Generalised Latent Variable Models

for Location, Scale and Shape parameters

Camilo A. Cárdenas-Hurtado

Joint work with Irini Moustaki & Yunxiao Chen (LSE) Giampiero Marra (UCL)

M3 Conference

June 27th 2023

Background: Latent Variable Models (LVM)

• Observed variables (items):
$$\mathbf{y} = (y_1, ..., y_p)^{\mathsf{T}} \in \mathbb{R}^p$$
,

• Latent variables (factors): $\mathbf{z} = (z_1, ..., z_q)^{\mathsf{T}} \in \mathbb{R}^q$, with $q \ll p$.

The marginal distribution:

$$f(\mathbf{y}; \Theta) = \int\limits_{\mathbb{R}^q} \prod_{i=1}^p f_i(y_i \,|\, \mathbf{z}; \Theta_{y_i}) \, p(\mathbf{z}; \Theta_z) \, d\mathbf{z}$$

Assumptions:

Parametric model: $\Theta^{\intercal} = (\Theta_y^{\intercal}, \Theta_z^{\intercal})$,

Conditional independence,

Background: Latent Variable Models (LVM)

• Observed variables (items):
$$\mathbf{y} = (y_1, ..., y_p)^{\mathsf{T}} \in \mathbb{R}^p$$
,

Latent variables (factors): $\mathbf{z} = (z_1, ..., z_q)^{\mathsf{T}} \in \mathbb{R}^q$, with $q \ll p$.

The marginal distribution:

$$f(\mathbf{y};\Theta) = \int_{\mathbb{R}^q} \prod_{i=1}^p \exp\left\{\frac{y_i \zeta_i(\mathbf{z}) - b_i(\zeta_i(\mathbf{z}))}{\phi_i} + c_i(y_i;\phi_i)\right\} \, p(\mathbf{z};\boldsymbol{\Phi}) \, d\mathbf{z}$$

Assumptions (GLLVM, Skrondal and Rabe-Hesketh, 2004; Bartholomew et al., 2011):

- Parametric model: $\Theta^{\mathsf{T}} = (\Theta^{\mathsf{T}}_y, \Theta^{\mathsf{T}}_z)$,
- Conditional independence,
- Distributions: $y_i | \mathbf{z} \sim \mathsf{EF}(\zeta_i(\mathbf{z}), \phi_i)$ and $\mathbf{z} \sim \mathbb{N}(\mathbf{0}, \Phi)$.

$$f(\mathbf{y};\Theta) = \int_{\mathbb{R}^q} \prod_{i=1}^p \exp\left\{\frac{y_i \zeta_i(\mathbf{z}) - b_i(\zeta_i(\mathbf{z}))}{\phi_i} + c_i(y_i;\phi_i)\right\} \, p(\mathbf{z};\Phi) \, d\mathbf{z}$$

System of GLMs (McCullagh and Nelder, 1989) with latent covariates:

- Focus on (conditional) mean: $\mu_i := \mathbb{E}(y_i | \mathbf{z}) = \partial b_i / \partial \zeta_i$,
- Linear predictor: $v_i(\mu_i) = \alpha_{i0} + \boldsymbol{\alpha}_{i1}^{\mathsf{T}} \mathbf{z}$
- Matrix notation: $v(\boldsymbol{\mu}) = \boldsymbol{\alpha}_0 + A \mathbf{z}$
- Model parameters: $\Theta^{\mathsf{T}} = (\boldsymbol{\alpha}_0^{\mathsf{T}}, \mathsf{vec}(A)^{\mathsf{T}}, \boldsymbol{\phi}^{\mathsf{T}}, \mathsf{vech}(\Phi)^{\mathsf{T}})$
- **Rotational indeterminacy:** q^2 restrictions on Θ (EFA/CFA).

$$\ell(\Theta; \mathbf{y}) = \sum_{m=1}^{n} \log \left[\int_{\mathbb{R}^q} \prod_{i=1}^{p} f_i(y_{im} \,|\, \mathbf{z}; \boldsymbol{\alpha}_{i0}, \boldsymbol{\alpha}_i, \phi_i) \; p(\mathbf{z}; \Phi) \; \mathsf{dz}
ight]$$

System of GLMs (McCullagh and Nelder, 1989) with latent covariates:

- Focus on (conditional) mean: $\mu_i := \mathbb{E}(y_i | \mathbf{z}) = \partial b_i / \partial \zeta_i$,
- Linear predictor: $v_i(\mu_i) = \alpha_{i0} + \boldsymbol{\alpha}_{i1}^{\mathsf{T}} \mathbf{z}$
- Matrix notation: $v(\boldsymbol{\mu}) = \boldsymbol{\alpha}_0 + A \mathbf{z}$
- Model parameters: $\Theta^{\intercal} = (\boldsymbol{\alpha}_0^{\intercal}, \operatorname{vec}(A)^{\intercal}, \boldsymbol{\phi}^{\intercal}, \operatorname{vech}(\Phi)^{\intercal})$
- **Rotational indeterminacy:** q^2 restrictions on Θ (EFA/CFA).

$$\hat{\Theta} = \operatorname*{arg\,max}_{\Theta \in \Xi} \ell(\Theta; \mathbf{y})$$

Motivation: Response times (educational testing research)

Interest in response times (van der Linden, 2007, 2009). Can we assume $\log(t_i) | \mathbf{z} \sim \mathbb{N}(\mu_i(\mathbf{z}), \sigma_i^2)$? (\triangle)

Figure: Empirical vs. marginal distribution assuming $\log(t_i) | \mathbf{z} \sim \mathbb{N}(\mu_i(\mathbf{z}), \sigma_i^2)$.

