentimentR package
- An important advance on typical opinion mining in that surrounding words included to better identify unit's direction and magnitude
- Each speaking turn evaluating for opinion expression
- Privately written profiles were evaluated at the sentence level
  - Each person's profile has a mean and standard deviation
  - Each person's mean and standard deviation were used to create the group opinion profile



## **Example Opinion Scores**

| Text                     | Word Count | Opinion Score |
|--------------------------|------------|---------------|
| He is unmotivated        | 3          | -0.577        |
| He is not motivated      | 4          | -0.250        |
| He is not very motivated | 5          | -0.045        |
| He is somewhat motivated | 4          | 0.050         |
| He is motivated          | 3          | 0.289         |
| He is very motivated     | 4          | 0.450         |

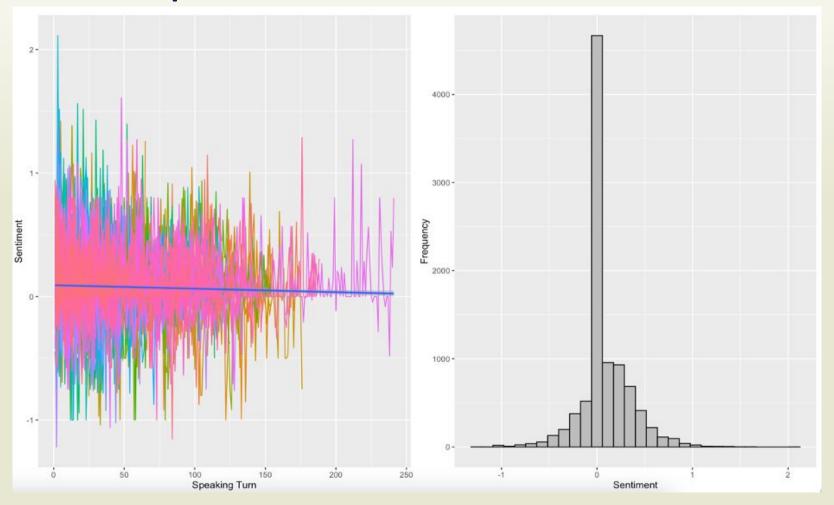


#### **Variables**

- Opinion expression: the score for any given speaking turn
  - Multiplied by 100 because of too-low variance and Cl's that were zeros
- Lag opinion expression: opinion score in the previous speaking turn
- Group opinion profile: An aggregate of individual profiles written prior to discussion
  - Mean group opinion profile
  - Variance of the group opinion profile
- Study from which the data were drawn (used as covariates)