Motivation: Thermometer ratings (public opinion research)

Q: "From 0 (cold) to 100 (hot), how would you rate ____?" Can we assume $y_i | \mathbf{z} \sim \mathbb{N}(\mu_i(\mathbf{z}), \sigma_i^2)$? (\triangle)

Figure: Empirical vs. marginal distributions assuming $y_i | \mathbf{z} \sim \mathbb{N}(\mu_i(\mathbf{z}), \sigma_i^2)$.

A call for modelling the conditional distribution $f_i(y_i | \mathbf{z})$, as opposed to only the conditional mean $\mu_i(\mathbf{z})$:

- Going beyond $y_i | \mathbf{z} \sim \mathsf{EF}$,
 - e.g, items in (0, 1), zero inflation, heaping (rounding).
- Substantive interest in higher order moments (variance, skewness, kurtosis),
 - e.g., Ability differentiation, Ecological momentary assessments (EMA).
- Item quality and control,
- Better prediction, outliers, etc.

Background and Motivation

2 Generalised LVM for Location, Scale and Shape parameters

3 Estimation and Inference

4 Empirical Applications

5 Conclusions & Future Research

6

Background and Motivation

2 Generalised LVM for Location, Scale and Shape parameters

- **3** Estimation and Inference
- 4 Empirical Applications
- 5 Conclusions & Future Research

- We propose an umbrella class of LVM to model the conditional distribution $f_i(y_i | \mathbf{z})$.
- System of GAMLSS regressions (Rigby and Stasinopoulos, 2005) with latent covariates:
 - $f_i(y_i | \mathbf{z}; \theta_i(\mathbf{z}))$ is indexed by $\theta_i(\mathbf{z}) = (\mu_i, \sigma_i, \nu_i, \tau_i)^\mathsf{T}$, a vector of <u>location</u> (μ_i) , <u>scale</u> (σ_i) , and shape (ν_i, τ_i) parameters, modelled as linear functions of \mathbf{z} .
 - Mean, variance, skewness, kurtosis: functions of these distributional parameters.
 - Linear predictor (for $\varphi_i \in \boldsymbol{\theta}_i$): $v_{i,\varphi}(\varphi_i) = \alpha_{i0,\varphi} + \boldsymbol{\alpha}_{i1,\varphi}^{\mathsf{T}} \mathbf{z}$
 - Matrix notation (for $\varphi \in oldsymbol{ heta}$): $v_{arphi}(oldsymbol{arphi}) = oldsymbol{lpha}_{0,arphi} + \mathrm{A}_{arphi} \mathbf{z}$
 - Matrix notation (all): $\upsilon(\boldsymbol{\theta}) = \boldsymbol{\alpha}_0 + A \mathbf{z}$
- Model parameters: $\Theta^{\intercal} = (\boldsymbol{\alpha}_0^{\intercal}, \mathsf{vec}(A)^{\intercal}, \mathsf{vech}(\Phi)^{\intercal}).$

GLVM-LSS: Some examples (1)

Heteroscedastic Normal linear factor model (Hessen and Dolan, 2009).

- Items: $y_i | \mathbf{z} \sim \mathbb{N}(\mu_i(\mathbf{z}), \sigma_i^2(\mathbf{z})).$
- Location $(\mu_i \in \mathbb{R})$ and scale $(\sigma_i \in \mathbb{R}^+)$ parameters.

Measurement equations:

$$\mu_i(\mathbf{z}) = \alpha_{i0,\mu} + \boldsymbol{\alpha}_{i1,\mu}^{\mathsf{T}} \mathbf{z}$$
$$\log(\sigma_i(\mathbf{z})) = \alpha_{i0,\sigma} + \boldsymbol{\alpha}_{i1,\sigma}^{\mathsf{T}} \mathbf{z}$$

Used for: testing 'ability differentiation', item quality control.

Update: Response times (educational testing research)

Figure: Homoscedastic, $\mathbb{N}(\mu_i(z_2), \sigma_i^2)$ (- - -) vs. Heteroscedastic, $\mathbb{N}(\mu_i(z_2), \sigma_i^2(z_2))$ (----) model.

 Skew-Normal factor model (Montanari and Viroli, 2010; Liu and Lin, 2015; Asparouhov and Muthén, 2016).

- Re-parametrisation: $y_i | \mathbf{z} \sim SN(\mu_i(\mathbf{z}), \sigma_i^2(\mathbf{z}), \nu_i(\mathbf{z})).$
- Location $(\mu_i \in \mathbb{R})$, scale $(\sigma_i \in \mathbb{R}^+)$, and shape $(\nu_i \in (0, 1))$ parameters.
- Measurement equations:

$$\mu_i(\mathbf{z}) = \alpha_{i0,\mu} + \boldsymbol{\alpha}_{i1,\mu}^{\mathsf{T}} \mathbf{z}$$
$$\log(\sigma_i(\mathbf{z})) = \alpha_{i0,\sigma} + \boldsymbol{\alpha}_{i1,\sigma}^{\mathsf{T}} \mathbf{z}$$
$$\operatorname{ogit}(\nu_i(\mathbf{z})) = \alpha_{i0,\nu} + \boldsymbol{\alpha}_{i1,\nu}^{\mathsf{T}} \mathbf{z}$$

Update: Response times (educational testing research)

 $\text{Figure: } \mathbb{N}(\mu_i(z_2), \sigma_i^2) \text{ (---) vs. } \mathbb{N}(\mu_i(z_2), \sigma_i^2(z_2)) \text{ (----) vs. } \text{SN}(\mu_i(z_2), \sigma_i^2(z_2), \nu_i(z_2)) \text{ (----).}$

- Zero-Inflated Poisson factor model (Wang, 2010; Wall et al., 2015; Magnus and Thissen, 2017).
- Items: $y_i | \mathbf{z} \sim \mathsf{ZIP}(\lambda_i(\mathbf{z}), \pi_i(\mathbf{z}))$:

$$f_i(y_i \,|\, \mathbf{z}; \boldsymbol{\theta}_i) = \begin{cases} \pi_i + (1 - \pi_i) \cdot e^{-\lambda_i}, & \text{if } y_i = 0\\ (1 - \pi_i) \cdot \frac{\lambda_i^{y_i} \cdot e^{-\lambda_i}}{y_i!}, & \text{if } y_i > 0 \end{cases}$$

Measurement equations:

$$\log(\lambda_i(\mathbf{z})) = \alpha_{i0,\lambda} + \boldsymbol{\alpha}_{i1,\lambda}^{\mathsf{T}} \mathbf{z}$$
$$\mathsf{logit}(\pi_i(\mathbf{z})) = \alpha_{i0,\pi} + \boldsymbol{\alpha}_{i1,\pi}^{\mathsf{T}} \mathbf{z}$$

GLVM-LSS: Some examples (4)

- (Heteroscedastic) Beta factor model (Noel and Dauvier, 2007; Verkuilen and Smithson, 2012; Revuelta et al., 2022).
- **Re-parametrisation**: $y_i | \mathbf{z} \sim \text{Beta}(\mu_i(\mathbf{z}), \sigma_i(\mathbf{z})).$
- Location ($\mu_i \in (0,1)$), scale ($\sigma_i \in (0,1)$) parameters.

$$\blacksquare \mathbb{E}(y_i \mid \mathbf{z}) = \mu_i \text{ and } \operatorname{Var}(y_i \mid \mathbf{z}) = \sigma_i^2 \mu_i (1 - \mu_i).$$

Measurement equations:

$$\begin{aligned} \mathsf{logit}(\mu_i(\mathbf{z})) &= \alpha_{i0,\mu} + \boldsymbol{\alpha}_{i1,\mu}^{\mathsf{T}} \mathbf{z} \\ \mathsf{logit}(\sigma_i(\mathbf{z})) &= \alpha_{i0,\sigma} + \boldsymbol{\alpha}_{i1,\sigma}^{\mathsf{T}} \mathbf{z} \end{aligned}$$

Update: Thermometer ratings (public opinion research)

 $\mathsf{Figure:} \ \mathbb{N}(\mu_i(z_1), \sigma_i^2) \ \textbf{(---)} \ \mathsf{vs.} \ \mathbb{N}(\mu_i(z_1), \sigma_i^2(z_1)) \ \textbf{(---)} \ \mathsf{vs.} \ \mathsf{Beta}(\mu_i(z_1), \sigma_i(z_1)) \ \textbf{(---)}.$

0

Background and Motivation

2 Generalised LVM for Location, Scale and Shape parameters

B Estimation and Inference

4 Empirical Applications

5 Conclusions & Future Research

Full-information marginal maximum likelihood estimation $\implies \hat{\Theta} = \arg \max \ell(\Theta; \mathbf{y}).$

- **Computation**: Sequential implementation:
 - EM-algorithm (fixed number of iterations/convergence):
 - \checkmark Monotonic increments, easy implementation.
 - × Slow: (sub-)linear convergence rate.
 - Direct maximisation via (quasi-)Newton algorithm (refinement step):
 - ✓ Fast: (super-)linear convergence rate.

 \times Computationally intensive.

Numerical integration via Gauss-Hermite quadrature

Inference: $\sqrt{n}(\hat{\Theta} - \Theta^*) \xrightarrow{d} \mathbb{N}(\mathbf{0}, (\mathcal{I}/n)^{-1})$, with expected information matrix \mathcal{I} .

Background and Motivation

2 Generalised LVM for Location, Scale and Shape parameters

3 Estimation and Inference

4 Empirical Applications

5 Conclusions & Future Research

- Computer-based Maths exam, booklet 1 (Brazil, n = 1280).
- Study of the 'Speed-accuracy trade-off' (SAT) (van der Linden, 2007; Molenaar et al., 2015).
- Confirmatory joint model for item response (y_i) and response times (t_i) .
- Latent ability (z_1) and Latent 'speed' trait (z_2) , correlated: $Corr(z_1, z_2) \neq 0$.
- ltem responses (x9), $y_i | \mathbf{z} \sim \text{Bernoulli}(\pi_i(z_1))$
- Response times (×9, log-minutes):
 - Option 1 (current literature): $\log(t_i) | \mathbf{z} \sim \mathbb{N}(\mu_i(z_2), \sigma_i^2(z_2)).$
 - Option 2: $\log(t_i) | \mathbf{z} \sim SN(\mu_i(z_2), \sigma_i^2(z_2), \nu_i(z_2)).$