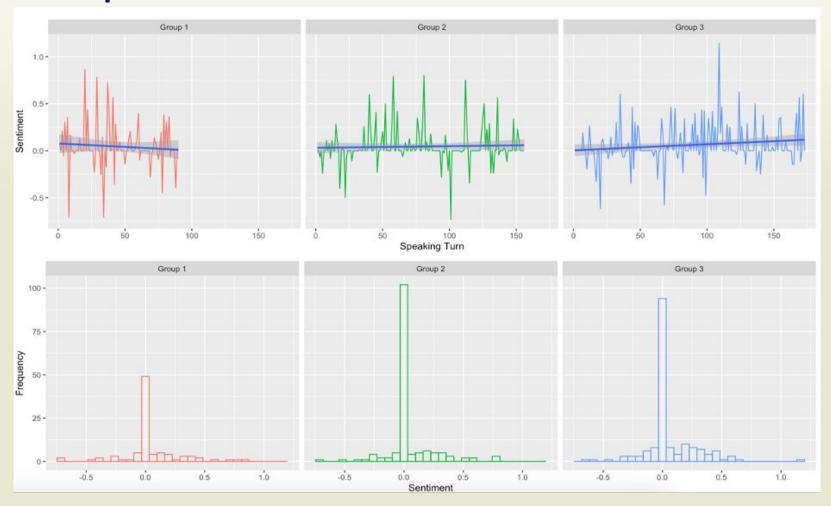


# Opinion Expression Graph of Series for All Groups



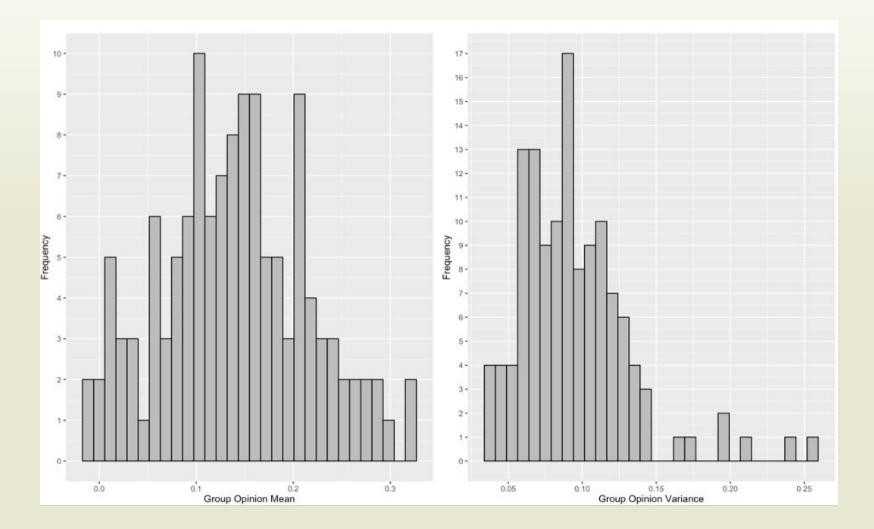


# Opinion Expression Graphs for Three Groups





# **Graph of Opinion Profiles**



# ARIZONA

#### Analysis Part 1

- Hypothesis 1, 2, and 3 and the first four research questions analyzed with DSEM, but...
- A regression analysis of the discussion data, with opinion expression regressed on speaking turn, showed a slight, negative trend
- DSEM assumes trendless data
- RDSEM to the rescue
  - Residuals, rather than raw scores, used in the analysis.
  - Interpretation remains roughly the same
- The study from which the data were drawn was included as a series of dummy variables
- Chose model building approach here to examine random variance terms



#### **DSEM Parameters**

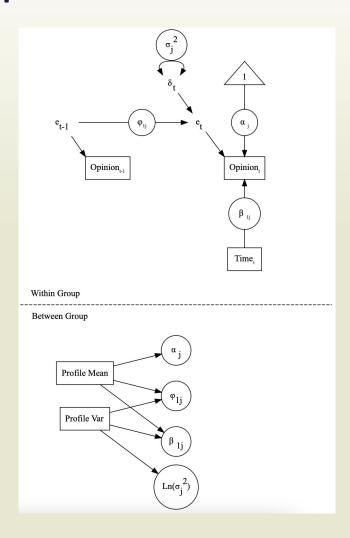
$$Y_{tj} = \alpha_j + \varphi_{(t-1)j} + e_{tj}$$
$$\alpha_j = \lambda_{00} + u_{0j}$$
$$\varphi_j = \lambda_{10} + u_{1j}$$

#### Where

- The predicted value of Y (opinion expression) for group j at time t is equal to a group-level intercept  $\alpha_j$  plus a group-level autoregressive (i.e., opinion is regressed on itself at the previous lag) term  $\phi_i$ .
- The lambdas ( $\lambda_{00}$  and  $\lambda_{10}$ ) are the intercepts for the mean and autoregression of the series, respectively, with their respective variances,  $\mu_{0i}$  and  $\mu_{1i}$ .
- Finally,  $e_{ij}$  is the error term that represents the distribution of scores around the mean of the series for each time point.