Figure: Path diagram example: Joint IR and RT model

Мо	del	AIC	BIC	K
1.	Bernoulli (π) + Normal (μ , fixed $lpha_{i1,\mu}$)	26173.08	26368.96	38
2.	Bernoulli (π) $+$ Normal (μ)	25908.67	26145.79	46
3.	Bernoulli (π) $+$ Normal (μ,σ)	25754.91	26038.42	55
4.	Bernoulli (π) $+$ Skew-Normal (μ)	25326.02	25609.53	55
5.	Bernoulli (π) + Skew-Normal (μ,σ)	25281.41	25611.30	64
6.	Bernoulli $(\pi)+$ Skew-Normal (μ, u)	25232.80	25562.70	64
7.	Bernoulli (π) + Skew-Normal (μ,σ, u)	25171.90	25548.18	73

Table: Confirmatory GLVM-LSS for item responses and response times.

	L	ocation par	ameter (π	i)		Location pa	rameter (μ	<i>i</i>)		Scale para	meter (σ_i)			Shape para	meter (ν_i))
Item	$\hat{\alpha}$	i0,π	â	<i>i</i> 1,π	â	$i0, \mu$	â	$i1, \mu$	â	$i0, \sigma$	$\hat{\alpha}$	$i1, \sigma$	â	$i0, \nu$	â	$i1, \nu$
	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE
ltem 1	0.64	(0.06)	0.79	(0.09)	0.19	(0.01)	-0.17	(0.01)	-0.95	(0.02)	-0.03	(0.02)	0.63	(0.13)	-0.03	(0.15)
Item 2	-0.47	(0.07)	1.03	(0.10)	0.30	(0.01)	-0.24	(0.01)	-0.89	(0.02)	-0.10	(0.02)	1.56	(0.15)	-0.78	(0.18)
Item 3	-0.04	(0.08)	1.95	(0.20)	0.42	(0.02)	-0.25	(0.01)	-0.61	(0.02)	-0.08	(0.02)	-1.07	(0.14)	0.81	(0.16)
Item 4	-0.69	(0.07)	0.96	(0.10)	0.45	(0.01)	-0.34	(0.01)	-0.87	(0.01)	-0.05	(0.02)	-1.45	(0.12)	-0.33	(0.15)
Item 5	-2.84	(0.21)	2.28	(0.24)	1.00	(0.02)	-0.36	(0.02)	-0.68	(0.02)	0.14	(0.02)	-1.04	(0.13)	-0.32	(0.20)
Item 6	-0.91	(0.06)	0.32	(0.08)	0.16	(0.01)	-0.36	(0.01)	-0.97	(0.02)	0.03	(0.03)	0.11	(0.11)	-0.88	(0.21)
Item 7	-4.79	(0.42)	2.49	(0.32)	0.65	(0.01)	-0.33	(0.01)	-1.15	(0.02)	-0.04	(0.02)	0.35	(0.14)	-0.58	(0.16)
Item 8	-3.67	(0.30)	2.39	(0.28)	1.02	(0.01)	-0.39	(0.01)	-1.02	(0.02)	0.12	(0.02)	-1.22	(0.17)	-1.60	(0.26)
ltem 9	-2.73	(0.16)	1.46	(0.16)	0.58	(0.01)	-0.30	(0.01)	-0.90	(0.02)	-0.00	(0.02)	0.30	(0.10)	0.36	(0.13)

Est. Correlation(z_1 , z_2) = -0.28 (SE: 0.025)

Table: Results for joint model of item responses and response times (Model 7).

	L	ocation par	ameter (π	<i>i</i>)		Location pa	rameter (μ	: _i)		Scale para	meter (σ_i)			Shape para	meter (ν_i))
Item	â	i0,π	â	<i>i</i> 1,π	â	$i0, \mu$	â	i1,µ	â	i0,σ	â	ί1,σ	â	$i0, \nu$	â	i1,ν
	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE
ltem 1	0.64	(0.06)	0.79	(0.09)	0.19	(0.01)	-0.17	(0.01)	-0.95	(0.02)	-0.03	(0.02)	0.63	(0.13)	-0.03	(0.15)
Item 2	-0.47	(0.07)	1.03	(0.10)	0.30	(0.01)	-0.24	(0.01)	-0.89	(0.02)	-0.10	(0.02)	1.56	(0.15)	-0.78	(0.18)
Item 3	-0.04	(0.08)	1.95	(0.20)	0.42	(0.02)	-0.25	(0.01)	-0.61	(0.02)	-0.08	(0.02)	-1.07	(0.14)	0.81	(0.16)
Item 4	-0.69	(0.07)	0.96	(0.10)	0.45	(0.01)	-0.34	(0.01)	-0.87	(0.01)	-0.05	(0.02)	-1.45	(0.12)	-0.33	(0.15)
Item 5	-2.84	(0.21)	2.28	(0.24)	1.00	(0.02)	-0.36	(0.02)	-0.68	(0.02)	0.14	(0.02)	-1.04	(0.13)	-0.32	(0.20)
ltem 6	-0.91	(0.06)	0.32	(0.08)	0.16	(0.01)	-0.36	(0.01)	-0.97	(0.02)	0.03	(0.03)	0.11	(0.11)	-0.88	(0.21)
Item 7	-4.79	(0.42)	2.49	(0.32)	0.65	(0.01)	-0.33	(0.01)	-1.15	(0.02)	-0.04	(0.02)	0.35	(0.14)	-0.58	(0.16)
Item 8	-3.67	(0.30)	2.39	(0.28)	1.02	(0.01)	-0.39	(0.01)	-1.02	(0.02)	0.12	(0.02)	-1.22	(0.17)	-1.60	(0.26)
Item 9	-2.73	(0.16)	1.46	(0.16)	0.58	(0.01)	-0.30	(0.01)	-0.90	(0.02)	-0.00	(0.02)	0.30	(0.10)	0.36	(0.13)

Est. Correlation(z_1 , z_2) = -0.28 (SE: 0.025)

Table: Results for joint model of item responses and response times (Model 7).

Figure: Item 2: Conditional expected values (----), median (---), and percentiles (.....).

	L	ocation par	ameter (π	i)		Location pa	rameter (μ	i)		Scale para	meter (σ_i)			Shape para	meter (ν_i))
Item	$\hat{\alpha}$	$i0, \pi$	$\hat{\alpha}$	<i>i</i> 1,π	â	$i0, \mu$	$\hat{\alpha}$	$i1, \mu$	â	$i0, \sigma$	$\hat{\alpha}$	$i1, \sigma$	$\hat{\alpha}$	$i0, \nu$	â	$i1, \nu$
	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE
ltem 1	0.64	(0.06)	0.79	(0.09)	0.19	(0.01)	-0.17	(0.01)	-0.95	(0.02)	-0.03	(0.02)	0.63	(0.13)	-0.03	(0.15)
Item 2	-0.47	(0.07)	1.03	(0.10)	0.30	(0.01)	-0.24	(0.01)	-0.89	(0.02)	-0.10	(0.02)	1.56	(0.15)	-0.78	(0.18)
Item 3	-0.04	(0.08)	1.95	(0.20)	0.42	(0.02)	-0.25	(0.01)	-0.61	(0.02)	-0.08	(0.02)	-1.07	(0.14)	0.81	(0.16)
Item 4	-0.69	(0.07)	0.96	(0.10)	0.45	(0.01)	-0.34	(0.01)	-0.87	(0.01)	-0.05	(0.02)	-1.45	(0.12)	-0.33	(0.15)
Item 5	-2.84	(0.21)	2.28	(0.24)	1.00	(0.02)	-0.36	(0.02)	-0.68	(0.02)	0.14	(0.02)	-1.04	(0.13)	-0.32	(0.20)
ltem 6	-0.91	(0.06)	0.32	(0.08)	0.16	(0.01)	-0.36	(0.01)	-0.97	(0.02)	0.03	(0.03)	0.11	(0.11)	-0.88	(0.21)
Item 7	-4.79	(0.42)	2.49	(0.32)	0.65	(0.01)	-0.33	(0.01)	-1.15	(0.02)	-0.04	(0.02)	0.35	(0.14)	-0.58	(0.16)
Item 8	-3.67	(0.30)	2.39	(0.28)	1.02	(0.01)	-0.39	(0.01)	-1.02	(0.02)	0.12	(0.02)	-1.22	(0.17)	-1.60	(0.26)
Item 9	-2.73	(0.16)	1.46	(0.16)	0.58	(0.01)	-0.30	(0.01)	-0.90	(0.02)	-0.00	(0.02)	0.30	(0.10)	0.36	(0.13)

Est. Correlation(z_1 , z_2) = -0.28 (SE: 0.025)

Table: Results for joint model of item responses and response times (Model 7).

Figure: Item 5: Conditional expected values (----), median (---), and percentiles (.....).

- American National Election Study (ANES): Thermometer questions (scaled ratings to (0,1) interval, n = 7253).
- Q: "From 0 (cold) to 100 (hot), how would you rate _____?"
- Exploratory model on attitudes towards social groups and movements.
- Latent construct: 'progressive-conservative' scale (z_1) .
- Items (x13): $y_i | z_1 \sim \text{Beta}(\mu_i(z_1), \sigma_i(z_1)).$

Figure: Empirical CDF: Feminists (—), Gay men and Lesbians (– – –), Christian fundamentalists (……), and Scientists (–-–).

Model	AIC	BIC	K
Beta (μ)	-95075.12	-94806.44	39
Beta (μ,σ)	-96805.52	-96447.28	52