# **RDSEM Graph**





#### RDSEM Model 2 Mplus Code

```
TITLE: Rdsem Model 2--Random Covariances
 DATA:
 FILE = "rdsem1a.dat";
VARIABLE:
 NAMES = group resent linenum study2 study3 study4;
 MISSING=.;
 CLUSTER is Group;
        WITHIN is linenum;
        BETWEEN is study2 study3 study4;
        LAGGED is resent(1);
 ANALYSIS:
 TYPE = TWOLEVEL RANDOM; ESTIMATOR = BAYES; BITERATIONS = 1000;
 MODEL:
      %WITHIN%
      ar1 | resent^ ON resent^1; !latent AR sent
      logv | resent; !within level variance sent
      trend | resent on linenum; !captures trend
      %BETWEEN%
      resent ON study2 study3 study4; !study covariates
      ar1 trend logv WITH ar1 trend logv;
 PLOT:
      TYPE=PLOT3;
      FACTORS=ALL;
```

McNeish and Hamaker (2020)



### RDSEM Model 2 Output

| MODEL   | RESULTS   |           |           |            |        |        |              |
|---------|-----------|-----------|-----------|------------|--------|--------|--------------|
|         |           |           | Posterior | One-Tailed | 95%    | C.I.   |              |
|         |           | Estimate  | S.D.      | P-Value    | Lower  | Upper  | Significance |
| Between | Level     |           |           |            |        |        |              |
|         | AR1       | WITH      |           |            |        |        |              |
|         | TREND     | 0         | 0.001     | 0.454      | -0.002 | 0.002  |              |
|         | LOGV      | 0.013     | 0.006     | 0.014      | 0.002  | 0.025  | *            |
|         | TREND     | WITH      |           |            |        |        |              |
|         | LOGV      | -0.002    | 0.004     | 0.248      | -0.009 | 0.007  |              |
|         | Means     |           |           |            |        |        |              |
|         | AR1       | 0.045     | 0.014     | 0          | 0.02   | 0.07   | *            |
|         | LOGV      | 6.44      | 0.037     | 0          | 6.362  | 6.51   | *            |
|         | TREND     | -0.031    | 0.011     | 0          | -0.052 | -0.008 | *            |
|         | Variances |           |           |            |        |        |              |
|         | AR1       | 0.009     | 0.003     | 0          | 0.004  | 0.017  | *            |
|         | LOGV      | 0.139     | 0.025     | 0          | 0.102  | 0.198  | *            |
|         | TREND     | 0.001     | 0.001     | 0          | 0      | 0.002  | *            |
|         | Residual  | Variances |           |            |        |        |              |
|         | RESENT    | 10.983    | 3.089     | 0          | 5.942  | 17.365 | *            |



#### Findings: H1-H4 and RQs

- H1: Positive autoregressive parameter is *supported*
- H2: Positive association between mean group opinion profile and opining expression supported
- H3: Positive association between group profile variance and opinion expression not supported
- *None* of the associations specified in the research questions was significant

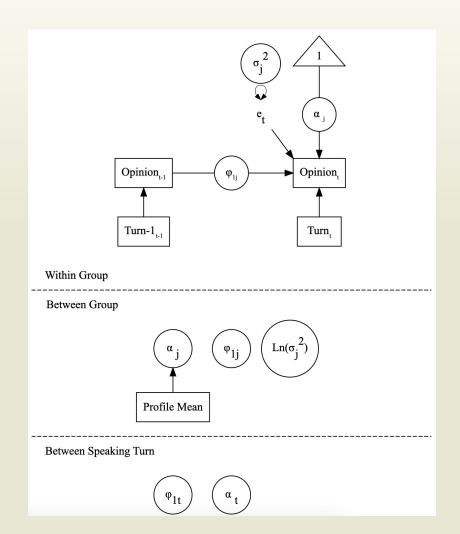


#### **Anaysis Part 2**

- Hypothesis 4 and RQ 5 analyized with cross-classified DSEM (no RDSEM for this)
- Speaking turn is added at the between level, along with group
- The model tests the presumption that the autoregressive parameter is consistent across speaking turns while preserving between-group variation
- Study covariates included as before in the between-groups section of the model
- Did not uses model building approach here because convergence issues with more complicated models