Table: Beta GLVM-LSS results for ANES 2020 dataset

	L	ocation pa	rameter (u)	Scale parameter (σ)					
Item	α	$i0, \mu$	α	i1,μ	α	$i0, \sigma$	$\alpha_{i1,\sigma}$			
	Est.	SE	Est.	SE	Est.	SE	Est.	SE		
Christian fundament.	-0.19	(0.02)	-0.47	(0.02)	0.67	(0.01)	0.05	(0.01)		
Christians	0.96	(0.02)	-0.26	(0.02)	0.59	(0.01)	0.07	(0.01)		
Muslims	0.41	(0.01)	0.98	(0.02)	0.01	(0.01)	-0.10	(0.01)		
Jews	1.15	(0.02)	0.51	(0.02)	0.29	(0.01)	-0.16	(0.01)		
Gay men and Lesbians	0.90	(0.02)	1.31	(0.02)	-0.06	(0.01)	-0.27	(0.01)		
Transgender people	0.55	(0.01)	1.37	(0.02)	-0.12	(0.02)	-0.17	(0.01)		
Feminists	0.45	(0.01)	1.21	(0.02)	-0.10	(0.01)	-0.16	(0.01)		
#MeeToo movement	0.41	(0.02)	1.26	(0.02)	0.15	(0.02)	-0.28	(0.01)		
BLM movement	0.21	(0.02)	1.23	(0.02)	0.53	(0.01)	-0.33	(0.01)		
Labour Unions	0.39	(0.01)	0.62	(0.01)	0.21	(0.01)	-0.13	(0.01)		
Big Businesses	-0.17	(0.01)	-0.14	(0.01)	0.26	(0.01)	0.05	(0.01)		
Journalists	0.02	(0.01)	0.93	(0.02)	0.23	(0.01)	-0.17	(0.01)		
Scientists	1.58	(0.02)	0.82	(0.02)	0.02	(0.01)	-0.25	(0.01)		

Table: Results for the heteroscedastic Beta factor model.

Figure: Item: Scientists, conditional expected values (----), median (---), and percentiles (.....).

Empirical Bayes (EB) factor scores:

$$\tilde{\mathbf{z}}_{m}^{\mathsf{EB}} = \mathbb{E}(\mathbf{z} \,|\, \mathbf{y}_{m}; \hat{\Theta}) = \int_{\mathbb{R}^{q}} \mathbf{z} \cdot p(\mathbf{z} \,|\, \mathbf{y}_{m}; \hat{\Theta}) \,\, \mathsf{d}\mathbf{z} = \int_{\mathbb{R}^{q}} \mathbf{z} \cdot \frac{f(\mathbf{y}_{m} \,|\, \mathbf{z}; \hat{\Theta}_{y}) \,\, p(\mathbf{z}; \hat{\Theta}_{z})}{\int_{\mathbb{R}^{q}} f(\mathbf{y}_{m} \,|\, \mathbf{z}'; \hat{\Theta}_{y}) \,\, p(\mathbf{z}'; \hat{\Theta}_{z}) \,\, \mathsf{d}\mathbf{z}'} \,\, \mathsf{d}\mathbf{z}$$

Robustness check vs. self-reported measure of political orientation

- 7-point (1 to 7) scale: Liberal vs. Conservative (LC)
- 11-point (0 to 10) scale: Left vs. Right (LR)
- Correlations: Corr(EB,LC) = 0.65, Corr(EB,LR) = 0.56.

Figure: QQ-plots: (standardised) political orientation scales vs. EB factor scores (sign reversed).

Background and Motivation

2 Generalised LVM for Location, Scale and Shape parameters

3 Estimation and Inference

4 Empirical Applications

5 Conclusions & Future Research

- We propose a GLVM for Location, Scale and Shape parameters (GLVM-LSS), that allows for modelling items with distributions beyond the exponential family and higher order moments as functions of the latent factors, under either exploratory and confirmatory settings.
- Model parameters are estimated using a two-step marginal maximum likelihood estimation procedure.
- We test GLVM-LSS and its estimation framework with some examples using survey data.
- Extensions: New distributions, (non-linear) additive measurement equations.
- **Future research**: local model fit criteria (residuals?), better ways for dealing with latent variables, penalised estimation for better interpretation and sparse solutions.

Thank you!

Camilo A. Cárdenas-Hurtado

- @: c.a.cardenas-hurtado@lse.ac.uk
- 🍠: @ccardehu
- **Q**: https://github.com/ccardehu/GLVM-LSS

Appendix

Appendix: Details on EM-algorithm I

Augmented/complete-data log-likelihood:

$$\ell_c(\Theta; \mathbf{y}, \mathbf{z}) = \sum_{m=1}^n \log f(\mathbf{y}_m, \mathbf{z}_m; \Theta) = \sum_{m=1}^n \left[\left\{ \sum_{i=1}^p \log f_i(y_{im} \,|\, \mathbf{z}; \boldsymbol{\theta}_i) \right\} + \log p(\mathbf{z}_m; \boldsymbol{\Phi}) \right]$$

E-step: $\mathcal{Q}(\Theta; \Theta^{[t]}) = \mathbb{E}_{\mathbf{z} \mid \mathbf{y}; \Theta^{[t]}} \left[\ell_c(\Theta; \mathbf{y}, \mathbf{z}) \right]$

 $\blacksquare \text{ M-step: } \Theta^{[t+1]} = \arg \max \mathcal{Q}(\Theta; \Theta^{[t]}) \text{, or it suffices that } \mathcal{Q}(\Theta^{[t+1]}; \Theta^{[t]}) \geq \mathcal{Q}(\Theta^{[t]}; \Theta^{[t]}).$

- Computation: $\mathbb{S}^{[t]} := \nabla_{\Theta} \mathcal{Q}(\Theta; \Theta^{[t]}) = \mathbf{0}$
- NR update rule: $\Theta^{[t+1]} = \Theta^{[t]} (\mathbb{H}^{[t]})^{-1} \mathbb{S}^{[t]}$, with $\mathbb{H}^{[t]} := \nabla_{\Theta} \nabla_{\Theta^{\intercal}} \mathcal{Q}(\Theta; \Theta^{[t]})$.