#### Cross-classified DSEM





### Cross-Classifed DSEM Mplus Code

```
CLUSTER is group linenum;
       LAGGED is resent(1);
       BETWEEN IS (group) jim mean study2 study3 study4 (linenum) timet;
       WITHIN is timew;
       USEVARIABLES = jim mean study2 study3 study4 resent timet timew;
DEFINE:
timew = linenum; timet = linenum;
ANALYSIS:
TYPE = CROSSCLASSIFIED RANDOM; ESTIMATOR = BAYES; BITERATIONS = 5000;
MODEL:
     %WITHIN%
           ar1 | resent ON resent&1; !latent autogression estimate
          trend | resent ON timew;
           logv | resent; !random residual variance
     %BETWEEN Group%
           resent ON jim mean study2 study3 study4;
           logv trend ar1 resent; !random residual variance
     %BETWEEN linenum%
           resent trend ar1; !no logv at this level
PLOT:
TYPE=PLOT3;
     FACTORS=ALL;
```

See UG
examples 9.39a
and 9.39b,
McNeish &
Hamaker
(2020), and
McNeish
(2021)



#### Relevent Out for CC-DSEM

|         |                    |          | Posterior | One-Tailed | 95% C.I.   |            |              |
|---------|--------------------|----------|-----------|------------|------------|------------|--------------|
|         |                    | Estimate | S.D.      | P-Value    | Lower 2.5% | Upper 2.5% | Significance |
| Within  | Level              |          |           |            |            |            |              |
| Between | LINENUM            | Level    |           |            |            |            |              |
|         | Variances          |          |           |            |            |            |              |
|         | TIMET              | 4852.814 | 473.112   | 0          | 4060.52    | 5909.157   | *            |
|         | RESENT             | 0.85     | 0.63      | 0          | 0.319      | 2.49       | *            |
|         | AR1                | 0.005    | 0.002     | 0          | 0.001      | 0.01       | *            |
|         | TREND              | 0        | 0         | 0          | 0          | 0          | *            |
| Between | GROUP              | Level    |           |            |            |            |              |
|         | RESENT             | ON       |           |            |            |            |              |
|         | JIM_MEAN           | 15.537   | 6.212     | 0.002      | 4.034      | 28.385     | *            |
|         | Intercepts         |          |           |            |            |            |              |
|         | RESENT             | 4.711    | 1.194     | 0          | 2.423      | 7.102      | *            |
|         | Variances          |          |           |            |            |            |              |
|         | AR1                | 0.008    | 0.003     | 0          | 0.003      | 0.013      | *            |
|         | TREND              | 0.001    | 0         | 0          | 0          | 0.002      | *            |
|         | LOGV               | 0.124    | 0.02      | 0          | 0.088      | 0.166      | *            |
|         | Residual Variances |          |           |            |            |            |              |
|         | RESENT             | 8.488    | 3.422     | 0          | 3.89       | 17.642     | *            |

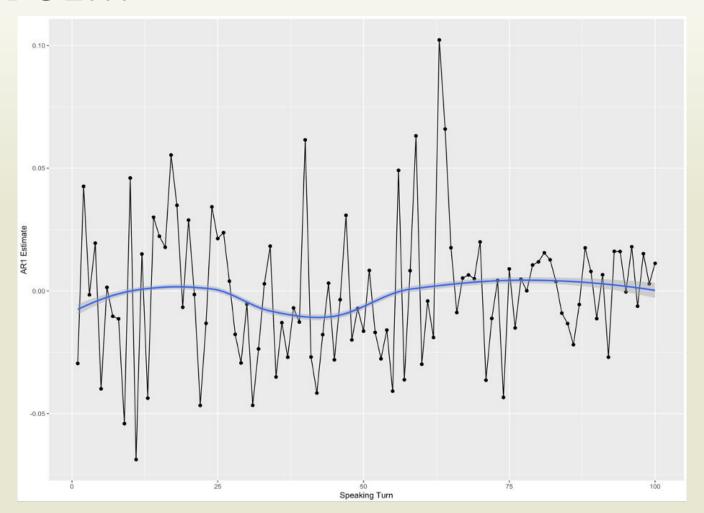


#### Findings: H4 and RQ5

- H4: Variation in the AR(1) parameter across speaking turns supported
- RQ5: What is the shape or distribution of the AR(1) parameter across discussion? See next slide
  - Fun fact about dealing with Mplus' gh5 files
- Point made by Ellen on Monday about what makes a model dynamic
  - Her take is that the state of the system at *T+1* is different from that at
  - Assuming the AR(1) does not change, the model seems predictably or consistently dynamic
  - If it does change, then the model is inconsistently dynamic