Appendix: Details on EM-algorithm II

Score vector (entries):

$$\mathbb{S}_{[\vec{k}_{i,\varphi}]}^{[t]} = \sum_{m=1}^{n} \int_{\mathbb{R}^{q}} \left[\frac{\partial \log f_{i}(y_{im} \,|\, \mathbf{z})}{\partial \varphi_{i}} \cdot \frac{\partial \varphi_{i}}{\partial \eta_{i,\varphi}} \cdot \frac{\partial \eta_{i,\varphi}}{\partial \boldsymbol{\alpha}_{i,\varphi}} \right] \ p(\mathbf{z} \,|\, \mathbf{y}_{m}; \Theta^{[t]}) \ \mathsf{d}\mathbf{z}$$

• Observed information matrix (block diagonal matrix with entries):

$$\mathbb{H}_{[\bar{k}_{i,\varphi},\bar{k}_{i,\bar{\varphi}}]}^{[t]} = \sum_{m=1}^{n} \int_{\mathbb{R}^{q}} \left[\frac{\partial^{2} \log f_{i}(y_{im} \,|\, \mathbf{z})}{\partial \boldsymbol{\alpha}_{i,\varphi} \partial \boldsymbol{\alpha}_{i,\bar{\varphi}}^{\mathsf{T}}} \right] \, p(\mathbf{z} \,|\, \mathbf{y}_{m}; \boldsymbol{\Theta}^{[t]}) \, \, \mathsf{d}\mathbf{z}$$

Appendix: Details on direct MLE via (quasi-)Newton algorithm

Score vectors are equivalent: $\nabla_{\Theta} \ell(\Theta; \mathbf{y}) \equiv \nabla_{\Theta} \mathcal{Q}(\Theta; \Theta^{[t]}) = \mathbb{S}^{[t]}$ (Louis, 1982).

For trust-region algorithm, $\mathcal{H}^{[t]} = \nabla_{\Theta} \nabla_{\Theta^{\intercal}} \ell(\Theta; \mathbf{y})$:

$$\begin{split} \mathcal{H}_{[\bar{k}_{i,\varphi},\bar{k}_{i',\bar{\varphi}}]}^{[t]} &= \sum_{m=1}^{n} \int_{\mathbb{R}^{q}} p(\mathbf{z} \,|\, \mathbf{y}_{m}) \cdot \frac{\partial^{2} \log f_{i}(y_{im} \,|\, \mathbf{z})}{\partial \boldsymbol{\alpha}_{i,\varphi} \partial \boldsymbol{\alpha}_{i',\bar{\varphi}}^{\mathsf{T}}} \,\, \mathrm{d}\mathbf{z} \\ &+ \sum_{m=1}^{n} \int_{\mathbb{R}^{q}} p(\mathbf{z} \,|\, \mathbf{y}_{m}) \cdot \frac{\partial \log f_{i}(y_{im} \,|\, \mathbf{z})}{\partial \boldsymbol{\alpha}_{i,\varphi}} \cdot \frac{\partial \log f_{i'}(y_{i'm} \,|\, \mathbf{z})}{\partial \boldsymbol{\alpha}_{i',\bar{\varphi}}^{\mathsf{T}}} \,\, \mathrm{d}\mathbf{z} \\ &- \sum_{m=1}^{n} \int_{\mathbb{R}^{q}} p(\mathbf{z} \,|\, \mathbf{y}_{m}) \cdot \frac{\partial \log f_{i}(y_{im} \,|\, \mathbf{z})}{\partial \boldsymbol{\alpha}_{i,\varphi}} \,\, \mathrm{d}\mathbf{z} \cdot \int_{\mathbb{R}^{q}} p(\mathbf{z} \,|\, \mathbf{y}_{m}) \frac{\partial \log f_{i'}(y_{i'm} \,|\, \mathbf{z})}{\partial \boldsymbol{\alpha}_{i,\varphi}} \,\, \mathrm{d}\mathbf{z} \cdot \int_{\mathbb{R}^{q}} p(\mathbf{z} \,|\, \mathbf{y}_{m}) \frac{\partial \log f_{i'}(y_{i'm} \,|\, \mathbf{z})}{\partial \boldsymbol{\alpha}_{i',\bar{\varphi}}^{\mathsf{T}}} \,\, \mathrm{d}\mathbf{z} \end{split}$$

lacksquare lacksquare for a correlation matrix \Longrightarrow positive semi-definiteness and diagonal entries equal to one.

• Cholesky decomposition: $\Phi = LL^{\intercal}$, with j rows L_j .