# Opinion Expression AR(1) Graph for CC-DSEM

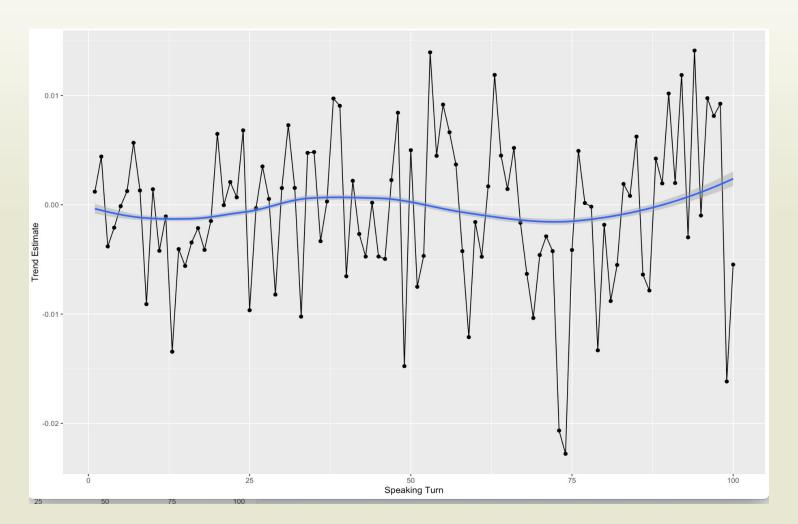


#### **About That Previous Slide**

- Following Bengt's talk on Tuesday, there might be a way to model the cycles seen in the graph
- Without a TVC, the question concerns how to model time/transitons in meaningful ways
- Bengt mentioned cosines, splines, and other options, all of which require exploration

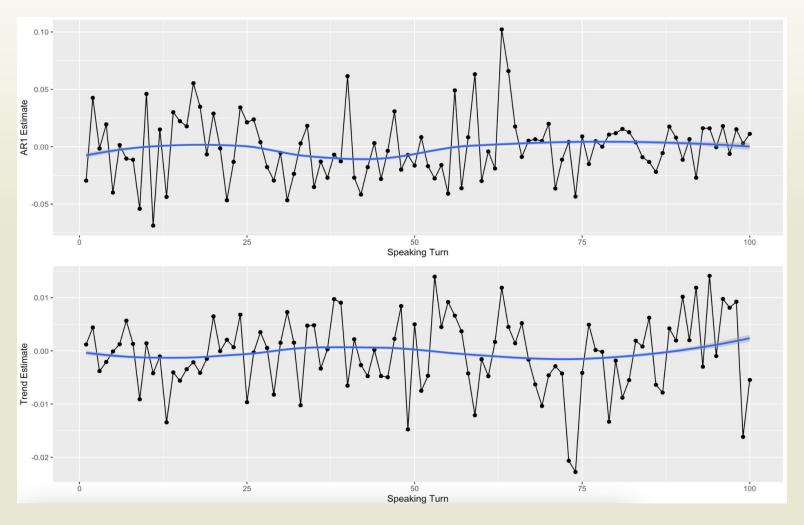


# **Graphing Dynamic Trends**





# Comparing AR(1) and Trend Graphs





## In Closing

- Process of opinion expression seems inconsistely dynamic
- Process seems a form of oscillation
  - Maybe cut points present themselves when considering trend estimates?
- Speaking turns not consistent across discussions
  - How much inconsistency is too much?
  - What is the cut point (speaking turns) to evaluate the data
- DSEM handles only 2 levels, which means within person variation not examined