Solve
$$abla_{\mathrm{L}_{j}}\mathcal{Q}(\Theta;\Theta^{[t]})\equiv
abla_{\mathrm{L}_{j}}\ell(\Theta;\mathbf{y})=\mathbb{S}_{\mathrm{L}_{j}}^{[t]}=\mathbf{0}$$

$$\mathbb{S}_{\mathbf{L}_{j,[k]}}^{[t]} = -n \cdot \mathsf{tr} \left(\mathbf{L}^{\mathsf{T}} (\mathbf{L}\mathbf{L}^{\mathsf{T}})^{-1} \mathbf{D}_{jk} \right) + \sum_{m=1}^{n} \left[\mathsf{tr} \left(\mathbf{G}_{jk} \mathbb{V}_{m}^{[t]} \right) + \breve{\mathbf{z}}_{m}^{[t]^{\mathsf{T}}} \mathbf{G}_{jk} \breve{\mathbf{z}}_{m}^{[t]} \right]$$

Projection step:

$$\mathbf{L}_{j}^{[t+1]} = \underset{\mathbf{L}_{j}:||\mathbf{L}_{j}||=1}{\arg\min} ||\mathbf{L}_{j} - \tilde{\mathbf{L}}_{j}^{[t+1]}|| = \frac{1}{||\tilde{\mathbf{L}}_{j}^{[t+1]}||} \tilde{\mathbf{L}}_{j}^{[t+1]}, \quad \text{ for } j = 1, ..., q$$

Appendix: Model Selection

- A GLVM-LSS model: $\mathcal{M} = \{\Theta, \mathbf{z}, \mathcal{F}\}$
 - Model parameters: $\Theta \in \Xi$
 - Latent variables: $\mathbf{z} \in \mathbb{R}^q$
 - Parametric distributions: $\mathcal{F} = \{f_1(\cdot | \mathbf{z}; \theta_1), ..., f_p(\cdot | \mathbf{z}; \theta_p)\}$
- Nested models: $\mathcal{M}_0 = \{\Theta \in \Xi_0, \mathbf{z}, \mathcal{F}\}$ and $\mathcal{M}_1 = \{\Theta \in \Xi_1, \mathbf{z}, \mathcal{F}\}$
- Non-nested models: $\mathcal{M}_0 = \{ \Theta \in \Xi_0, \mathbf{z} \in \mathbb{R}^{q_0}, \mathcal{F}_0 \}$ and $\mathcal{M}_1 = \{ \Theta \in \Xi_1, \mathbf{z} \in \mathbb{R}^{q_1}, \mathcal{F}_1 \}$,
 - Information Criteria (AIC, BIC)

| 41

- Asparouhov, T. and Muthén, B. (2016). Structural Equation Models and Mixture Models With Continuous Nonnormal Skewed Distributions. Structural Equation Modeling: A Multidisciplinary Journal, 23(4):1–19.
- Bartholomew, D. J., Knott, M., and Moustaki, I. (2011). Latent Variable Models and Factor Analysis: A Unified Approach. Wiley Series in Probability and Statistics. New York, NY, US: John Wiley & Sons, Ltd, 3rd edition.
- Hessen, D. J. and Dolan, C. V. (2009). Heteroscedastic one-factor models and marginal maximum likelihood estimation. British Journal of Mathematical and Statistical Psychology, 62(1):57–77.
- Liu, M. and Lin, T. I. (2015). Skew-normal factor analysis models with incomplete data. Journal of Applied Statistics, 42(4):789-805.
- Louis, T. A. (1982). Finding the Observed Information Matrix When Using the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 44(2):226–233.
- Magnus, B. E. and Thissen, D. (2017). Item Response Modeling of Multivariate Count Data With Zero Inflation, Maximum Inflation, and Heaping. Journal of Educational and Behavioral Statistics, 42(5):531–558.
- McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman & Hall/CRC Monographs on Statistics and Applied Probability (37). Boca Ratón, FL, US: Chapman & Hall / CRC.
- Molenaar, D., Tuerlinckx, F., and van der Maas, H. L. J. (2015). A Bivariate Generalized Linear Item Response Theory Modeling Framework to the Analysis of Responses and Response Times. Multivariate Behavioral Research, 50(1):56–74.
- Montanari, A. and Viroli, C. (2010). A skew-normal factor model for the analysis of student satisfaction towards university courses. Journal of Applied Statistics, 37(3):473–487.

LSE

Noel, Y. and Dauvier, B. (2007). A Beta Item Response Model for Continuous Bounded Responses. Applied Psychological Measurement, 31(1):47-73.

- Revuelta, J., Hidalgo, B., and Alcazar-Córcolesa, M. A. (2022). Bayesian Estimation and Testing of a Beta Factor Model for Bounded Continuous Variables. Multivariate Behavioral Research, 57(1):1–22.
- Rigby, R. A. and Stasinopoulos, M. D. (2005). Generalized additive models for location, shape and scale. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3):507–554.
- Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: multilevel, longitudinal, and structural equation models. Interdisciplinary Statistics. Boca Ratón, FL, US: Chapman & Hall, CRC.

van der Linden, W. J. (2007). A Hierarchical Framework for Modeling Speed and Accuracy on Test Items. Psychometrika, 72(3):287-308.

van der Linden, W. J. (2009). Conceptual Issues in Response-Time Modeling. Journal of Educational Measurement, 46(3):247-272.

- Verkuilen, J. and Smithson, M. (2012). Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution. Journal of Educational and Behavioral Statistics, 37(1):82–113.
- Wall, M. M., Park, J. Y., and Moustaki, I. (2015). IRT Modeling in the Presence of Zero-Inflation With Application to Psychiatric Disorder Severity. Applied Psychological Measurement, 39(8):583–597.
- Wang, L. (2010). IRT-ZIP Modeling for Multivariate Zero-Inflated Count Data. Journal of Educational and Behavioral Statistics, 35(6):671-692.